NetworkX

Source code for networkx.algorithms.traversal.breadth_first_search

"""
====================
Breadth-first search
====================

Basic algorithms for breadth-first searching.
"""
__author__ = """\n""".join(['Aric Hagberg <hagberg@lanl.gov>'])

__all__ = ['bfs_edges', 'bfs_tree',
           'bfs_predecessors', 'bfs_successors']

import networkx as nx
from collections import defaultdict, deque

[docs]def bfs_edges(G, source, reverse=False): """Produce edges in a breadth-first-search starting at source.""" # Based on http://www.ics.uci.edu/~eppstein/PADS/BFS.py # by D. Eppstein, July 2004. if reverse and isinstance(G, nx.DiGraph): neighbors = G.predecessors_iter else: neighbors = G.neighbors_iter visited=set([source]) queue = deque([(source, neighbors(source))]) while queue: parent, children = queue[0] try: child = next(children) if child not in visited: yield parent, child visited.add(child) queue.append((child, neighbors(child))) except StopIteration: queue.popleft()
[docs]def bfs_tree(G, source, reverse=False): """Return directed tree of breadth-first-search from source.""" T = nx.DiGraph() T.add_node(source) T.add_edges_from(bfs_edges(G,source,reverse=reverse)) return T
[docs]def bfs_predecessors(G, source): """Return dictionary of predecessors in breadth-first-search from source.""" return dict((t,s) for s,t in bfs_edges(G,source))
[docs]def bfs_successors(G, source): """Return dictionary of successors in breadth-first-search from source.""" d=defaultdict(list) for s,t in bfs_edges(G,source): d[s].append(t) return dict(d)