NetworkX

Source code for networkx.algorithms.graphical

# -*- coding: utf-8 -*-
"""Test sequences for graphiness.
"""
#    Copyright (C) 2004-2013 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
from collections import defaultdict
import heapq
import networkx as nx
__author__ = "\n".join(['Aric Hagberg (hagberg@lanl.gov)',
                        'Pieter Swart (swart@lanl.gov)',
                        'Dan Schult (dschult@colgate.edu)'
                        'Joel Miller (joel.c.miller.research@gmail.com)'
                        'Ben Edwards'
                        'Brian Cloteaux <brian.cloteaux@nist.gov>'])

__all__ = ['is_graphical',
           'is_multigraphical',
           'is_pseudographical',
           'is_digraphical',
           'is_valid_degree_sequence_erdos_gallai',
           'is_valid_degree_sequence_havel_hakimi',
           'is_valid_degree_sequence', # deprecated
           ]

[docs]def is_graphical(sequence, method='eg'): """Returns True if sequence is a valid degree sequence. A degree sequence is valid if some graph can realize it. Parameters ---------- sequence : list or iterable container A sequence of integer node degrees method : "eg" | "hh" The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm. Returns ------- valid : bool True if the sequence is a valid degree sequence and False if not. Examples -------- >>> G = nx.path_graph(4) >>> sequence = G.degree().values() >>> nx.is_valid_degree_sequence(sequence) True References ---------- Erdős-Gallai [EG1960]_, [choudum1986]_ Havel-Hakimi [havel1955]_, [hakimi1962]_, [CL1996]_ """ if method == 'eg': valid = is_valid_degree_sequence_erdos_gallai(list(sequence)) elif method == 'hh': valid = is_valid_degree_sequence_havel_hakimi(list(sequence)) else: msg = "`method` must be 'eg' or 'hh'" raise nx.NetworkXException(msg) return valid
is_valid_degree_sequence = is_graphical def _basic_graphical_tests(deg_sequence): # Sort and perform some simple tests on the sequence if not nx.utils.is_list_of_ints(deg_sequence): raise nx.NetworkXUnfeasible p = len(deg_sequence) num_degs = [0]*p dmax, dmin, dsum, n = 0, p, 0, 0 for d in deg_sequence: # Reject if degree is negative or larger than the sequence length if d<0 or d>=p: raise nx.NetworkXUnfeasible # Process only the non-zero integers elif d>0: dmax, dmin, dsum, n = max(dmax,d), min(dmin,d), dsum+d, n+1 num_degs[d] += 1 # Reject sequence if it has odd sum or is oversaturated if dsum%2 or dsum>n*(n-1): raise nx.NetworkXUnfeasible return dmax,dmin,dsum,n,num_degs
[docs]def is_valid_degree_sequence_havel_hakimi(deg_sequence): r"""Returns True if deg_sequence can be realized by a simple graph. The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: O(s) where s is the sum of the sequence. Parameters ---------- deg_sequence : list A list of integers where each element specifies the degree of a node in a graph. Returns ------- valid : bool True if deg_sequence is graphical and False if not. Notes ----- The ZZ condition says that for the sequence d if .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} then d is graphical. This was shown in Theorem 6 in [1]_. References ---------- .. [1] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). [havel1955]_, [hakimi1962]_, [CL1996]_ """ try: dmax,dmin,dsum,n,num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n==0 or 4*dmin*n >= (dmax+dmin+1) * (dmax+dmin+1): return True modstubs = [0]*(dmax+1) # Successively reduce degree sequence by removing the maximum degree while n > 0: # Retrieve the maximum degree in the sequence while num_degs[dmax] == 0: dmax -= 1; # If there are not enough stubs to connect to, then the sequence is # not graphical if dmax > n-1: return False # Remove largest stub in list num_degs[dmax], n = num_degs[dmax]-1, n-1 # Reduce the next dmax largest stubs mslen = 0 k = dmax for i in range(dmax): while num_degs[k] == 0: k -= 1 num_degs[k], n = num_degs[k]-1, n-1 if k > 1: modstubs[mslen] = k-1 mslen += 1 # Add back to the list any non-zero stubs that were removed for i in range(mslen): stub = modstubs[i] num_degs[stub], n = num_degs[stub]+1, n+1 return True
[docs]def is_valid_degree_sequence_erdos_gallai(deg_sequence): r"""Returns True if deg_sequence can be realized by a simple graph. The validation is done using the Erdős-Gallai theorem [EG1960]_. Parameters ---------- deg_sequence : list A list of integers Returns ------- valid : bool True if deg_sequence is graphical and False if not. Notes ----- This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: O(n) where n is the length of the sequence. Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence, .. math:: \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k) = k(n-1) - ( k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j ) A strong index k is any index where `d_k \geq k` and the value `n_j` is the number of occurrences of j in d. The maximal strong index is called the Durfee index. This particular rearrangement comes from the proof of Theorem 3 in [2]_. The ZZ condition says that for the sequence d if .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} then d is graphical. This was shown in Theorem 6 in [2]_. References ---------- .. [1] A. Tripathi and S. Vijay. "A note on a theorem of Erdős & Gallai", Discrete Mathematics, 265, pp. 417-420 (2003). .. [2] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). [EG1960]_, [choudum1986]_ """ try: dmax,dmin,dsum,n,num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n==0 or 4*dmin*n >= (dmax+dmin+1) * (dmax+dmin+1): return True # Perform the EG checks using the reformulation of Zverovich and Zverovich k, sum_deg, sum_nj, sum_jnj = 0, 0, 0, 0 for dk in range(dmax, dmin-1, -1): if dk < k+1: # Check if already past Durfee index return True if num_degs[dk] > 0: run_size = num_degs[dk] # Process a run of identical-valued degrees if dk < k+run_size: # Check if end of run is past Durfee index run_size = dk-k # Adjust back to Durfee index sum_deg += run_size * dk for v in range(run_size): sum_nj += num_degs[k+v] sum_jnj += (k+v) * num_degs[k+v] k += run_size if sum_deg > k*(n-1) - k*sum_nj + sum_jnj: return False return True
[docs]def is_multigraphical(sequence): """Returns True if some multigraph can realize the sequence. Parameters ---------- deg_sequence : list A list of integers Returns ------- valid : bool True if deg_sequence is a multigraphic degree sequence and False if not. Notes ----- The worst-case run time is O(n) where n is the length of the sequence. References ---------- .. [1] S. L. Hakimi. "On the realizability of a set of integers as degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506 (1962). """ deg_sequence = list(sequence) if not nx.utils.is_list_of_ints(deg_sequence): return False dsum, dmax = 0, 0 for d in deg_sequence: if d<0: return False dsum, dmax = dsum+d, max(dmax,d) if dsum%2 or dsum<2*dmax: return False return True
[docs]def is_pseudographical(sequence): """Returns True if some pseudograph can realize the sequence. Every nonnegative integer sequence with an even sum is pseudographical (see [1]_). Parameters ---------- sequence : list or iterable container A sequence of integer node degrees Returns ------- valid : bool True if the sequence is a pseudographic degree sequence and False if not. Notes ----- The worst-case run time is O(n) where n is the length of the sequence. References ---------- .. [1] F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976). """ s = list(sequence) if not nx.utils.is_list_of_ints(s): return False return sum(s)%2 == 0 and min(s) >= 0
[docs]def is_digraphical(in_sequence, out_sequence): r"""Returns True if some directed graph can realize the in- and out-degree sequences. Parameters ---------- in_sequence : list or iterable container A sequence of integer node in-degrees out_sequence : list or iterable container A sequence of integer node out-degrees Returns ------- valid : bool True if in and out-sequences are digraphic False if not. Notes ----- This algorithm is from Kleitman and Wang [1]_. The worst case runtime is O(s * log n) where s and n are the sum and length of the sequences respectively. References ---------- .. [1] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973) """ in_deg_sequence = list(in_sequence) out_deg_sequence = list(out_sequence) if not nx.utils.is_list_of_ints(in_deg_sequence): return False if not nx.utils.is_list_of_ints(out_deg_sequence): return False # Process the sequences and form two heaps to store degree pairs with # either zero or non-zero out degrees sumin, sumout, nin, nout = 0, 0, len(in_deg_sequence), len(out_deg_sequence) maxn = max(nin, nout) maxin = 0 if maxn==0: return True stubheap, zeroheap = [ ], [ ] for n in range(maxn): in_deg, out_deg = 0, 0 if n<nout: out_deg = out_deg_sequence[n] if n<nin: in_deg = in_deg_sequence[n] if in_deg<0 or out_deg<0: return False sumin, sumout, maxin = sumin+in_deg, sumout+out_deg, max(maxin, in_deg) if in_deg > 0: stubheap.append((-1*out_deg, -1*in_deg)) elif out_deg > 0: zeroheap.append(-1*out_deg) if sumin != sumout: return False heapq.heapify(stubheap) heapq.heapify(zeroheap) modstubs = [(0,0)]*(maxin+1) # Successively reduce degree sequence by removing the maximum out degree while stubheap: # Take the first value in the sequence with non-zero in degree (freeout, freein) = heapq.heappop( stubheap ) freein *= -1 if freein > len(stubheap)+len(zeroheap): return False # Attach out stubs to the nodes with the most in stubs mslen = 0 for i in range(freein): if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0]): stubout = heapq.heappop(zeroheap) stubin = 0 else: (stubout, stubin) = heapq.heappop(stubheap) if stubout == 0: return False # Check if target is now totally connected if stubout+1<0 or stubin<0: modstubs[mslen] = (stubout+1, stubin) mslen += 1 # Add back the nodes to the heap that still have available stubs for i in range(mslen): stub = modstubs[i] if stub[1] < 0: heapq.heappush(stubheap, stub) else: heapq.heappush(zeroheap, stub[0]) if freeout<0: heapq.heappush(zeroheap, freeout) return True