# -*- coding: utf-8 -*-
"""
Flow based cut algorithms
"""
# http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
# http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
import itertools
from operator import itemgetter
import networkx as nx
from networkx.algorithms.connectivity.connectivity import \
_aux_digraph_node_connectivity, _aux_digraph_edge_connectivity, \
dominating_set, node_connectivity
__author__ = '\n'.join(['Jordi Torrents <jtorrents@milnou.net>'])
__all__ = [ 'minimum_st_node_cut',
'minimum_node_cut',
'minimum_st_edge_cut',
'minimum_edge_cut',
]
[docs]def minimum_st_edge_cut(G, s, t, capacity='capacity'):
"""Returns the edges of the cut-set of a minimum (s, t)-cut.
We use the max-flow min-cut theorem, i.e., the capacity of a minimum
capacity cut is equal to the flow value of a maximum flow.
Parameters
----------
G : NetworkX graph
Edges of the graph are expected to have an attribute called
'capacity'. If this attribute is not present, the edge is
considered to have infinite capacity.
s : node
Source node for the flow.
t : node
Sink node for the flow.
capacity: string
Edges of the graph G are expected to have an attribute capacity
that indicates how much flow the edge can support. If this
attribute is not present, the edge is considered to have
infinite capacity. Default value: 'capacity'.
Returns
-------
cutset : set
Set of edges that, if removed from the graph, will disconnect it
Raises
------
NetworkXUnbounded
If the graph has a path of infinite capacity, all cuts have
infinite capacity and the function raises a NetworkXError.
Examples
--------
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)
>>> sorted(nx.minimum_edge_cut(G, 'x', 'y'))
[('c', 'y'), ('x', 'b')]
>>> nx.min_cut(G, 'x', 'y')
3.0
"""
try:
flow, H = nx.ford_fulkerson_flow_and_auxiliary(G, s, t, capacity=capacity)
cutset = set()
# Compute reachable nodes from source in the residual network
reachable = set(nx.single_source_shortest_path(H,s))
# And unreachable nodes
others = set(H) - reachable # - set([s])
# Any edge in the original network linking these two partitions
# is part of the edge cutset
for u, nbrs in ((n, G[n]) for n in reachable):
cutset.update((u,v) for v in nbrs if v in others)
return cutset
except nx.NetworkXUnbounded:
# Should we raise any other exception or just let ford_fulkerson
# propagate nx.NetworkXUnbounded ?
raise nx.NetworkXUnbounded("Infinite capacity path, no minimum cut.")
[docs]def minimum_st_node_cut(G, s, t, aux_digraph=None, mapping=None):
r"""Returns a set of nodes of minimum cardinality that disconnect source
from target in G.
This function returns the set of nodes of minimum cardinality that,
if removed, would destroy all paths among source and target in G.
Parameters
----------
G : NetworkX graph
s : node
Source node.
t : node
Target node.
Returns
-------
cutset : set
Set of nodes that, if removed, would destroy all paths between
source and target in G.
Examples
--------
>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_node_cut(G, 0, 6))
5
Notes
-----
This is a flow based implementation of minimum node cut. The algorithm
is based in solving a number of max-flow problems (ie local st-node
connectivity, see local_node_connectivity) to determine the capacity
of the minimum cut on an auxiliary directed network that corresponds
to the minimum node cut of G. It handles both directed and undirected
graphs.
This implementation is based on algorithm 11 in [1]_. We use the Ford
and Fulkerson algorithm to compute max flow (see ford_fulkerson).
See also
--------
node_connectivity
edge_connectivity
minimum_edge_cut
max_flow
ford_fulkerson
References
----------
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
"""
if aux_digraph is None or mapping is None:
H, mapping = _aux_digraph_node_connectivity(G)
else:
H = aux_digraph
edge_cut = minimum_st_edge_cut(H, '%sB' % mapping[s], '%sA' % mapping[t])
# Each node in the original graph maps to two nodes of the auxiliary graph
node_cut = set(H.node[node]['id'] for edge in edge_cut for node in edge)
return node_cut - set([s,t])
[docs]def minimum_node_cut(G, s=None, t=None):
r"""Returns a set of nodes of minimum cardinality that disconnects G.
If source and target nodes are provided, this function returns the
set of nodes of minimum cardinality that, if removed, would destroy
all paths among source and target in G. If not, it returns a set
of nodes of minimum cardinality that disconnects G.
Parameters
----------
G : NetworkX graph
s : node
Source node. Optional (default=None)
t : node
Target node. Optional (default=None)
Returns
-------
cutset : set
Set of nodes that, if removed, would disconnect G. If source
and target nodes are provided, the set contians the nodes that
if removed, would destroy all paths between source and target.
Examples
--------
>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_node_cut(G))
5
>>> # this is the minimum over any pair of non adjacent nodes
>>> from itertools import combinations
>>> for u,v in combinations(G, 2):
... if v not in G[u]:
... assert(len(nx.minimum_node_cut(G,u,v)) == 5)
...
Notes
-----
This is a flow based implementation of minimum node cut. The algorithm
is based in solving a number of max-flow problems (ie local st-node
connectivity, see local_node_connectivity) to determine the capacity
of the minimum cut on an auxiliary directed network that corresponds
to the minimum node cut of G. It handles both directed and undirected
graphs.
This implementation is based on algorithm 11 in [1]_. We use the Ford
and Fulkerson algorithm to compute max flow (see ford_fulkerson).
See also
--------
node_connectivity
edge_connectivity
minimum_edge_cut
max_flow
ford_fulkerson
References
----------
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
"""
# Local minimum node cut
if s is not None and t is not None:
if s not in G:
raise nx.NetworkXError('node %s not in graph' % s)
if t not in G:
raise nx.NetworkXError('node %s not in graph' % t)
return minimum_st_node_cut(G, s, t)
# Global minimum node cut
# Analog to the algoritm 11 for global node connectivity in [1]
if G.is_directed():
if not nx.is_weakly_connected(G):
raise nx.NetworkXError('Input graph is not connected')
iter_func = itertools.permutations
def neighbors(v):
return itertools.chain.from_iterable([G.predecessors_iter(v),
G.successors_iter(v)])
else:
if not nx.is_connected(G):
raise nx.NetworkXError('Input graph is not connected')
iter_func = itertools.combinations
neighbors = G.neighbors_iter
# Choose a node with minimum degree
deg = G.degree()
min_deg = min(deg.values())
v = next(n for n,d in deg.items() if d == min_deg)
# Initial node cutset is all neighbors of the node with minimum degree
min_cut = set(G[v])
# Reuse the auxiliary digraph
H, mapping = _aux_digraph_node_connectivity(G)
# compute st node cuts between v and all its non-neighbors nodes in G
# and store the minimum
for w in set(G) - set(neighbors(v)) - set([v]):
this_cut = minimum_st_node_cut(G, v, w, aux_digraph=H, mapping=mapping)
if len(min_cut) >= len(this_cut):
min_cut = this_cut
# Same for non adjacent pairs of neighbors of v
for x,y in iter_func(neighbors(v),2):
if y in G[x]: continue
this_cut = minimum_st_node_cut(G, x, y, aux_digraph=H, mapping=mapping)
if len(min_cut) >= len(this_cut):
min_cut = this_cut
return min_cut
[docs]def minimum_edge_cut(G, s=None, t=None):
r"""Returns a set of edges of minimum cardinality that disconnects G.
If source and target nodes are provided, this function returns the
set of edges of minimum cardinality that, if removed, would break
all paths among source and target in G. If not, it returns a set of
edges of minimum cardinality that disconnects G.
Parameters
----------
G : NetworkX graph
s : node
Source node. Optional (default=None)
t : node
Target node. Optional (default=None)
Returns
-------
cutset : set
Set of edges that, if removed, would disconnect G. If source
and target nodes are provided, the set contians the edges that
if removed, would destroy all paths between source and target.
Examples
--------
>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5
>>> # this is the minimum over any pair of nodes
>>> from itertools import combinations
>>> for u,v in combinations(G, 2):
... assert(len(nx.minimum_edge_cut(G,u,v)) == 5)
...
Notes
-----
This is a flow based implementation of minimum edge cut. For
undirected graphs the algorithm works by finding a 'small' dominating
set of nodes of G (see algorithm 7 in [1]_) and computing the maximum
flow between an arbitrary node in the dominating set and the rest of
nodes in it. This is an implementation of algorithm 6 in [1]_.
For directed graphs, the algorithm does n calls to the max flow function.
This is an implementation of algorithm 8 in [1]_. We use the Ford and
Fulkerson algorithm to compute max flow (see ford_fulkerson).
See also
--------
node_connectivity
edge_connectivity
minimum_node_cut
max_flow
ford_fulkerson
References
----------
.. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
"""
# reuse auxiliary digraph
H = _aux_digraph_edge_connectivity(G)
# Local minimum edge cut if s and t are not None
if s is not None and t is not None:
if s not in G:
raise nx.NetworkXError('node %s not in graph' % s)
if t not in G:
raise nx.NetworkXError('node %s not in graph' % t)
return minimum_st_edge_cut(H, s, t)
# Global minimum edge cut
# Analog to the algoritm for global edge connectivity
if G.is_directed():
# Based on algorithm 8 in [1]
if not nx.is_weakly_connected(G):
raise nx.NetworkXError('Input graph is not connected')
# Initial cutset is all edges of a node with minimum degree
deg = G.degree()
min_deg = min(deg.values())
node = next(n for n,d in deg.items() if d==min_deg)
min_cut = G.edges(node)
nodes = G.nodes()
n = len(nodes)
for i in range(n):
try:
this_cut = minimum_st_edge_cut(H, nodes[i], nodes[i+1])
if len(this_cut) <= len(min_cut):
min_cut = this_cut
except IndexError: # Last node!
this_cut = minimum_st_edge_cut(H, nodes[i], nodes[0])
if len(this_cut) <= len(min_cut):
min_cut = this_cut
return min_cut
else: # undirected
# Based on algorithm 6 in [1]
if not nx.is_connected(G):
raise nx.NetworkXError('Input graph is not connected')
# Initial cutset is all edges of a node with minimum degree
deg = G.degree()
min_deg = min(deg.values())
node = next(n for n,d in deg.items() if d==min_deg)
min_cut = G.edges(node)
# A dominating set is \lambda-covering
# We need a dominating set with at least two nodes
for node in G:
D = dominating_set(G, start_with=node)
v = D.pop()
if D: break
else:
# in complete graphs the dominating set will always be of one node
# thus we return min_cut, which now contains the edges of a node
# with minimum degree
return min_cut
for w in D:
this_cut = minimum_st_edge_cut(H, v, w)
if len(this_cut) <= len(min_cut):
min_cut = this_cut
return min_cut