NetworkX Reference Release 1.8.1

Aric Hagberg, Dan Schult, Pieter Swart

August 04, 2013

CONTENTS

1 Overview 1
1.1 Who uses NetworkX? 1
1.2 Goals 1
1.3 The Python programming language 1
1.4 Free software 2
1.5 History 2
2 Introduction 3
2.1 NetworkX Basics 3
2.2 Nodes and Edges 4
3 Graph types 9
3.1 Which graph class should I use? 9
3.2 Basic graph types 9
4 Algorithms 127
4.1 Approximation 127
4.2 Assortativity 132
4.3 Bipartite 141
4.4 Blockmodeling 160
4.5 Boundary 161
4.6 Centrality 163
4.7 Chordal 181
4.8 Clique 185
4.9 Clustering 187
4.10 Communities 191
4.11 Components 191
4.12 Connectivity 205
4.13 Cores 214
4.14 Cycles 218
4.15 Directed Acyclic Graphs 219
4.16 Distance Measures 222
4.17 Distance-Regular Graphs 224
4.18 Eulerian 226
4.19 Flows 227
4.20 Graphical degree sequence 239
4.21 Hierarchy 243
4.22 Isolates 244
4.23 Isomorphism 245
4.24 Link Analysis 258
4.25 Matching 264
4.26 Maximal independent set 265
4.27 Minimum Spanning Tree 266
4.28 Operators 268
4.29 Rich Club 275
4.30 Shortest Paths 276
4.31 Simple Paths 294
4.32 Swap 295
4.33 Traversal 297
4.34 Vitality 298
5 Functions 301
5.1 Graph 301
5.2 Nodes 303
5.3 Edges 305
5.4 Attributes 305
5.5 Freezing graph structure 307
6 Graph generators 309
6.1 Atlas 309
6.2 Classic 309
6.3 Small 314
6.4 Random Graphs 318
6.5 Degree Sequence 327
6.6 Random Clustered 333
6.7 Directed 334
6.8 Geometric 337
6.9 Hybrid 341
6.10 Bipartite 341
6.11 Line Graph 345
6.12 Ego Graph 346
6.13 Stochastic 347
6.14 Intersection 347
6.15 Social Networks 349
7 Linear algebra 351
7.1 Graph Matrix 351
7.2 Laplacian Matrix 352
7.3 Spectrum 355
7.4 Attribute Matrices 356
8 Converting to and from other data formats 361
8.1 To NetworkX Graph 361
8.2 Dictionaries 362
8.3 Lists 363
8.4 Numpy 364
8.5 Scipy 367
9 Reading and writing graphs 369
9.1 Adjacency List 369
9.2 Multiline Adjacency List 373
9.3 Edge List 376
9.4 GEXF 383
9.5 GML 385
9.6 Pickle 388
9.7 GraphML 389
9.8 JSON 391
9.9 LEDA 397
9.10 YAML 398
9.11 SparseGraph6 399
9.12 Pajek 400
9.13 GIS Shapefile 402
10 Drawing 405
10.1 Matplotlib 405
10.2 Graphviz AGraph (dot) 413
10.3 Graphviz with pydot 416
10.4 Graph Layout 418
11 Exceptions 423
12 Utilities 425
12.1 Helper functions 425
12.2 Data structures and Algorithms 426
12.3 Random sequence generators 426
12.4 Decorators 429
13 License 431
14 Citing 433
15 Credits 435
16 Glossary 437
Bibliography 439
Python Module Index 449
Index 451

OVERVIEW

NetworkX is a Python language software package for the creation, manipulation, and study of the structure, dynamics, and function of complex networks.

With NetworkX you can load and store networks in standard and nonstandard data formats, generate many types of random and classic networks, analyze network structure, build network models, design new network algorithms, draw networks, and much more.

1.1 Who uses NetworkX?

The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social scientists. Good reviews of the state-of-the-art in the science of complex networks are presented in Albert and Barabási [BA02], Newman [Newman03], and Dorogovtsev and Mendes [DM03]. See also the classic texts [Bollobas01], [Diestel97] and [West01] for graph theoretic results and terminology. For basic graph algorithms, we recommend the texts of Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BE05].

1.2 Goals

NetworkX is intended to provide

- tools for the study the structure and dynamics of social, biological, and infrastructure networks,
- a standard programming interface and graph implementation that is suitable for many applications,
- a rapid development environment for collaborative, multidisciplinary projects,
- an interface to existing numerical algorithms and code written in $\mathrm{C}, \mathrm{C}++$, and FORTRAN,
- the ability to painlessly slurp in large nonstandard data sets.

1.3 The Python programming language

Python is a powerful programming language that allows simple and flexible representations of networks, and clear and concise expressions of network algorithms (and other algorithms too). Python has a vibrant and growing ecosystem of packages that NetworkX uses to provide more features such as numerical linear algebra and drawing. In addition Python is also an excellent "glue" language for putting together pieces of software from other languages which allows reuse of legacy code and engineering of high-performance algorithms [Langtangen04].
Equally important, Python is free, well-supported, and a joy to use.

In order to make the most out of NetworkX you will want to know how to write basic programs in Python. Among the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli [Martelli03].

1.4 Free software

NetworkX is free software; you can redistribute it and/or modify it under the terms of the BSD License. We welcome contributions from the community. Information on NetworkX development is found at the NetworkX Developer Zone at Github https://github.com/networkx/networkx

1.5 History

NetworkX was born in May 2002. The original version was designed and written by Aric Hagberg, Dan Schult, and Pieter Swart in 2002 and 2003. The first public release was in April 2005.

Many people have contributed to the success of NetworkX. Some of the contributors are listed in the credits.

1.5.1 What Next

- A Brief Tour
- Installing
- Reference
- Examples

INTRODUCTION

The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph objects, generators to create standard graphs, IO routines for reading in existing datasets, algorithms to analyse the resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please contact us by joining the NetworkX Google group.
Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names are lower_case_underscore (lowercase with an underscore representing a space between words).

2.1 NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

```
>>> import networkx as nx
```

To save repetition, in the documentation we assume that NetworkX has been imported this way.
If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your PYTHONPATH.

The following basic graph types are provided as Python classes:
Graph This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow self-loop edges between a node and itself.

DiGraph Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of Graph).

MultiGraph A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional flexibility leads to some degradation in performance, though usually not significant.

MultiDiGraph A directed version of a MultiGraph.
Empty graph-like objects are created with

```
>>> G=nx.Graph()
>>> G=nx.DiGraph()
>>> G=nx.MultiGraph()
>>> G=nx.MultiDiGraph()
```

All graph classes allow any hashable object as a node. Hashable objects include strings, tuples, integers, and more. Arbitrary edge attributes such as weights and labels can be associated with an edge.
The graph internal data structures are based on an adjacency list representation and implemented using Python dictionary datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge attributes associated with that edge. This "dict-of-dicts" structure allows fast addition, deletion, and lookup of nodes and neighbors in large graphs. The underlying datastructure is accessed directly by methods (the programming interface "API") in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the 'dicts-of-dicts'-based datastructure with an alternative datastructure that implements the same methods.

2.1.1 Graphs

The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or edges. NetworkX graph objects come in different flavors depending on two main properties of the network:

- Directed: Are the edges directed? Does the order of the edge pairs (u,v) matter? A directed graph is specified by the "Di" prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph properties are defined differently for directed graphs.
- Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges requires a different data structure, though tricky users could design edge data objects to support this functionality. We provide a standard data structure and interface for this type of graph using the prefix "Multi", e.g. MultiGraph().

The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph

2.2 Nodes and Edges

The next choice you have to make when specifying a graph is what kinds of nodes and edges to use.
If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use that structure as your nodes provided it is hashable. If it is not hashable you can use a unique identifier to represent the node and assign the data as a node attribute.
Edges often have data associated with them. Arbitrary data can associated with edges as an edge attribute. If the data is numeric and the intent is to represent a weighted graph then use the 'weight' keyword for the attribute. Some of the graph algorithms, such as Dijkstra's shortest path algorithm, use this attribute name to get the weight for each edge.
Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword except 'weight' to name your attribute and can then easily query the edge data by that attribute keyword.
Once you've decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or without multiedges you are ready to build your network.

2.2.1 Graph Creation

NetworkX graph objects can be created in one of three ways:

- Graph generators - standard algorithms to create network topologies.
- Importing data from pre-existing (usually file) sources.
- Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manipulate the graph. For example,

```
>>> import networkx as nx
>>> G=nx.Graph()
>>> G.add_edge(1,2) # default edge data=1
>>> G.add_edge(2,3,weight=0.9) # specify edge data
```

Edge attributes can be anything:

```
>>> import math
>>> G.add_eedge('Y',''x', function=math.cos)
>>> G.add_node(math.cos) # any hashable can be a node
```

You can add many edges at one time:


```
>>> G.add_weighted_edges_from(elist)
```

See the /tutorial/index for more examples.
Some basic graph operations such as union and intersection are described in the Operators module documentation.
Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage.
For importing network data from formats such as GML, GraphML, edge list text files see the Reading and writing graphs subpackage.

2.2.2 Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges() and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges as a relationship between nodes. You can see this by our avoidance of notation like $\mathrm{G}[\mathrm{u}, \mathrm{v}]$ in favor of $\mathrm{G}[\mathrm{u}][\mathrm{v}]$. Most data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it doesn't really matter which way you examine the graph. G.edges() removes duplicate representations of each edge while G.neighbors(n) or $\mathrm{G}[\mathrm{n}]$ is slightly faster but doesn't remove duplicates.
Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example nx .triangles(G, n) gives the number of triangles which include node n as a vertex. These functions are grouped in the code and documentation under the term algorithms.

2.2.3 Algorithms

A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see traversal), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google group or the Github Developer Zone.
As an example here is code to use Dijkstra's algorithm to find the shortest weighted path:

```
>>> G=nx.Graph()
```



```
>>> G.add_weighted_edges_from(e)
>>> print(nx.dijkstra_path(G,' '',' d'))
['a', 'c', 'd']
```


2.2.4 Drawing

While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested) pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module drawing.

The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed with a layout function. The edges are then lines between those dots.

```
>>> G=nx.cubical_graph()
>>> nx.draw(G) # default spring_layout
>>> nx.draw(G,pos=nx.spectral_layout(G), nodecolor='r',edge_color='b')
```

See the examples for more ideas.

2.2.5 Data Structure

NetworkX uses a "dictionary of dictionaries of dictionaries" as the basic network data structure. This allows fast lookup with reasonable storage for large sparse networks. The keys are nodes so $\mathrm{G}[\mathrm{u}]$ returns an adjacency dictionary keyed by neighbor to the edge attribute dictionary. The expression $G[u][v]$ returns the edge attribute dictionary itself. A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge data.

Advantages of dict-of-dicts-of-dicts data structure:

- Find edges and remove edges with two dictionary look-ups.
- Prefer to "lists" because of fast lookup with sparse storage.
- Prefer to "sets" since data can be attached to edge.
- $G[u][v]$ returns the edge attribute dictionary.
- n in G tests if node n is in graph G .
- for n in G : iterates through the graph.
- for nbr in $G[n]$: iterates through neighbors.

As an example, here is a representation of an undirected graph with the edges (' A ',' B '), (' B ',' C ')

```
>>> G=nx.Graph()
>>> G.add_edge('A',' B')
>>> G.add_edge('B','C')
>>> print(G.adj)
{'A': {'B': {}}, 'C': {'B': {}}, 'B': {'A': {}, 'C': {}}}
```

The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts-of-dicts structures are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-
dicts-of-dicts ${ }^{1}$ where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains the edge attributes for that edge between the two nodes.

Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner dictionary storing "name-value" relationships for that edge.

```
>>> G=nx.Graph()
>>> G.add_edge(1,2,color='red',weight=0.84, size=300)
>>> print(G[1][2]['size'])
300
```

[^0]
GRAPH TYPES

NetworkX provides data structures and methods for storing graphs.
All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an edge attribute.

The choice of graph class depends on the structure of the graph you want to represent.

3.1 Which graph class should I use?

Graph Type	NetworkX Class
Undirected Simple	Graph
Directed Simple	DiGraph
With Self-loops	Graph, DiGraph
With Parallel edges	MultiGraph, MultiDiGraph

3.2 Basic graph types

3.2.1 Graph - Undirected graphs with self loops

Overview

Graph (data=None, **attr)
Base class for undirected graphs.
A Graph stores nodes and edges with optional data, or attributes.
Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.
Parameters data : input graph
Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

DiGraph, MultiGraph, MultiDiGraph

Examples

Create an empty graph structure (a "null graph") with no nodes and no edges.

```
>>> G = nx.Graph()
```

G can be grown in several ways.

Nodes:

Add one node at a time:

```
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```
>>> G.add_node(H)
```


Edges:

G can also be grown by adding edges.
Add one edge,
>>> G.add_edge (1, 2)
a list of edges,

```
>>> G.add_edges_from([(1, 2),(1,3)])
```

or a collection of edges,

```
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```
>>> G = nx.Graph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node

```
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time=' 2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
```

Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

```
>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue' }), (2,3,{'weight' : 8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4
```


Shortcuts:

Many common graph features allow python syntax to speed reporting.

```
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
```

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

```
>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]
```


Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and removing nodes and edges

Graph.__init__([data])	Initialize a graph with edges, name, graph attributes.
Graph.add_node(n[, attr_dict $])$	Add a single node n and update node attributes.
Graph.add_nodes_from(nodes, $* * \operatorname{attr})$	Add multiple nodes.

Table 3.1 - continued from previous page

Graph.remove_node(n)	Remove node n.
Graph.remove_nodes_from(nodes)	Remove multiple nodes.
Graph.add_edge(u, v[, attr_dict])	Add an edge between u and v.
Graph.add_edges_from(ebunch[, attr_dict])	Add all the edges in ebunch.
Graph.add_weighted_edges_from(ebunch[, weight])	Add all the edges in ebunch as weighted edges with specified weight
Graph.remove_edge(u, v)	Remove the edge between u and v.
Graph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
Graph.add_star(nodes, **attr)	Add a star.
Graph.add_path(nodes, **attr)	Add a path.
Graph.add_cycle(nodes, **attr)	Add a cycle.
Graph.clear()	Remove all nodes and edges from the graph.

Graph.__init__ (data=None, **attr)
Initialize a graph with edges, name, graph attributes.
Parameters data : input graph
Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
name : string, optional (default=' ')
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

convert

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2), (2,3), (3,4)] # list of edges
>>>G G nx.Graph(e)
```

Arbitrary graph attribute pairs (key=value) may be assigned

```
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
    {'day': 'Friday' }
```

add_node
Graph.add_node (n, attr_dict=None, **attr)

Add a single node n and update node attributes.
Parameters n : node

A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of node attributes. Key/value pairs will update existing data associated with the node.
attr : keyword arguments, optional
Set or change attributes using key=value.

See also:

```
add_nodes_from
```


Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2), (2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add_nodes_from

Graph.add_nodes_from (nodes, **attr)
Add multiple nodes.
Parameters nodes: iterable container
A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
attr : keyword arguments, optional (default= no attributes)
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

add_node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2), (2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'O']
```

Use keywords to update specific node attributes for every node.

```
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue' })])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove_node
Graph. remove_node (n)
Remove node n .

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n: node
A node in the graph

Raises NetworkXError:

If n is not in the graph.

See also:

```
remove_nodes_from
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
>>> G.edges()
$[(0,1),(1,2)]$
>>> G.remove_node (1)
\ggg G.edges()
[]
remove_nodes_from

```
Graph.remove_nodes_from(nodes)
```

Remove multiple nodes.

Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

remove_node

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2])
\ggg e $=$ G.nodes()
>>> e
$[0,1,2]$
>>> G.remove_nodes_from(e)
\ggg G.nodes()
[]
add_edge

Graph.add_edge (u, v, attr_dict $=$ None, $* *$ attr $)$
Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters $\mathbf{u , v}$: nodes
Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edges_from add a collection of edges

Notes

Adding an edge that already exists updates the edge data.
Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'.

Examples

The following all add the edge $\mathrm{e}=(1,2)$ to graph G :

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [ (1,2)] ) # add edges from iterable container
```

Associate data to edges using keywords:
\ggg G.add_edge (1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
add_edges_from

Graph.add_edges_from (ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.
Parameters ebunch : container of edges
Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
```

Associate data to edges

```
>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add_weighted_edges_from

Graph.add_weighted_edges_from (ebunch, weight='weight', **attr)
Add all the edges in ebunch as weighted edges with specified weights.
Parameters ebunch : container of edges
Each edge given in the list or container will be added to the graph. The edges must be given as 3 -tuples ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) where w is a number.
weight : string, optional (default= 'weight')
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.
See also:
add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
remove_edge

Graph.remove_edge (u, v)
Remove the edge between u and v.
Parameters u,v: nodes :
Remove the edge between nodes u and v.
Raises NetworkXError:
If there is not an edge between u and v.
See also:
remove_edges_from remove a collection of edges

Examples

>>> G $=$ nx.Graph() \# or DiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.remove_edge $(0,1)$
$\ggg \mathrm{e}=(1,2)$
\ggg G.remove_edge(*e) \# unpacks e from an edge tuple
$\ggg \mathrm{e}=\left(2,3,\left\{{ }^{\prime} w e i g h t^{\prime}: 7\right\}\right)$ \# an edge with attribute data
>>> G.remove_edge(*e[:2]) \# select first part of edge tuple
remove_edges_from

Graph.remove_edges_from (ebunch)
Remove all edges specified in ebunch.
Parameters ebunch: list or container of edge tuples :
Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u, v) edge between u and v.
- 3-tuples $(\mathrm{u}, \mathrm{v}, \mathrm{k})$ where k is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from(ebunch)
```

add_star

Graph.add_star (nodes, **attr)
Add a star.
The first node in nodes is the middle of the star. It is connected to all other nodes.
Parameters nodes: iterable container
A container of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.

See also:

add_path, add_cycle

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_star $([0,1,2,3])$
>>> G.add_star([10,11,12],weight=2)
add_path

Graph.add_path (nodes, **attr)
Add a path.
Parameters nodes: iterable container
A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.

See also:

```
    add_star,add_cycle
```


Examples

>>> G=nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
add_cycle

Graph.add_cycle (nodes, **attr)
Add a cycle.

Parameters nodes: iterable container :

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.

See also:

add_path, add_star

Examples

>>> G=nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)
clear

Graph.clear ()
Remove all nodes and edges from the graph.
This also removes the name, and all graph, node, and edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_path ([0, 1, 2, 3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

Graph.nodes([data])	Return a list of the nodes in the graph.
Graph. nodes_iter([data])	Return an iterator over the nodes.
Graph.__iter__()	Iterate over the nodes.
Graph.edges([nbunch, data])	Return a list of edges.
Graph.edges_iter([nbunch, data])	Return an iterator over the edges.
Graph.get_edge_data(u, v[, default])	Return the attribute dictionary associated with edge (u,v).
Graph.neighbors(n)	Return a list of the nodes connected to the node n.
Graph. neighbors_iter(n)	Return an iterator over all neighbors of node ..
Graph.__getitem__(n)	Return a dict of neighbors of node n.
Graph.adjacency_list()	Return an adjacency list representation of the graph.
Graph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
Graph. nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

Graph. nodes (data=False)
Return a list of the nodes in the graph.
Parameters data : boolean, optional (default=False)
If False return a list of nodes. If True return a two-tuple of node and node data dictionary
Returns nlist : list
A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node (1, time=' 5 pm' $)$
>>> G.nodes (data=True)
$[(0,\{ \}),(1,\{' t i m e ': ~ ' 5 p m '\}),(2,\{ \})]$
nodes_iter

Graph.nodes_iter (data=False)
Return an iterator over the nodes.
Parameters data : boolean, optional (default=False)
If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary
Returns niter : iterator
An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G '.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```


Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc >>> G.add_path([0,1,2])
>>> [d for n, d in G.nodes_iter(data=True)]
[\{\}, \{\}, \{\}]
iter \qquad

Graph.__iter__()
Iterate over the nodes. Use the expression 'for n in G '.
Returns niter : iterator
An iterator over all nodes in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
edges
Graph.edges (nbunch=None, data=False)
Return a list of edges.
Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples:

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

$\ggg G=n x . G r a p h() \quad$ O () DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.edges ()
$[(0,1),(1,2),(2,3)]$
>>> G.edges (data=True) \# default edge data is (\} (empty dictionary)
$[(0,1,\{ \}),(1,2,\{ \}),(2,3,\{ \})]$
>>> G.edges ([0,3])
$[(0,1),(3,2)]$
>>> G.edges (0)
$[(0,1)]$
edges_iter

Graph.edges_iter (nbunch=None, data=False)
Return an iterator over the edges.
Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).
Returns edge_iter: iterator
An iterator of (u, v) or (u, v, d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

get_edge_data
Graph.get_edge_data (u, v, default=None)
Return the attribute dictionary associated with edge (u,v)
Parameters $\mathbf{u , v}$: nodes
default: any Python object (default=None) :
Value to return if the edge (u, v) is not found.
Returns edge_dict : dictionary
The edge attribute dictionary.

Notes

It is faster to use $\mathrm{G}[\mathrm{u}][\mathrm{v}]$.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0][1]
{ }
```

Warning: Assigning $G[u][v]$ corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.get_edge_data $(0,1)$ \# default edge data is \{\}
\{ \}
$\ggg e=(0,1)$
>>> G.get_edge_data(*e) \# tuple form
\{ \}
>>> G.get_edge_data(' $a^{\prime},{ }^{\prime} b^{\prime}$, default=0) \# edge not in graph, return 0 0
neighbors

Graph.neighbors (n)
Return a list of the nodes connected to the node n.
Parameters \mathbf{n} : node
A node in the graph
Returns nlist : list
A list of nodes that are adjacent to n.

Raises NetworkXError :

If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as $G[n]$:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(' a','b' ,weight=7)
>>> G['a']
{'b': {'weight': 7 } }
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path ([0, 1, 2, 3])
>>> G.neighbors(0)
[1]
neighbors_iter

Graph.neighbors_iter (n)
Return an iterator over all neighbors of node n.

Notes

It is faster to use the idiom "in G[0]", e.g.

```
>>> G = nx.path_graph(4)
```

\ggg [n for n in $G[0]]$
[1]

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]
```

\qquad

Graph.__getitem__(n
Return a dict of neighbors of node n. Use the expression ' $\mathrm{G}[\mathrm{n}]$ '.
Parameters \mathbf{n} : node
A node in the graph.
Returns adj_dict : dictionary
The adjacency dictionary for nodes connected to n .

Notes

$\mathrm{G}[\mathrm{n}]$ is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
Assigning $\mathrm{G}[\mathrm{n}]$ will corrupt the internal graph data structure. Use $\mathrm{G}[\mathrm{n}]$ for reading data only.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G[0]
\{1: \{\}\}
adjacency_list

Graph.adjacency_list()
Return an adjacency list representation of the graph.
The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See also:

```
adjacency_iter
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.adjacency_list() # in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
```

adjacency_iter
Graph.adjacency_iter ()

Return an iterator of (node, adjacency dict) tuples for all nodes.
This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter: iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.

See also:

```
adjacency_list
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> [(n, nbrdict) for $\left.n, n b r d i c t ~ i n ~ G . a d j a c e n c y _i t e r()\right] ~$
$[(0,\{1:\{ \}\}),(1,\{0:\{ \}, 2:\{ \}\}),(2,\{1:\{ \}, 3:\{ \}\}),(3,\{2:\{ \}\})]$
nbunch_iter

Graph.nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
Returns niter : iterator
An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError :

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

Graph.__iter__

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

Graph.has_node(n)	Return True if the graph contains the node n.
Graph.__contains__(n)	Return True if n is a node, False otherwise. Use the expression
Graph.has_edge(u, v)	Return True if the edge (u,v) is in the graph.
Graph.order()	Return the number of nodes in the graph.
Graph.number_of_nodes ()	Return the number of nodes in the graph.
Graph.__len__()	Return the number of nodes.
Graph.degree([nbunch, weight])	Return the degree of a node or nodes.
Graph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).
Graph.size([weight])	Return the number of edges.
Graph. number_of_edges([u, v])	Return the number of edges between two nodes.
Graph. nodes_with_selfloops ()	Return a list of nodes with self loops.
Graph.selfloop_edges([data] $)$	Return a list of selfloop edges.
Graph.number_of_selfloops()	Return the number of selfloop edges.

has_node

Graph.has_node (n)
Return True if the graph contains the node n.
Parameters \mathbf{n} : node

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2])
>>> G.has_node (0)
True
It is more readable and simpler to use

```
>>> 0 in G
```

True
__contains__

Graph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ' n in G '.

Examples

$\ggg G=n x . G r a p h() \quad$ O D DiGraph, MuItiGraph, MuItiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> 1 in G
True
has_edge

Graph.has_edge (u, v)
Return True if the edge (u, v) is in the graph.

Parameters u,v: nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.

Returns edge_ind : bool
True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u, v or edge tuple (u, v)

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> e = (0,1,{'weight':7})
>>> G.has_edge(*e[:2]) # e is a 3-tuple (u,v,data_dictionary)
True
```

The following syntax are all equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

Graph.order ()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

number_of_nodes,__len___
number_of_nodes

Graph.number_of_nodes ()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

order,__len__

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
__len

Graph.__len_()
Return the number of nodes. Use the expression 'len(G)'.
Returns nnodes: int
The number of nodes in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> len(G)
4
degree

Graph.degree (nbunch=None, weight=None)
Return the degree of a node or nodes.
The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd : dictionary, or number
A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.degree (0)
1
>>> G.degree $([0,1])$
\{0: 1, 1: 2\}
>>> list(G.degree([0,1]).values())
[1, 2]

```
degree_iter
```

Graph.degree_iter (nbunch=None, weight=None)
Return an iterator for (node, degree).
The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).

See also:

degree

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> list(G.degree_iter(0)) \# node 0 with degree 1
$[(0,1)]$
>>> list(G.degree_iter([0,1]))
$[(0,1),(1,2)]$
size

Graph.size(weight=None)
Return the number of edges.
Parameters weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int
The number of edges of sum of edge weights in the graph.

See also:

```
number_of__edges
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(' a','b',weight=2)
>>> G.add_edge('b',' C',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number_of_edges
Graph.number_of_edges ($u=$ None, $v=$ None)

Return the number of edges between two nodes.
Parameters u,v: nodes, optional (default=all edges)
If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int
The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges $(0,1)$
1
>>> e = $(0,1)$
>>> G.number_of_edges (*e)
1
nodes_with_selfloops

Graph.nodes_with_selfloops()
Return a list of nodes with self loops.
A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist : list
A list of nodes with self loops.

See also:

```
selfloop_edges, number_of_selfloops
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge (1, 2)
>>> G.nodes_with_selfloops()
[1]
```

```
selfloop_edges
```

Graph.selfloop_edges (data=False)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.
Parameters data : bool, optional (default=False)
Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data) (data=True)

Returns edgelist : list of edge tuples
A list of all selfloop edges.

See also:

nodes_with_selfloops, number_of_selfloops

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_edge $(1,1)$
>>> G.add_edge $(1,2)$
>>> G.selfloop_edges()
$[(1,1)]$
>>> G.selfloop_edges(data=True)
$[(1,1,\{ \})]$
number_of_selfloops

Graph.number_of_selfloops()
Return the number of selfloop edges.
A selfloop edge has the same node at both ends.
Returns nloops : int
The number of selfloops.

See also:

```
nodes_with_selfloops,selfloop_edges
```


Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_edge $(1,1)$
>>> G.add_edge $(1,2)$
>>> G.number_of_selfloops()
1

Making copies and subgraphs

Graph.copy()	Return a copy of the graph.
Graph.to_undirected()	Return an undirected copy of the graph.
Graph.to_directed()	Return a directed representation of the graph.
Graph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.

copy

Graph.copy ()
Return a copy of the graph.

Returns G: Graph

A copy of the graph.

See also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy()
```

to_undirected

Graph.to_undirected()
Return an undirected copy of the graph.
Returns G: Graph/MultiGraph
A deepcopy of the graph.

See also:

```
copy, add__edge, add__edges_from
```


Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{G}=\mathrm{DiGraph}(\mathrm{D})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
>>> G2 = H.to_undirected()
>>> G2.edges()
[(0, 1)]
```

to_directed

Graph.to_directed()
Return a directed representation of the graph.

Returns G: DiGraph

A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u, v, data) and (v,u,data).

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{D}=\mathrm{DiGraph}(\mathrm{G})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() \# or MultiGraph, etc
>>> G.add_path $([0,1])$
>>> H = G.to_directed()
>>> H.edges()
$[(0,1),(1,0)]$

If already directed, return a (deep) copy

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

subgraph

Graph.subgraph (nbunch)

Return the subgraph induced on nodes in nbunch.
The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()
For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> H = G.subgraph ([0,1,2])
>>> H.edges()
$[(0,1),(1,2)]$

3.2.2 DiGraph - Directed graphs with self loops

Overview

DiGraph (data=None, **attr)
Base class for directed graphs.
A DiGraph stores nodes and edges with optional data, or attributes.
DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

```
Graph,MultiGraph,MultiDiGraph
```


Examples

Create an empty graph structure (a "null graph") with no nodes and no edges.
>>> G = nx.DiGraph()
G can be grown in several ways.

Nodes:

Add one node at a time:

```
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```
>>> G.add_node(H)
```


Edges:

G can also be grown by adding edges.
Add one edge,

```
>>> G.add_edge(1, 2)
```

a list of edges,

```
>>> G.add_edges_from([(1, 2), (1, 3)])
```

or a collection of edges,

```
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```
>>> G = nx.DiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node

```
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time': '5pm'}), (3, {'time': '2pm'})]
```

Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

```
>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight':8})])
>>> G[1][2]['weight'] = 4.7
>>> G.edge[1][2]['weight'] = 4
```


Shortcuts:

Many common graph features allow python syntax to speed reporting.

```
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
```

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

```
>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,eattr in nbrsdict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]
```


Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and removing nodes and edges

DiGraph.__init__([data])	Initialize a graph with edges, name, graph attributes.
DiGraph.add_node(n[, attr_dict])	Add a single node n and update node attributes.
DiGraph.add_nodes_from(nodes, **attr)	Add multiple nodes.
DiGraph.remove_node(n)	Remove node n.
DiGraph.remove_nodes_from(nbunch)	Remove multiple nodes.
DiGraph.add_edge(u, v[, attr_dict])	Add an edge between u and v.
DiGraph.add_edges_from(ebunch[, attr_dict])	Add all the edges in ebunch.
DiGraph.add_weighted_edges_from(ebunch[, weight])	Add all the edges in ebunch as weighted edges with specified wei
DiGraph.remove_edge(u, v)	Remove the edge between u and v.
DiGraph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
DiGraph.add_star(nodes, **attr)	Add a star.
DiGraph.add_path(nodes, **attr)	Add a path.
DiGraph.add_cycle(nodes, **attr)	Add a cycle.
DiGraph.clear()	Remove all nodes and edges from the graph.

DiGraph.__init__(data=None, **attr)
Initialize a graph with edges, name, graph attributes.
Parameters data : input graph
Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
name : string, optional (default=' ')
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

convert

Examples

```
>>> G = nx.Graph() # Or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph')
>>> e = [(1,2),(2,3), (3,4)] # list of edges
>>> G = nx.Graph(e)
```

Arbitrary graph attribute pairs (key=value) may be assigned

```
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday'}
```

add_node

DiGraph.add_node (n, attr_dict=None, **attr)
Add a single node n and update node attributes.
Parameters \mathbf{n} : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of node attributes. Key/value pairs will update existing data associated with the node.
attr : keyword arguments, optional
Set or change attributes using key=value.

See also:

```
add_nodes_from
```


Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph ([$(0,1),(1,2),(2,0)])$
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add_nodes_from

DiGraph.add_nodes_from (nodes, **attr)
Add multiple nodes.
Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.
attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

add_node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph ([(0,1), (1,2), (2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.
\ggg G.add_nodes_from ([1,2], size=10)
\ggg G.add_nodes_from([3,4], weight=0.4)
Use (node, attrdict) tuples to update attributes for specific nodes.

```
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue'})])
>>> G.node[1]['Size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove_node

DiGraph.remove_node (n)

Remove node n .
Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters \mathbf{n} : node
A node in the graph
Raises NetworkXError :
If n is not in the graph.

See also:

```
remove_nodes_from
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MuItiDiGraph, etc
\ggg G.add_path $([0,1,2])$
>>> G.edges()
$[(0,1),(1,2)]$
>>> G.remove_node (1)

```
>>> G.edges()
```

[]
remove_nodes_from

DiGraph.remove_nodes_from (nbunch)
Remove multiple nodes.
Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

remove_node

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
\ggg e $=$ G.nodes()
>>> e
$[0,1,2]$
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]
add_edge

DiGraph.add_edge (u, v, attr_dict $=$ None, $* *$ attr $)$
Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters $\mathbf{u , v}$: nodes
Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edges_from add a collection of edges

Notes

Adding an edge that already exists updates the edge data.
Many NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to a keyword which by default is 'weight'.

Examples

The following all add the edge $\mathrm{e}=(1,2)$ to graph G :

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

```
add edges from
```

DiGraph.add_edges_from (ebunch, attr_dict=None, **attr)

Add all the edges in ebunch.
Parameters ebunch : container of edges
Each edge given in the container will be added to the graph. The edges must be given as as 2-tuples (u, v) or 3-tuples (u, v, d) where d is a dictionary containing edge data.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
```

Associate data to edges
\ggg G.add_edges_from $([(1,2),(2,3)]$, weight $=3)$
>>> G.add_edges_from $([(3,4),(1,4)]$, label='WN2898')
add_weighted_edges_from

DiGraph.add_weighted_edges_from (ebunch, weight='weight', **attr)
Add all the edges in ebunch as weighted edges with specified weights.
Parameters ebunch : container of edges
Each edge given in the list or container will be added to the graph. The edges must be given as 3 -tuples ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) where w is a number.
weight : string, optional (default= 'weight')
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.

See also:

add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)])
remove_edge

DiGraph.remove_edge (u, v)
Remove the edge between u and v.
Parameters u,v: nodes :
Remove the edge between nodes u and v.

Raises NetworkXError :

If there is not an edge between u and v.

See also:

remove_edges_from remove a collection of edges

Examples

```
>>> G = nx.Graph() # or DiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.remove_edge (0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
>>> e = (2,3,{'weight':7}) # an edge with attribute data
>>> G.remove_edge(*e[:2]) # select first part of edge tuple
```

remove_edges_from

DiGraph.remove_edges_from (ebunch)
Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples :

Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u, v) edge between u and v.
- 3-tuples ($\mathrm{u}, \mathrm{v}, \mathrm{k}$) where k is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> ebunch=[(1,2), $(2,3)]$
>>> G.remove_edges_from(ebunch)
add_star

```
DiGraph.add_star(nodes, **attr)
```

Add a star.
The first node in nodes is the middle of the star. It is connected to all other nodes.
Parameters nodes : iterable container
A container of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.

See also:

```
add_path,add_cycle
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```

```
add_path
```

DiGraph.add_path (nodes, **attr)
Add a path.
Parameters nodes : iterable container
A container of nodes. A path will be constructed from the nodes (in order) and added
to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.

See also:

```
add_star,add_cycle
```


Examples

>>> G=nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
\ggg G.add_path ([10,11,12],weight=7)
add_cycle

DiGraph.add_cycle (nodes, **attr)
Add a cycle.
Parameters nodes: iterable container :
A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.

See also:

```
add__path,add__star
```


Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)
```

clear

DiGraph.clear()
Remove all nodes and edges from the graph.
This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

DiGraph.nodes([data])	Return a list of the nodes in the graph.
DiGraph.nodes_iter([data])	Return an iterator over the nodes.
DiGraph.__iter_()	Iterate over the nodes.
DiGraph.edges([nbunch, data])	Return a list of edges.
DiGraph.edges_iter([nbunch, data])	Return an iterator over the edges.
DiGraph.out_edges([nbunch, data])	Return a list of edges.
DiGraph.out_edges_iter([nbunch, data])	Return an iterator over the edges.
DiGraph.in_edges([nbunch, data])	Return a list of the incoming edges.
DiGraph.in_edges_iter([nbunch, data])	Return an iterator over the incoming edges.
DiGraph.get_edge_data(u, v[, default])	Return the attribute dictionary associated with edge (u,v).
DiGraph.neighbors(n)	Return a list of successor nodes of n.
DiGraph.neighbors_iter(n)	Return an iterator over successor nodes of n.
DiGraph._-getitem_(n)	Return a dict of neighbors of node n.
DiGraph.successors(n)	Return a list of successor nodes of n.
DiGraph.successors_iter(n)	Return an iterator over successor nodes of n.
DiGraph.predecessors(n)	Return a list of predecessor nodes of n.
DiGraph.predecessors_iter(n)	Return an iterator over predecessor nodes of n.
DiGraph.adjacency_list()	Return an adjacency list representation of the graph.
DiGraph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
DiGraph.nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

DiGraph. nodes (data=False)
Return a list of the nodes in the graph.
Parameters data : boolean, optional (default=False)
If False return a list of nodes. If True return a two-tuple of node and node data dictionary
Returns nlist : list
A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.nodes()
[0, 1, 2]
>>> G.add_node (1, time=' 5pm')
>>> G.nodes (data=True)
[(0, \{\}), (1, \{'time': '5pm'\}), (2, \{\})]
nodes_iter

DiGraph.nodes_iter (data=False)
Return an iterator over the nodes.
Parameters data : boolean, optional (default=False)
If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns niter : iterator
An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G '.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_path ([0, 1, 2])

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> [d for n,d in G.nodes_iter(data=True)]
    [{}, {}, {}]
```

\qquad

DiGraph.__iter__()
Iterate over the nodes. Use the expression 'for n in G '.
Returns niter : iterator
An iterator over all nodes in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
edges

DiGraph.edges (nbunch=None, data=False)
Return a list of edges.
Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.edges()
    [(0, 1), (1, 2), (2, 3)]
    >>> G.edges(data=True) # default edge data is {} (empty dictionary)
    [(0, 1, {}), (1, 2, {}), (2, 3, {})]
    >>> G.edges([0,3])
    [(0, 1), (3, 2)]
    >>> G.edges(0)
    [(0, 1)]
```

edges_iter

DiGraph.edges_iter (nbunch=None, data=False)
Return an iterator over the edges.
Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).
Returns edge_iter : iterator
An iterator of (u,v) or (u,v,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

out_edges

DiGraph.out_edges (nbunch=None, data=False)
Return a list of edges.
Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0, 1, 2, 3])
>>> G.edges()
$[(0,1),(1,2),(2,3)]$
>>> G.edges(data=True) \# default edge data is \{\} (empty dictionary)
$[(0,1,\{ \}),(1,2,\{ \}),(2,3,\{ \})]$
>>> G.edges $([0,3])$
$[(0,1),(3,2)]$
>>> G.edges (0)
$[(0,1)]$
out_edges_iter

DiGraph.out_edges_iter (nbunch=None, data=False)
Return an iterator over the edges.
Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).
Returns edge_iter : iterator
An iterator of (u, v) or (u, v, d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

in_edges

DiGraph.in_edges (nbunch=None, data=False)
Return a list of the incoming edges.

See also:

edges return a list of edges
in_edges_iter

DiGraph.in_edges_iter (nbunch=None, data=False)
Return an iterator over the incoming edges.
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u, v, data).
Returns in_edge_iter : iterator
An iterator of (u,v) or (u,v,d) tuples of incoming edges.

See also:

edges_iter return an iterator of edges
get_edge_data

DiGraph.get_edge_data (u, v, default=None)
Return the attribute dictionary associated with edge (u,v).
Parameters u,v: nodes
default: any Python object (default=None) :
Value to return if the edge (u, v) is not found.
Returns edge_dict : dictionary
The edge attribute dictionary.

Notes

It is faster to use $G[u][v]$.
$\ggg G=n x . G r a p h() \quad$ \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G[0][1]
\{ \}
Warning: Assigning $\mathrm{G}[\mathrm{u}][\mathrm{v}]$ corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['weight'] = 7
>>> G[0][1]['weight']
7
>>> G[1][0]['weight']
7
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1) # default edge data is {}
{}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{}
>>> G.get_edge_data(' a','b',default=0) # edge not in graph, return 0
0
```

neighbors
DiGraph.neighbors (n)

Return a list of successor nodes of n.
neighbors() and successors() are the same function.
neighbors_iter

DiGraph.neighbors_iter (n)
Return an iterator over successor nodes of n.
neighbors_iter() and successors_iter() are the same.
__getitem_

DiGraph.__getitem_(n)
Return a dict of neighbors of node n. Use the expression ' $\mathrm{G}[\mathrm{n}]$ '.
Parameters \mathbf{n} : node
A node in the graph.
Returns adj_dict : dictionary
The adjacency dictionary for nodes connected to n.

Notes

$\mathrm{G}[\mathrm{n}]$ is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
Assigning $\mathrm{G}[\mathrm{n}]$ will corrupt the internal graph data structure. Use $\mathrm{G}[\mathrm{n}]$ for reading data only.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
{1: {}}
```


successors

DiGraph.successors (n)
Return a list of successor nodes of n.
neighbors() and successors() are the same function

```
successors_iter
```

DiGraph.successors_iter (n)

Return an iterator over successor nodes of n.
neighbors_iter() and successors_iter() are the same.
predecessors

DiGraph.predecessors (n)
Return a list of predecessor nodes of n.

```
predecessors_iter
```

DiGraph.predecessors_iter(n)
Return an iterator over predecessor nodes of n .
adjacency_list

DiGraph.adjacency_list()
Return an adjacency list representation of the graph.
The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See also:

adjacency_iter

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path ([0, 1, 2, 3])
>>> G.adjacency_list() \# in order given by G.nodes()
$[[1],[0,2],[1,3],[2]]$
adjacency_iter

DiGraph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.
This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter : iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.

See also:

```
adjacency_list
```


Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> [(n, nbrdict) for n, nbrdict in G.adjacency_iter()]
$[(0,\{1:\{ \}\}),(1,\{0:\{ \}, 2:\{ \}\}),(2,\{1:\{ \}, 3:\{ \}\}),(3,\{2:\{ \}\})]$
nbunch_iter

DiGraph.nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
Returns niter : iterator
An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError :

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

Graph.__iter__

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

DiGraph.has_node(n)	Return True if the graph contains the node n.
DiGraph.__contains__(n)	Return True if n is a node, False otherwise. Use the expression
DiGraph.has_edge(u, v)	Return True if the edge (u,v) is in the graph.
DiGraph.order()	Return the number of nodes in the graph.
DiGraph.number_of_nodes ()	Return the number of nodes in the graph.
DiGraph.__len__()	Return the number of nodes.
DiGraph.degree([nbunch, weight])	Return the degree of a node or nodes.
DiGraph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).
DiGraph.in_degree([nbunch, weight])	Return the in-degree of a node or nodes.
DiGraph.in_degree_iter([nbunch, weight])	Return an iterator for (node, in-degree).
DiGraph.out_degree([nbunch, weight])	Return the out-degree of a node or nodes.
DiGraph.out_degree_iter([nbunch, weight])	Return an iterator for (node, out-degree).
DiGraph.size([weight])	Return the number of edges.
DiGraph.number_of_edges([u, v])	Return the number of edges between two nodes.
DiGraph.nodes_with_selfloops()	Return a list of nodes with self loops.
DiGraph.selfloop_edges([data])	Return a list of selfloop edges.
DiGraph.number_of_selfloops()	Return the number of selfloop edges.

has_node

DiGraph.has_node (n)
Return True if the graph contains the node n.
Parameters \mathbf{n} : node

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2])
>>> G.has_node (0)
True
It is more readable and simpler to use

```
>>> 0 in G
True
```

DiGraph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ' n in G '.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> 1 in G
True
has_edge

DiGraph.has_edge (u, v)
Return True if the edge (u, v) is in the graph.
Parameters $\mathbf{u , v}$: nodes
Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
Returns edge_ind : bool
True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u, v or edge tuple (u, v)
>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
\ggg G.has_edge $(0,1)$ \# using two nodes
True
$\ggg e=(0,1)$
\ggg G.has_edge (*e) \# e is a 2 -tuple (u,v)
True
$\ggg e=\left(0,1,\left\{{ }^{\prime}\right.\right.$ weight': 7\})
\ggg G.has_edge(*e[:2]) \# e is a 3-tuple (u,v,data_dictionary)
True
The following syntax are all equivalent:

```
>>> G.has_edge (0,1)
True
>>> 1 in G[0] # though this gives KeyError if O not in G
True
```

order

DiGraph.order()
Return the number of nodes in the graph.
Returns nnodes: int

The number of nodes in the graph.

See also:

number_of_nodes,__len___
number_of_nodes

DiGraph.number_of_nodes()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

order, \qquad len \qquad

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3

Ien

DiGraph.__len__()
Return the number of nodes. Use the expression 'len(G)'.
Returns nnodes: int
The number of nodes in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
degree

DiGraph. degree (nbunch=None, weight=None)
Return the degree of a node or nodes.
The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.
Returns nd : dictionary, or number
A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

```
degree_iter
```

DiGraph.degree_iter (nbunch=None, weight=None)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).

See also:

```
degree, in_degree, out_degree, in_degree_iter, out_degree_iter
```


Examples

>>> G = nx.DiGraph() \# or MuItiDiGraph
>>> G.add_path ([0,1,2,3])
>>> list(G.degree_iter(0)) \# node 0 with degree 1
$[(0,1)]$
>>> list(G.degree_iter([0,1]))
$[(0,1),(1,2)]$

in_degree

DiGraph.in_degree (nbunch=None, weight=None)
Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd : dictionary, or number
A dictionary with nodes as keys and in-degree as values or a number if a single node is specified.

See also:

```
degree,out__degree,in_degree_iter
```


Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
{0: 0, 1: 1}
>>> list(G.in_degree([0,1]).values())
[0, 1]
```

in_degree_iter

DiGraph.in_degree_iter (nbunch=None, weight=None)
Return an iterator for (node, in-degree).
The node in-degree is the number of edges pointing in to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, in-degree).

See also:

degree, in_degree, out_degree, out_degree_iter

Examples

$\ggg G=n x . D i G r a p h()$
\ggg G.add_path ([0, 1, 2, 3])
>>> list(G.in_degree_iter(0)) \# node 0 with degree 0
$[(0,0)]$
>>> list(G.in_degree_iter([0, 1]))
$[(0,0),(1,1)]$
out_degree

DiGraph.out_degree (nbunch=None, weight=None)
Return the out-degree of a node or nodes.
The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd : dictionary, or number
A dictionary with nodes as keys and out-degree as values or a number if a single node is specified.

Examples

>>> G = nx.DiGraph() \# or MuItiDiGraph
>>> G.add_path $([0,1,2,3])$
>>> G.out_degree (0)
1
>>> G.out_degree([0,1])
\{0: 1, 1: 1\}
>>> list(G.out_degree([0,1]).values())
[1, 1]
out_degree_iter

DiGraph.out_degree_iter (nbunch=None, weight=None)
Return an iterator for (node, out-degree).
The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, out-degree).

See also:

```
degree,in_degree,out_degree,in_degree_iter
```


Examples

>>> G = nx.DiGraph ()
\ggg G.add_path ([0,1,2,3])
>>> list(G.out_degree_iter(0)) \# node 0 with degree 1
$[(0,1)]$
>>> list (G.out_degree_iter ([0,1]))
$[(0,1),(1,1)]$
size

DiGraph.size (weight=None)
Return the number of edges.
Parameters weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int
The number of edges of sum of edge weights in the graph.

See also:

```
number_of_edges
```


Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G.size()
3
>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_edge (' $\mathrm{a}^{\prime},{ }^{\prime} \mathrm{b}^{\prime}$, weight=2)
>>> G.add_edge ('b' ,' C', weight=4)
>>> G.size()
2
>>> G.size(weight=' weight')
6.0
number_of_edges

DiGraph.number_of_edges ($u=$ None, $v=$ None)
Return the number of edges between two nodes.
Parameters u,v: nodes, optional (default=all edges)
If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int
The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.number_of_edges()
3
>>> G.number_of_edges(0,1)
1
>>> e = (0,1)
>>> G.number_of_edges(*e)
1
```

nodes_with_selfloops

DiGraph.nodes_with_selfloops()
Return a list of nodes with self loops.
A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist : list
A list of nodes with self loops.

See also:

```
selfloop_edges, number_of_selfloops
```


Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge $(1,1)$
>>> G.add_edge $(1,2)$
>>> G.nodes_with_selfloops()
[1]
selfloop_edges

DiGraph.selfloop_edges (data=False)
Return a list of selfloop edges.
A selfloop edge has the same node at both ends.
Parameters data : bool, optional (default=False)
Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data) (data=True)

Returns edgelist : list of edge tuples

A list of all selfloop edges.

See also:

```
nodes_with_selfloops, number_oof_selfloops
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge (1, 2)
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
[(1, 1, {})]
```

number_of_selfloops

DiGraph.number_of_selfloops()
Return the number of selfloop edges.
A selfloop edge has the same node at both ends.
Returns nloops: int
The number of selfloops.

See also:

```
nodes_with_selfloops,selfloop_edges
```


Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)
>>> G.add_edge (1,2)
>>> G.number_of_selfloops()
1
```


Making copies and subgraphs

DiGraph.copy()	Return a copy of the graph.
DiGraph.to_undirected([reciprocal])	Return an undirected representation of the digraph.
DiGraph.to_directed()	Return a directed copy of the graph.
DiGraph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.
DiGraph.reverse([copy])	Return the reverse of the graph.

copy

DiGraph.copy()
Return a copy of the graph.
Returns G: Graph

A copy of the graph.

See also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> H = G.copy()
to_undirected

DiGraph.to_undirected (reciprocal=False)

Return an undirected representation of the digraph.
Parameters reciprocal : bool (optional)
If True only keep edges that appear in both directions in the original digraph.
Returns G: Graph
An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

Notes

If edges in both directions (u, v) and (v, u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge().
This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{G}=\mathrm{DiGraph}(\mathrm{D})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.
to_directed

DiGraph.to_directed()
Return a directed copy of the graph.
Returns G: DiGraph
A deepcopy of the graph.

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{D}=\mathrm{DiGraph}(\mathrm{G})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```

subgraph

DiGraph.subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.
The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()
For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

$\ggg G=n x . G r a p h() \quad$ O D DiGraph, MuItiGraph, MuItiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
$\ggg H=G . s u b g r a p h([0,1,2])$
>>> H.edges()
$[(0,1),(1,2)]$

reverse

DiGraph.reverse (copy=True)
Return the reverse of the graph.
The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.
Parameters copy : bool optional (default=True)
If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph).

3.2.3 MultiGraph - Undirected graphs with self loops and parallel edges

Overview

MultiGraph (data=None, **attr)
An undirected graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.
A MultiGraph holds undirected edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.
Parameters data : input graph
Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

Graph, DiGraph, MultiDiGraph

Examples

Create an empty graph structure (a "null graph") with no nodes and no edges.

```
>>> G = nx.MultiGraph()
```

G can be grown in several ways.

Nodes:

Add one node at a time:

```
>>> G.add_node(1)
```

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range (100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.

```
>>> G.add_node(H)
```


Edges:

G can also be grown by adding edges.
Add one edge,

```
>>> G.add_edge(1, 2)
```

a list of edges,

```
>>> G.add_edges_from([(1,2),(1,3)])
```

or a collection of edges,

```
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer.

```
>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}
```


Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```
>>> G = nx.MultiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node

```
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time=''2pm')
>>> G.node[1]
{'time': '5pm'}
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
```

>>> G.nodes (data=True)
[(1, \{'time': '5pm'\}), (3, \{'time': '2pm'\})]
Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

```
>>> G.add_edge(1, 2, weight=4.7 )
>>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color':'blue'}), (2,3,{'weight': 8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4
```


Shortcuts:

Many common graph features allow python syntax to speed reporting.

```
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue' }}}
```

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

```
>>> for n, nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]
```


Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and removing nodes and edges

MultiGraph.__init__([data])	Initialize a graph with edges, name, graph attributes.
MultiGraph.add_node(n[, attr_dict])	Add a single node n and update node attributes.
MultiGraph.add_nodes_from(nodes, **attr)	Add multiple nodes.
MultiGraph.remove_node(n)	Remove node n.
MultiGraph.remove_nodes_from(nodes)	Remove multiple nodes.

Table 3.9 - continued from previous page

MultiGraph.add_edge(u, v[, key, attr_dict])	Add an edge between u and v.
MultiGraph.add_edges_from(ebunch[, attr_dict])	Add all the edges in ebunch.
MultiGraph.add_weighted_edges_from(ebunch[,..])	Add all the edges in ebunch as weighted edges with specified weig
MultiGraph.remove_edge(u, v[, key])	Remove an edge between u and v.
MultiGraph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
MultiGraph.add_star(nodes, **attr)	Add a star.
MultiGraph.add_path(nodes, **attr)	Add a path.
MultiGraph.add_cycle(nodes, **attr)	Add a cycle.
MultiGraph.clear()	Remove all nodes and edges from the graph.

_init__

MultiGraph.__init__(data=None, **attr)
Initialize a graph with edges, name, graph attributes.
Parameters data : input graph
Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
name : string, optional (default=' ')
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

convert

Examples

\ggg G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
$\ggg G=n x . G r a p h(n a m e=' m y ~ g r a p h ')$
$\ggg e=[(1,2),(2,3),(3,4)]$ \# list of edges
$\ggg G=n x . G r a p h(e)$
Arbitrary graph attribute pairs (key=value) may be assigned

```
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday' }
```

add_node

MultiGraph.add_node (n, attr_dict=None, **attr)
Add a single node n and update node attributes.
Parameters \mathbf{n} : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of node attributes. Key/value pairs will update existing data associated with the node.
attr : keyword arguments, optional
Set or change attributes using key=value.

See also:

```
add_nodes_from
```


Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:

```
>>> G.add_node(1,size=10)
>>> G.add_node(3,weight=0.4,UTM=('13S',382871,3972649))
```

add_nodes_from

```
MultiGraph.add_nodes_from(nodes, **attr)
```

Add multiple nodes.
Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict. attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

add_node

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
>>> K3 = nx.Graph([(0,1),(1,2), (2,0)])
>>> G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
[0, 1, 2, 'H', 'e', 'l', 'o']
```

Use keywords to update specific node attributes for every node.

```
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.

```
>>> G.add_nodes_from([(1,dict(size=11)), (2,{'color':'blue' })])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
>>> H.add_nodes_from(G.nodes(data=True))
>>> H.node[1]['size']
11
```

remove_node
MultiGraph.remove_node (n)

Remove node n .
Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n: node
A node in the graph
Raises NetworkXError :
If n is not in the graph.

See also:

```
remove_nodes_from
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
>>> G.edges()
$[(0,1),(1,2)]$
>>> G.remove_node (1)
>>> G.edges()
[]
remove_nodes_from

MultiGraph.remove_nodes_from(nodes)
Remove multiple nodes.

Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

remove_node

Examples

>>> G $=$ nx. Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
\ggg e $=$ G.nodes()
>>> e
$[0,1,2]$
>>> G.remove_nodes_from (e)
>>> G.nodes()
[]
add_edge

MultiGraph.add_edge (u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters $\mathbf{u , v}$: nodes
Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
key : hashable identifier, optional (default=lowest unused integer)
Used to distinguish multiedges between a pair of nodes.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edges_from add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms.

Examples

The following all add the edge $\mathrm{e}=(1,2)$ to graph G :

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

MultiGraph.add_edges_from (ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.
Parameters ebunch : container of edges
Each edge given in the container will be added to the graph. The edges can be:

- 2-tuples (u,v) or
- 3-tuples (u,v,d) for an edge attribute dict d, or
- 4-tuples (u, v, k, d) for an edge identified by key k
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
```

Associate data to edges
\ggg G.add_edges_from $([(1,2),(2,3)]$, weight=3)
\ggg G.add_edges_from $([(3,4),(1,4)]$, label='WN2898')
add_weighted_edges_from

MultiGraph.add_weighted_edges_from (ebunch, weight='weight', **attr)
Add all the edges in ebunch as weighted edges with specified weights.
Parameters ebunch : container of edges
Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) where w is a number.
weight : string, optional (default= 'weight')
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.

See also:

add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)])
remove_edge

MultiGraph.remove_edge (u, v, key=None)
Remove an edge between u and v.
Parameters u,v: nodes :
Remove an edge between nodes u and v .
key : hashable identifier, optional (default=None)

Used to distinguish multiple edges between a pair of nodes. If None remove a single (abritrary) edge between u and v.

Raises NetworkXError :

If there is not an edge between u and v, or if there is no edge with the specified key.

See also:

remove_edges_from remove a collection of edges

Examples

```
>>> G = nx.MultiGraph()
>>> G.add_path([0,1,2,3])
>>> G.remove_edge (0,1)
>>> e = (1,2)
>>> G.remove_edge(*e) # unpacks e from an edge tuple
```

For multiple edges
>>> G $=$ nx.MultiGraph() \# or MultiDiGraph, etc
\ggg G.add_edges_from $([(1,2),(1,2),(1,2)])$
>>> G.remove_edge $(1,2)$ \# remove a single (arbitrary) edge
For edges with keys
>>> G $=$ nx.MultiGraph() \# or MultiDiGraph, etc
>>> G.add_edge (1,2,key='first')
>>> G.add_edge (1,2, key $=^{\prime}$ second' $)$
>>> G.remove_edge (1, 2, key=' second')

remove_edges_from

MultiGraph.remove_edges_from (ebunch)
Remove all edges specified in ebunch.
Parameters ebunch: list or container of edge tuples :
Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u, v) All edges between u and v are removed.
- 3-tuples (u,v,key) The edge identified by key is removed.
- 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from(ebunch)
```

Removing multiple copies of edges
>>> G $=$ nx.MultiGraph()
\ggg G.add_edges_from $([(1,2),(1,2),(1,2)])$
>>> G.remove_edges_from $([(1,2),(1,2)])$
>>> G.edges()
$[(1,2)]$
\ggg G.remove_edges_from $([(1,2),(1,2)])$ \# silently ignore extra copy
\ggg G.edges() \# now empty graph
[]
add_star

MultiGraph.add_star (nodes, **attr)
Add a star.
The first node in nodes is the middle of the star. It is connected to all other nodes.
Parameters nodes: iterable container
A container of nodes. attr : keyword arguments, optional (default= no attributes)

Attributes to add to every edge in star.

See also:

```
add__path, add_cycle
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
```

add_path

MultiGraph.add_path (nodes, **attr)
Add a path.
Parameters nodes: iterable container
A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.

See also:

```
add_star,add_cycle
```


Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_path ([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
add_cycle

MultiGraph.add_cycle (nodes, **attr)
Add a cycle.

Parameters nodes: iterable container :

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.

See also:

```
add_path,add_star
```


Examples

>>> G=nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)
clear

MultiGraph.clear()
Remove all nodes and edges from the graph.
This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G.clear()
>>> G.nodes()
[]
>>> G.edges()
[]

NetworkX Reference, Release 1.8.1

Iterating over nodes and edges

MultiGraph. nodes([data])	Return a list of the nodes in the graph.
MultiGraph.nodes_iter([data])	Return an iterator over the nodes.
MultiGraph.__iter__()	Iterate over the nodes.
MultiGraph.edges([nbunch, data, keys])	Return a list of edges.
MultiGraph.edges_iter([nbunch, data, keys])	Return an iterator over the edges.
MultiGraph.get_edge_data(u, v[, key, default])	Return the attribute dictionary associated with edge (u,v).
MultiGraph.neighbors(n)	Return a list of the nodes connected to the node n.
MultiGraph.neighbors_iter(n)	Return an iterator over all neighbors of node n.
MultiGraph.__getitem__(n)	Return a dict of neighbors of node n.
MultiGraph.adjacency_list()	Return an adjacency list representation of the graph.
MultiGraph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
MultiGraph. nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the graph.

nodes

MultiGraph.nodes (data=False)
Return a list of the nodes in the graph.
Parameters data : boolean, optional (default=False)
If False return a list of nodes. If True return a two-tuple of node and node data dictionary
Returns nlist : list
A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
>>> G.nodes()
[0, 1, 2]
>>> G.add_node (1, time='5pm')
\ggg G.nodes (data=True)
$\left[(0,\{ \}),\left(1, \quad\left\{' t i m e^{\prime}: \quad ' 5 p m '\right\}\right),(2,\{ \})\right]$
nodes_iter

MultiGraph.nodes_iter (data=False)
Return an iterator over the nodes.
Parameters data : boolean, optional (default=False)
If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary
Returns niter : iterator
An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G '.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]
```

iter \qquad

MultiGraph.__iter__()
Iterate over the nodes. Use the expression 'for n in G '.
Returns niter : iterator
An iterator over all nodes in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
edges

MultiGraph.edges (nbunch=None, data=False, keys=False)
Return a list of edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
keys : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.edges()
[(0, 1), (1, 2), (2, 3)]
>>> G.edges(data=True) # default edge data is {} (empty dictionary)
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
>>> G.edges(keys=True) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> G.edges(data=True,keys=True) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {})]
>>> G.edges([0,3])
[(0, 1), (3, 2)]
>>> G.edges(0)
[(0, 1)]
```

edges_iter

MultiGraph.edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
>>> list(G.edges(keys=True)) # default keys are integers
[(0, 1, 0), (1, 2, 0), (2, 3, 0)]
>>> list(G.edges(data=True,keys=True)) # default keys are integers
[(0, 1, 0, {}), (1, 2, 0, {}), (2, 3, 0, {})]
>>> list(G.edges_iter([0,3]))
[(0, 1), (3, 2)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

get_edge_data

MultiGraph.get_edge_data (u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u, v).

Parameters $\mathbf{u , v}$: nodes

 default: any Python object (default=None) :Value to return if the edge (u, v) is not found. key : hashable identifier, optional (default=None)

Return data only for the edge with specified key.

Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use $G[u][v][k e y]$.

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge(0,1,key=' a', weight=7)
>>> G[0][1]['a'] # key='a'
{'weight': 7 }
```

Warning: Assigning $G[u][v][k e y]$ corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10
```


Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.get_edge_data(0,1)
{0: {}}
>>> e = (0,1)
>>> G.get_edge_data(*e) # tuple form
{0: {}}
>>> G.get_edge_data(' a','b',default=0) # edge not in graph, return 0
0
```


neighbors

MultiGraph.neighbors (n)
Return a list of the nodes connected to the node n.
Parameters \mathbf{n} : node
A node in the graph
Returns nlist : list
A list of nodes that are adjacent to n.

Raises NetworkXError :

If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as $\mathrm{G}[\mathrm{n}]$:

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (' a' ,' b' ,weight=7)
>>> G['a']
{'b': {'weight': 7 } }
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path ($[0,1,2,3])$
>>> G.neighbors(0)
[1]
neighbors_iter

MultiGraph.neighbors_iter(n)
Return an iterator over all neighbors of node n.

Notes

It is faster to use the idiom "in G[0]", e.g.
>>> G = nx.path_graph(4)
>>> [n for n in $G[0]]$
[1]

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_path ([0,1,2,3])
>>> [n for n in G.neighbors_iter(0)]
[1]
__getitem
MultiGraph.__getitem__(n)

Return a dict of neighbors of node n. Use the expression ' $\mathrm{G}[\mathrm{n}]$ '.
Parameters \mathbf{n} : node
A node in the graph.
Returns adj_dict : dictionary
The adjacency dictionary for nodes connected to n .

Notes

$\mathrm{G}[\mathrm{n}]$ is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
Assigning $\mathrm{G}[\mathrm{n}]$ will corrupt the internal graph data structure. Use $\mathrm{G}[\mathrm{n}]$ for reading data only.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G[0]
\{1: \{\}\}
adjacency_list

MultiGraph.adjacency_list()
Return an adjacency list representation of the graph.
The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See also:

```
adjacency_iter
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_path ([0, 1, 2, 3])
>>> G.adjacency_list() \# in order given by G.nodes()
$[[1], \quad[0,2],[1,3],[2]]$
adjacency_iter

MultiGraph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.
This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter: iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.
See also:

```
adjacency_list
```


Examples

\ggg G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> [(n, nbrdict) for $\left.n, n b r d i c t ~ i n ~ G . a d j a c e n c y _i t e r()\right] ~$
$[(0,\{1:\{ \}\}),(1,\{0:\{ \}, 2:\{ \}\}),(2,\{1:\{ \}, 3:\{ \}\}),(3,\{2:\{ \}\})]$
nbunch_iter

MultiGraph.nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
Returns niter: iterator
An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError:

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

\qquad

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

MultiGraph.has_node(n)	Return True if the graph contains the node n.
MultiGraph.__contains_(n)	Return True if n is a node, False otherwise. Use the expression
MultiGraph.has_edge(u, v[, key])	Return True if the graph has an edge between nodes u and v.
MultiGraph.order()	Return the number of nodes in the graph.
MultiGraph.number_of_nodes()	Return the number of nodes in the graph.
MultiGraph.__len_()	Return the number of nodes.
MultiGraph.degree([nbunch, weight])	Return the degree of a node or nodes.
MultiGraph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).
MultiGraph.size([weight])	Return the number of edges.
MultiGraph.number_of_edges([u, v])	Return the number of edges between two nodes.
MultiGraph. nodes_with_selfloops()	Return a list of nodes with self loops.
MultiGraph.selfloop_edges([data, keys])	Return a list of selfloop edges.
MultiGraph.number_of_selfloops()	Return the number of selfloop edges.

has_node

MultiGraph.has_node (n)
Return True if the graph contains the node n.
Parameters \mathbf{n} : node

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node (0)
True
It is more readable and simpler to use

```
    >>> 0 in G
```

True
__contains__

MultiGraph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ' n in G'.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> 1 in G
True
has_edge

MultiGraph.has_edge (u, v, key=None)
Return True if the graph has an edge between nodes u and v.

Parameters $\mathbf{u , v}$: nodes

Nodes can be, for example, strings or numbers.
key : hashable identifier, optional (default=None)
If specified return True only if the edge with key is found.
Returns edge_ind : bool
True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u, v, an edge tuple (u, v), or an edge tuple ($u, v, k e y$).

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key=' a')
>>> G.has_edge(0,1,key=' a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True
```

The following syntax are equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

MultiGraph.order()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

```
number_of__nodes,__len__
```

number_of_nodes
MultiGraph.number_of_nodes()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

\qquad
order,

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> len(G)
3
\qquad n

MultiGraph.__len__()
Return the number of nodes. Use the expression 'len(G)'.
Returns nnodes: int
The number of nodes in the graph.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> len(G)
4
degree

MultiGraph.degree (nbunch=None, weight=None)
Return the degree of a node or nodes.
The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd : dictionary, or number
A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree(0)
1
>>> G.degree([0,1])
{0: 1, 1: 2}
>>> list(G.degree([0,1]).values())
[1, 2]
```

degree_iter

MultiGraph.degree_iter (nbunch=None, weight=None)
Return an iterator for (node, degree).
The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).

See also:

degree

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> list(G.degree_iter(0)) \# node 0 with degree 1
$[(0,1)]$
>>> list(G.degree_iter([0,1]))
$[(0,1),(1,2)]$
size

MultiGraph.size (weight=None)
Return the number of edges.
Parameters weight : string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 .
Returns nedges: int
The number of edges of sum of edge weights in the graph.

See also:

```
number_of_edges
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(' a',' b',weight=2)
>>> G.add_edge('b',' C',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number_of_edges
MultiGraph.number_of_edges ($u=$ None, $v=$ None)
Return the number of edges between two nodes.
Parameters u,v: nodes, optional (default=all edges)

If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.
Returns nedges: int
The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

size

Examples

\ggg G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.number_of_edges()
3
>>> G.number_of_edges $(0,1)$
1
$\ggg \mathrm{e}=(0,1)$
>>> G.number_of_edges (*e)
1
nodes_with_selfloops

MultiGraph.nodes_with_selfloops()
Return a list of nodes with self loops.
A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist : list
A list of nodes with self loops.

See also:

```
selfloop_edges,number_of__selfloops
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_edge $(1,1)$
>>> G.add_edge (1,2)
>>> G.nodes_with_selfloops()
[1]
selfloop_edges
MultiGraph.selfloop_edges (data=False, keys=False)

Return a list of selfloop edges.
A selfloop edge has the same node at both ends.
Parameters data : bool, optional (default=False)
Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data) (data=True)
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edgelist : list of edge tuples
A list of all selfloop edges.
See also:

```
nodes_with_selfloops, number_of_selfloops
```


Examples

>>> G = nx.MultiGraph() \# or MultiDiGraph
>>> G.add_edge $(1,1)$
>>> G.add_edge $(1,2)$
>>> G.selfloop_edges()
$[(1,1)]$
>>> G.selfloop_edges (data=True)
[(1, 1, \{\})]
>>> G.selfloop_edges(keys=True)
$[(1,1,0)]$

```
>>> G.selfloop_edges(keys=True, data=True)
```

$[(1,1,0,\{ \})]$
number_of_selfloops

MultiGraph.number_of_selfloops()
Return the number of selfloop edges.
A selfloop edge has the same node at both ends.
Returns nloops : int
The number of selfloops.

See also:

```
nodes_with_selfloops,selfloop_edges
```


Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)
>>> G.add_edge (1, 2)
>>> G.number_of_selfloops()
1
```


Making copies and subgraphs

MultiGraph.copy()	Return a copy of the graph.
MultiGraph.to_undirected()	Return an undirected copy of the graph.
MultiGraph.to_directed()	Return a directed representation of the graph.
MultiGraph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.

copy

MultiGraph.copy()
Return a copy of the graph.
Returns G: Graph
A copy of the graph.
See also:
to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path ([0, 1, 2, 3])
>>> H = G.copy ()
to_undirected

MultiGraph.to_undirected()
Return an undirected copy of the graph.
Returns G: Graph/MultiGraph A deepcopy of the graph.

See also:

copy, add_edge, add_edges_from

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{G}=\mathrm{DiGraph}(\mathrm{D})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() \# or MultiGraph, etc
>>> G.add_path ([0,1])
>>> H = G.to_directed()
>>> H.edges()
$[(0,1),(1,0)]$
>>> G2 = H.to_undirected()
>>> G2.edges()
$[(0,1)]$
to_directed

MultiGraph.to_directed()
Return a directed representation of the graph.
Returns G:MultiDiGraph
A directed graph with the same name, same nodes, and with each edge (u,v,data) replaced by two directed edges (u, v, data) and (v, u, data).

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{D}=\mathrm{DiGraph}(\mathrm{G})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

```
>>> G = nx.Graph() # Or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1), (1, 0)]
```

If already directed, return a (deep) copy

```
>>> G = nx.DiGraph() # or MultiDiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
[(0, 1)]
```


subgraph

MultiGraph.subgraph (nbunch)

Return the subgraph induced on nodes in nbunch.
The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()
For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

\ggg G.add_path $([0,1,2,3])$
$\ggg H=G . s u b g r a p h([0,1,2])$
>>> H.edges()
$[(0,1),(1,2)]$

3.2.4 MultiDiGraph - Directed graphs with self loops and parallel edges

Overview

MultiDiGraph (data=None, **attr)
A directed graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.
A MultiDiGraph holds directed edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.
Parameters data : input graph
Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

Graph, DiGraph, MultiGraph

Examples

Create an empty graph structure (a "null graph") with no nodes and no edges.
>>> G $=$ nx.MultiDiGraph()
G can be grown in several ways.

Nodes:

Add one node at a time:
>>> G.add_node(1)
Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

```
>>> G.add_nodes_from([2,3])
>>> G.add_nodes_from(range(100,110))
>>> H=nx.Graph()
>>> H.add_path([0,1,2,3,4,5,6,7,8,9])
>>> G.add_nodes_from(H)
```

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a customized node object, or even another Graph.
>>> G.add_node (H)

Edges:

G can also be grown by adding edges.
Add one edge,

```
>>> G.add_edge(1, 2)
```

a list of edges,

```
>>> G.add_edges_from([(1,2),(1,3)])
```

or a collection of edges,

```
>>> G.add_edges_from(H.edges())
```

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists, an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused integer.

```
>>> G.add_edges_from([(4,5,dict(route=282)), (4,5,dict(route=37))])
>>> G[4]
{5: {0: {}, 1: {'route': 282}, 2: {'route': 37}}}
```


Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct manipulation of the attribute dictionaries named graph, node and edge respectively.

```
>>> G = nx.MultiDiGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}
```

Add node attributes using add_node(), add_nodes_from() or G.node

```
>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')
>>> G.node[1]
{'time': '5pm' }
>>> G.node[1]['room'] = 714
>>> del G.node[1]['room'] # remove attribute
>>> G.nodes(data=True)
[(1, {'time' : '5pm'}), (3, {'time' : '2pm'})]
```

Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

```
>>> G.add_edge(1, 2, weight=4.7 )
>> G.add_edges_from([(3,4),(4,5)], color='red')
>>> G.add_edges_from([(1,2,{'color' :'blue' }), (2,3,{'weight' : 8})])
>>> G[1][2][0]['weight'] = 4.7
>>> G.edge[1][2][0]['weight'] = 4
```


Shortcuts:

Many common graph features allow python syntax to speed reporting.

```
>>> 1 in G # check if node in graph
True
>>> [n for n in G if n<3] # iterate through nodes
[1, 2]
>>> len(G) # number of nodes in graph
5
>>> G[1] # adjacency dict keyed by neighbor to edge attributes
... # Note: you should not change this dict manually!
{2: {0: {'weight': 4}, 1: {'color': 'blue' }}}
```

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more convenient.

```
>>> for n,nbrsdict in G.adjacency_iter():
... for nbr,keydict in nbrsdict.items():
... for key,eattr in keydict.items():
... if 'weight' in eattr:
... (n,nbr,eattr['weight'])
(1, 2, 4)
(2, 3, 8)
>>> [ (u,v,edata['weight']) for u,v,edata in G.edges(data=True) if 'weight' in edata ]
[(1, 2, 4), (2, 3, 8)]
```


Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and Removing Nodes and Edges

MultiDiGraph.__init__([data])	Initialize a graph with edges, name, graph attributes.
MultiDiGraph.add_node(n[, attr_dict])	Add a single node n and update node attributes.
MultiDiGraph.add_nodes_from(nodes, **attr)	Add multiple nodes.
MultiDiGraph.remove_node(n)	Remove node n.
MultiDiGraph.remove_nodes_from(nbunch)	Remove multiple nodes.
MultiDiGraph.add_edge(u, v[, key, attr_dict])	Add an edge between u and v.
MultiDiGraph.add_edges_from(ebunch[, attr_dict])	Add all the edges in ebunch.
MultiDiGraph.add_weighted_edges_from(ebunch)	Add all the edges in ebunch as weighted edges with specified weigh
MultiDiGraph.remove_edge(u, v[, key])	Remove an edge between u and v.
MultiDiGraph.remove_edges_from(ebunch)	Remove all edges specified in ebunch.
MultiDiGraph.add_star(nodes, **attr)	Add a star.
MultiDiGraph.add_path(nodes, **attr)	Add a path.
MultiDiGraph.add_cycle(nodes, **attr)	Add a cycle.
MultiDiGraph.clear()	Remove all nodes and edges from the graph.

\qquad

MultiDiGraph.__init__(data=None, **attr)
Initialize a graph with edges, name, graph attributes.
Parameters data: input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can be an edge list, or any NetworkX graph object. If the corresponding optional Python packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse matrix, or a PyGraphviz graph.
name : string, optional (default=' ')
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.

See also:

```
convert
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
$\ggg G=n x . G r a p h(n a m e=' m y ~ g r a p h ')$
$\ggg e=[(1,2),(2,3),(3,4)]$ \# list of edges
$\ggg G=n x . G r a p h(e)$
Arbitrary graph attribute pairs (key=value) may be assigned

```
>>> G=nx.Graph(e, day="Friday")
>>> G.graph
{'day': 'Friday' }
```

add_node
MultiDiGraph.add_node (n, attr_dict=None, **attr)

Add a single node n and update node attributes.
Parameters \mathbf{n} : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of node attributes. Key/value pairs will update existing data associated with the node.
attr : keyword arguments, optional
Set or change attributes using key=value.

See also:

add_nodes_from

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be careful that the hash doesn't change on mutables.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> K3 = nx.Graph([(0,1), (1,2), (2,0)])
>>> G.add_node(K3)
>>> G.number_of_nodes()
3
```

Use keywords set/change node attributes:
\ggg G.add_node (1, size $=10$)
\ggg G.add_node (3,weight=0.4,UTM=('13S',382871,3972649))

```
add_nodes_from
```

MultiDiGraph.add_nodes_from (nodes, **attr)
Add multiple nodes.

Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the attribute dict.
attr : keyword arguments, optional (default= no attributes)
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take precedence over attributes specified generally.

See also:

```
add_node
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from('Hello')
$\ggg \operatorname{K3}=n x . \operatorname{Graph}([(0,1),(1,2),(2,0)])$
\ggg G.add_nodes_from(K3)
>>> sorted(G.nodes(),key=str)
$\left[0,1,2, \quad H^{\prime}, ~ ' e^{\prime}, ~ ' l ', ~ ' o '\right]$

Use keywords to update specific node attributes for every node.

```
>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)
```

Use (node, attrdict) tuples to update attributes for specific nodes.
\ggg G.add_nodes_from([(1,dict(size=11)), (2, \{'color' ${ }^{\prime}$ blue' \})])
>>> G.node[1]['size']
11
>>> H = nx.Graph()
\ggg H.add_nodes_from(G.nodes (data=True))
>>> H.node[1]['size']
11

```
remove_node
```

MultiDiGraph.remove_node (n)

Remove node n .
Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n: node
A node in the graph

Raises NetworkXError :

If n is not in the graph.

See also:

```
remove_nodes_from
```


Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
>>> G.edges()
$[(0,1),(1,2)]$
>>> G.remove_node (1)
>>> G.edges()
[]
remove_nodes_from

MultiDiGraph.remove_nodes_from (nbunch)
Remove multiple nodes.
Parameters nodes : iterable container
A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it is silently ignored.

See also:

```
remove_node
```


Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes()
>>> e
[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes()
[]

```
add_edge
```

```
MultiDiGraph.add_edge ( }u,v,\mathrm{ key=None,attr_dict=None, **attr)
```

Add an edge between u and v.
The nodes u and v will be automatically added if they are not already in the graph.
Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples below.

Parameters $\mathbf{u , v}$: nodes
Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None) Python objects.
key : hashable identifier, optional (default=lowest unused integer)
Used to distinguish multiedges between a pair of nodes.
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with the edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edges_from add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear how to handle multiedge weights. Convert to Graph using edge attribute 'weight' to enable weighted graph algorithms.

Examples

The following all add the edge $\mathrm{e}=(1,2)$ to graph G :

```
>>> G = nx.MultiDiGraph()
>>> e = (1,2)
>>> G.add_edge(1, 2) # explicit two-node form
>>> G.add_edge(*e) # single edge as tuple of two nodes
>>> G.add_edges_from( [(1,2)] ) # add edges from iterable container
```

Associate data to edges using keywords:

```
>>> G.add_edge(1, 2, weight=3)
>>> G.add_edge(1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge(1, 3, weight=7, capacity=15, length=342.7)
```

add_edges_from

MultiDiGraph.add_edges_from (ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters ebunch : container of edges

Each edge given in the container will be added to the graph. The edges can be:

- 2-tuples (u,v) or
- 3-tuples (u,v,d) for an edge attribute dict d , or
- 4-tuples (u, v, k, d) for an edge identified by key k
attr_dict : dictionary, optional (default= no attributes)
Dictionary of edge attributes. Key/value pairs will update existing data associated with each edge.
attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See also:

add_edge add a single edge
add_weighted_edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1),(1,2)]) # using a list of edge tuples
>>> e = zip(range(0,3),range(1,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3
```

Associate data to edges

```
>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4),(1,4)], label='WN2898')
```

add_weighted_edges_from

MultiDiGraph.add_weighted_edges_from (ebunch, weight='weight', **attr)
Add all the edges in ebunch as weighted edges with specified weights.
Parameters ebunch : container of edges
Each edge given in the list or container will be added to the graph. The edges must be given as 3-tuples ($\mathrm{u}, \mathrm{v}, \mathrm{w}$) where w is a number.
weight : string, optional (default= 'weight')
The attribute name for the edge weights to be added.
attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.

See also:

add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice for Graph/DiGraph simply updates the edge data. For MultiGraph/MultiDiGraph, duplicate edges are stored.

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1, 2, 7.5)])
```


remove_edge

```
MultiDiGraph.remove_edge ( u,v,key=None)
```

Remove an edge between u and v.

Parameters u,v: nodes :

Remove an edge between nodes u and v .
key : hashable identifier, optional (default=None)
Used to distinguish multiple edges between a pair of nodes. If None remove a single (abritrary) edge between u and v.

Raises NetworkXError:

If there is not an edge between u and v, or if there is no edge with the specified key.

See also:

remove_edges_from remove a collection of edges

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path ([0,1,2,3])
>>> G.remove_edge (0,1)
>>> e = $(1,2)$
>>> G.remove_edge(*e) \# unpacks e from an edge tuple
For multiple edges

```
>>> G = nx.MultiDiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edge(1,2) # remove a single (arbitrary) edge
```

For edges with keys

```
>>> G = nx.MultiDiGraph()
>>> G.add_edge(1,2,key='first')
>>> G.add_edge(1,2,key=' second')
>>> G.remove_edge(1,2,key=' second')
```

```
remove_edges_from
```

MultiDiGraph.remove_edges_from (ebunch)

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples :

Each edge given in the list or container will be removed from the graph. The edges can be:

- 2-tuples (u, v) All edges between u and v are removed.
- 3-tuples (u,v,key) The edge identified by key is removed.
- 4-tuples (u,v,key,data) where data is ignored.

See also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> ebunch=[(1,2), (2,3)]
>>> G.remove_edges_from(ebunch)
```

Removing multiple copies of edges

```
>>> G = nx.MultiGraph()
>>> G.add_edges_from([(1,2),(1,2),(1,2)])
>>> G.remove_edges_from([(1, 2), (1, 2)])
>>> G.edges()
[(1, 2)]
>>> G.remove_edges_from([(1,2), (1,2)]) # silently ignore extra copy
>>> G.edges() # now empty graph
[]
```

add_star
MultiDiGraph.add_star(nodes, **attr)

Add a star.
The first node in nodes is the middle of the star. It is connected to all other nodes.

Parameters nodes : iterable container
A container of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.

See also:

add_path, add_cycle

Examples
>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)
add_path

MultiDiGraph.add_path (nodes, **attr)
Add a path.
Parameters nodes : iterable container
A container of nodes. A path will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.

See also:

add_star, add_cycle

Examples
>>> G=nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)
add_cycle

MultiDiGraph.add_cycle (nodes, **attr)
Add a cycle.

Parameters nodes: iterable container :

A container of nodes. A cycle will be constructed from the nodes (in order) and added to the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.

See also:

```
add_path,add_star
```


Examples

>>> G=nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12], weight=7)
clear

MultiDiGraph.clear()
Remove all nodes and edges from the graph.
This also removes the name, and all graph, node, and edge attributes.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
>>> G.clear()
\ggg G.nodes()
[]
>>> G.edges()
[]

Iterating over nodes and edges

MultiDiGraph.nodes([data])	Return a list of the nodes in the graph.
MultiDiGraph.nodes_iter([data])	Return an iterator over the nodes.
MultiDiGraph.__iter__()	Iterate over the nodes.
MultiDiGraph.edges([nbunch, data, keys])	Return a list of edges.
MultiDiGraph.edges_iter([nbunch, data, keys])	Return an iterator over the edges.
MultiDiGraph.out_edges([nbunch, keys, data])	Return a list of the outgoing edges.
MultiDiGraph.out_edges_iter([nbunch, data, keys])	Return an iterator over the edges.
MultiDiGraph.in_edges([nbunch, keys, data])	Return a list of the incoming edges.
MultiDiGraph.in_edges_iter([nbunch, data, keys])	Return an iterator over the incoming edges.
MultiDiGraph.get_edge_data(u, v[, key, default])	Return the attribute dictionary associated with edge (u,v).
MultiDiGraph.neighbors(n)	Return a list of successor nodes of n.
MultiDiGraph.neighbors_iter(n)	Return an iterator over successor nodes of n.
MultiDiGraph.__getitem__(n)	Return a dict of neighbors of node n.
MultiDiGraph.successors(n)	Return a list of successor nodes of n.
MultiDiGraph.successors_iter(n)	Return an iterator over successor nodes of n.
MultiDiGraph.predecessors(n)	Return a list of predecessor nodes of n.
MultiDiGraph.predecessors_iter(n)	Return an iterator over predecessor nodes of n.
MultiDiGraph.adjacency_list()	Return an adjacency list representation of the graph.
MultiDiGraph.adjacency_iter()	Return an iterator of (node, adjacency dict) tuples for all nodes.
MultiDiGraph.nbunch_iter([nbunch])	Return an iterator of nodes contained in nbunch that are also in the g

nodes

MultiDiGraph.nodes (data=False)
Return a list of the nodes in the graph.
Parameters data : boolean, optional (default=False)
If False return a list of nodes. If True return a two-tuple of node and node data dictionary
Returns nlist : list
A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

\ggg G.add_path $([0,1,2])$
>>> G.nodes()
[0, 1, 2]
\ggg G.add_node (1, time $=^{\prime} 5 \mathrm{pm}{ }^{\prime}$)
>>> G.nodes (data=True)
$[(0,\{ \}),(1, \quad\{' t i m e ': ~ ' 5 p m '\}),(2,\{ \})]$
nodes_iter

MultiDiGraph.nodes_iter (data=False)
Return an iterator over the nodes.
Parameters data : boolean, optional (default=False)
If False the iterator returns nodes. If True return a two-tuple of node and node data dictionary

Returns niter : iterator
An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression 'for n in G '.

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> [d for n,d in G.nodes_iter(data=True)]
[{}, {}, {}]
```

\qquad

MultiDiGraph.__iter_()
Iterate over the nodes. Use the expression 'for n in G '.
Returns niter : iterator
An iterator over all nodes in the graph.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2,3])$
edges

MultiDiGraph.edges (nbunch=None, data=False, keys=False)
Return a list of edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
keys : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).

Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not specified.

See also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiGraph() \# or MultiDiGraph
>>> G.add_path ([0,1,2,3])
>>> G.edges()
$[(0,1),(1,2),(2,3)]$
>>> G.edges(data=True) \# default edge data is \{\} (empty dictionary)
$[(0,1,\{ \}),(1,2,\{ \}),(2,3,\{ \})]$
>>> G.edges(keys=True) \# default keys are integers
$[(0,1,0),(1,2,0),(2,3,0)]$

```
>>> G.edges(data=True,keys=True) # default keys are integers
```

$[(0,1,0,\{ \}),(1,2,0,\{ \}),(2,3,0,\{ \})]$
>>> G.edges ([0,3])
$[(0,1),(3,2)]$
>>> G.edges (0)
$[(0,1)]$
edges_iter
MultiDiGraph.edges_iter (nbunch=None, data=False, keys=False)

Return an iterator over the edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edge_iter: iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path ([0, 1, 2, 3])
>>> [e for e in G.edges_iter()]
$[(0,1),(1,2),(2,3)]$
>>> list (G.edges_iter(data=True)) \# default data is \{\} (empty dict)
$[(0,1,\{ \}),(1,2,\{ \}),(2,3,\{ \})]$
>>> list(G.edges_iter([0,2]))
$[(0,1),(2,3)]$
>>> list(G.edges_iter(0))
$[(0,1)]$
out_edges

MultiDiGraph.out_edges (nbunch=None, keys=False, data=False)
Return a list of the outgoing edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns out_edges : list
An listr of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.
See also:
in_edges return a list of incoming edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs edges() is the same as out_edges().
out_edges_iter

MultiDiGraph.out_edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the edges.
Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edge_iter: iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored. For directed graphs this returns the out-edges.

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_path([0,1,2,3])
>>> [e for e in G.edges_iter()]
[(0, 1), (1, 2), (2, 3)]
>>> list(G.edges_iter(data=True)) # default data is {} (empty dict)
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
>>> list(G.edges_iter([0,2]))
[(0, 1), (2, 3)]
>>> list(G.edges_iter(0))
[(0, 1)]
```

in_edges

MultiDiGraph.in_edges (nbunch=None, keys=False, data=False)
Return a list of the incoming edges.
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns in_edges : list
A list of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

out_edges return a list of outgoing edges
in_edges_iter

MultiDiGraph.in_edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the incoming edges.
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns in_edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.

See also:

edges_iter return an iterator of edges

```
get_edge_data
```

MultiDiGraph.get_edge_data ($u, v, k e y=N o n e$, default=None)

Return the attribute dictionary associated with edge (u, v).

Parameters $\mathbf{u , v}$: nodes

 default: any Python object (default=None) :Value to return if the edge (u, v) is not found. key : hashable identifier, optional (default=None)

Return data only for the edge with specified key.

Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use $G[u][v][k e y]$.
>>> G $=$ nx.MultiGraph() \# or MultiDiGraph
\ggg G.add_edge $\left(0,1\right.$, key $={ }^{\prime} a^{\prime}$, weight $=7$)
$\ggg \mathrm{G}[0][1]\left[{ }^{\prime} \mathrm{a}^{\prime}\right]$ \# key='a'
\{'weight': 7\}
Warning: Assigning $\mathrm{G}[\mathrm{u}][\mathrm{v}][\mathrm{key}]$ corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

```
>>> G[0][1]['a']['weight'] = 10
>>> G[0][1]['a']['weight']
10
>>> G[1][0]['a']['weight']
10
```


Examples

>>> G = nx.MultiGraph() \# or MultiDiGraph
>>> G.add_path ([0,1,2,3])
>>> G.get_edge_data $(0,1)$
\{0: \{\}\}
>>> e $=(0,1)$
>>> G.get_edge_data(*e) \# tuple form
\{0: \{\}\}
>>> G.get_edge_data('a','b',default=0) \# edge not in graph, return 0
0
neighbors

MultiDiGraph.neighbors (n)
Return a list of successor nodes of n.
neighbors() and successors() are the same function.
neighbors_iter

MultiDiGraph.neighbors_iter (n)
Return an iterator over successor nodes of n.
neighbors_iter() and successors_iter() are the same.
__getitem

MultiDiGraph.__getitem_(n)
Return a dict of neighbors of node n. Use the expression ' $\mathrm{G}[\mathrm{n}]$ '.
Parameters n: node
A node in the graph.
Returns adj_dict : dictionary
The adjacency dictionary for nodes connected to n .

Notes

$\mathrm{G}[\mathrm{n}]$ is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.
Assigning $\mathrm{G}[\mathrm{n}]$ will corrupt the internal graph data structure. Use $\mathrm{G}[\mathrm{n}]$ for reading data only.

Examples
>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G[0]
\{1: \{\}\}
successors

MultiDiGraph.successors (n)
Return a list of successor nodes of n.
neighbors() and successors() are the same function.
successors_iter

MultiDiGraph.successors_iter (n)
Return an iterator over successor nodes of n.
neighbors_iter() and successors_iter() are the same.
predecessors

MultiDiGraph.predecessors (n)
Return a list of predecessor nodes of n.
predecessors_iter

MultiDiGraph.predecessors_iter (n)
Return an iterator over predecessor nodes of n.
adjacency_list

MultiDiGraph.adjacency_list()
Return an adjacency list representation of the graph.
The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See also:

```
    adjacency_iter
```


Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> G.adjacency_list() \# in order given by G.nodes()
[[1], [0, 2], [1, 3], [2]]
adjacency_iter

MultiDiGraph.adjacency_iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.
This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter : iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.
See also:
adjacency_list

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> [(n, nbrdict) for n, nbrdict in G.adjacency_iter()]
$[(0,\{1:\{ \}\}),(1,\{0:\{ \}, 2:\{ \}\}),(2,\{1:\{ \}, 3:\{ \}\}),(3,\{2:\{ \}\})]$
nbunch_iter

MultiDiGraph.nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.
The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
Returns niter: iterator
An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate over all nodes in the graph.

Raises NetworkXError :

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See also:

Graph.__iter__

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when nbunch is exhausted.

To test whether nbunch is a single node, one can use "if nbunch in self:", even after processing with this routine.
If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

MultiDiGraph.has_node(n)	Return True if the graph contains the node n.
MultiDiGraph.__contains_(n)	Return True if n is a node, False otherwise. Use the expression
MultiDiGraph.has_edge(u, v[, key])	Return True if the graph has an edge between nodes u and v.
MultiDiGraph.order()	Return the number of nodes in the graph.
MultiDiGraph.number_of_nodes()	Return the number of nodes in the graph.
MultiDiGraph.__len_()	Return the number of nodes.
MultiDiGraph.degree([nbunch, weight])	Return the degree of a node or nodes.
MultiDiGraph.degree_iter([nbunch, weight])	Return an iterator for (node, degree).
MultiDiGraph.in_degree([nbunch, weight])	Return the in-degree of a node or nodes.
MultiDiGraph.in_degree_iter([nbunch, weight])	Return an iterator for (node, in-degree).
MultiDiGraph.out_degree([nbunch, weight])	Return the out-degree of a node or nodes.
MultiDiGraph.out_degree_iter([nbunch, weight])	Return an iterator for (node, out-degree).
MultiDiGraph.size([weight])	Return the number of edges.
MultiDiGraph.number_of_edges([u, v])	Return the number of edges between two nodes.
MultiDiGraph.nodes_with_selfloops()	Return a list of nodes with self loops.
MultiDiGraph.selfloop_edges([data, keys])	Return a list of selfloop edges.
MultiDiGraph.number_of_selfloops()	Return the number of selfloop edges.

has_node

MultiDiGraph.has_node (n)
Return True if the graph contains the node n.
Parameters \mathbf{n} : node

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> G.has_node (0)
True
It is more readable and simpler to use
>>> 0 in G
True
__contains

MultiDiGraph.__contains__(n)
Return True if n is a node, False otherwise. Use the expression ' n in G '.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> 1 in G
True
has_edge

MultiDiGraph.has_edge (u, v, key=None)
Return True if the graph has an edge between nodes u and v.
Parameters $\mathbf{u , v}$: nodes
Nodes can be, for example, strings or numbers.
key : hashable identifier, optional (default=None)
If specified return True only if the edge with key is found.
Returns edge_ind : bool
True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u, v, an edge tuple (u, v), or an edge tuple ($u, v, k e y$).

```
>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.has_edge(0,1) # using two nodes
True
>>> e = (0,1)
>>> G.has_edge(*e) # e is a 2-tuple (u,v)
True
>>> G.add_edge(0,1,key=' a')
>>> G.has_edge(0,1,key=' a') # specify key
True
>>> e=(0,1,'a')
>>> G.has_edge(*e) # e is a 3-tuple (u,v,'a')
True
```

The following syntax are equivalent:

```
>>> G.has_edge(0,1)
True
>>> 1 in G[0] # though this gives KeyError if 0 not in G
True
```

order

MultiDiGraph.order()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

number_of_nodes, __len__
number_of_nodes

MultiDiGraph.number_of_nodes()
Return the number of nodes in the graph.
Returns nnodes: int
The number of nodes in the graph.

See also:

order,__len__

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path $([0,1,2])$
>>> len (G)
3
\qquad
len

MultiDiGraph.__len__()
Return the number of nodes. Use the expression 'len(G)'.
Returns nnodes: int
The number of nodes in the graph.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path ([0, 1, 2, 3])
>>> len (G)
4
degree

MultiDiGraph.degree (nbunch=None, weight=None)
Return the degree of a node or nodes.
The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.
Returns nd : dictionary, or number
A dictionary with nodes as keys and degree as values or a number if a single node is specified.

Examples

>>> G $=$ nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
\ggg G.add_path ([0,1,2,3])
\ggg G.degree (0)
1
>>> G.degree ([0, 1])
\{0: 1, 1: 2\}
>>> list(G.degree([0,1]).values())
$[1,2]$
degree_iter

MultiDiGraph.degree_iter (nbunch=None, weight=None)
Return an iterator for (node, degree).
The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).

See also:

degree

Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path ([0,1,2,3])
>>> list(G.degree_iter(0)) \# node 0 with degree 1
$[(0,1)]$
>>> list(G.degree_iter([0,1]))
$[(0,1),(1,2)]$

in_degree

MultiDiGraph.in_degree (nbunch=None, weight=None)
Return the in-degree of a node or nodes.
The node in-degree is the number of edges pointing in to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.
Returns nd : dictionary, or number
A dictionary with nodes as keys and in-degree as values or a number if a single node is specified.

See also:

```
degree, out_degree, in_degree_iter
```


Examples

>>> G = nx.DiGraph() \# or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree(0)
0
>>> G.in_degree([0,1])
\{0: 0, 1: 1\}
>>> list (G.in_degree([0,1]).values())
[0, 1]
in_degree_iter

MultiDiGraph.in_degree_iter (nbunch=None, weight=None)
Return an iterator for (node, in-degree).
The node in-degree is the number of edges pointing in to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, in-degree).

See also:

```
degree, in_degree, out_degree, out_degree_iter
```


Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path ([0,1,2,3])
>>> list(G.in_degree_iter(0)) \# node 0 with degree 0
$[(0,0)]$
>>> list(G.in_degree_iter([0,1]))
$[(0,0),(1,1)]$
out_degree

MultiDiGraph.out_degree (nbunch=None, weight=None)
Return the out-degree of a node or nodes.
The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns nd : dictionary, or number
A dictionary with nodes as keys and out-degree as values or a number if a single node is specified.

Examples

```
>>> G = nx.DiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree(0)
1
>>> G.out_degree([0,1])
{0: 1, 1: 1}
>>> list(G.out_degree([0,1]).values())
[1, 1]
```

out_degree_iter
MultiDiGraph.out_degree_iter (nbunch=None, weight=None)

Return an iterator for (node, out-degree).
The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights.

Returns nd_iter : an iterator
The iterator returns two-tuples of (node, out-degree).

See also:

```
    degree,in_degree, out_degree,in_degree_iter
```


Examples

>>> G = nx.MultiDiGraph()
>>> G.add_path ([0,1,2,3])
>>> list(G.out_degree_iter(0)) \# node 0 with degree 1
$[(0,1)]$
>>> list(G.out_degree_iter([0,1]))
[(0, 1), (1, 1)]
size

MultiDiGraph.size(weight=None)
Return the number of edges.
Parameters weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns nedges: int
The number of edges of sum of edge weights in the graph.

See also:

```
number_of_edges
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.size()
3
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(' a','b',weight=2)
>>> G.add_edge('b' ,' C',weight=4)
>>> G.size()
2
>>> G.size(weight='weight')
6.0
```

number_of_edges

MultiDiGraph.number_of_edges ($u=$ None, $v=$ None)
Return the number of edges between two nodes.
Parameters u,v : nodes, optional (default=all edges)
If u and v are specified, return the number of edges between u and v. Otherwise return the total number of all edges.

Returns nedges: int
The number of edges in the graph. If nodes u and v are specified return the number of edges between those nodes.

See also:

```
    size
```


Examples

```
    >>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
    >>> G.add_path([0,1,2,3])
    >>> G.number_of_edges()
    3
    >>> G.number_of_edges (0,1)
    1
    >>> e = (0,1)
    >>> G.number_of_edges(*e)
    1
```

nodes_with_selfloops
MultiDiGraph.nodes_with_selfloops()

Return a list of nodes with self loops.
A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist : list
A list of nodes with self loops.

See also:

```
selfloop_edges,number_of_selfloops
```


Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
```

>>> G.add_edge $(1,1)$
>>> G.add_edge $(1,2)$
>>> G.nodes_with_selfloops()
[1]
selfloop_edges

MultiDiGraph.selfloop_edges (data=False, keys=False)
Return a list of selfloop edges.
A selfloop edge has the same node at both ends.
Parameters data : bool, optional (default=False)
Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data) (data=True)
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edgelist : list of edge tuples
A list of all selfloop edges.

See also:

```
nodes_with_selfloops, number_of_selfloops
```


Examples

>>> G $=$ nx.MultiGraph() \# or MultiDiGraph
>>> G.add_edge (1, 1)
>>> G.add_edge $(1,2)$
>>> G.selfloop_edges()
[(1, 1)]
>>> G.selfloop_edges(data=True)
$[(1,1,\{ \})]$
>>> G.selfloop_edges (keys=True)
[(1, 1, 0)]
>>> G.selfloop_edges(keys=True, data=True)
$[(1,1,0,\{ \})]$
number of selfloops

MultiDiGraph.number_of_selfloops()
Return the number of selfloop edges.
A selfloop edge has the same node at both ends.

Returns nloops : int
The number of selfloops.

See also:

```
nodes_with_selfloops,selfloop_edges
```


Examples

```
>>> G=nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(1,1)
>>> G.add_edge (1, 2)
>>> G.number_of_selfloops()
1
```


Making copies and subgraphs

MultiDiGraph.copy()	Return a copy of the graph.
MultiDiGraph.to_undirected([reciprocal])	Return an undirected representation of the digraph.
MultiDiGraph.to_directed()	Return a directed copy of the graph.
MultiDiGraph.subgraph(nbunch)	Return the subgraph induced on nodes in nbunch.
MultiDiGraph.reverse([copy])	Return the reverse of the graph.

copy

MultiDiGraph.copy()
Return a copy of the graph.
Returns G: Graph
A copy of the graph.
See also:
to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() \# or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path ([0,1,2,3])
>>> H = G.copy()
to_undirected

MultiDiGraph.to_undirected (reciprocal=False)
Return an undirected representation of the digraph.

Parameters reciprocal : bool (optional)

If True only keep edges that appear in both directions in the original digraph.

Returns G: MultiGraph

An undirected graph with the same name and nodes and with edge (u,v,data) if either (u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge data is different, only one edge is created with an arbitrary choice of which edge data to use. You must check and correct for this manually if desired.

Notes

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{D}=\mathrm{DiGraph}(\mathrm{G})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.
to_directed

MultiDiGraph.to_directed()
Return a directed copy of the graph.
Returns G: MultiDiGraph
A deepcopy of the graph.

Notes

If edges in both directions (u, v) and (v, u) exist in the graph, attributes for the new undirected edge will be a combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a "deepcopy" of the edge, node, and graph attributes which attempts to completely copy all of the data and references.

This is in contrast to the similar $\mathrm{G}=\mathrm{DiGraph}(\mathrm{D})$ which returns a shallow copy of the data.
See the Python copy module for more information on shallow and deep copies, http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() \# or MultiGraph, etc
>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges()
$[(0,1),(1,0)]$

If already directed, return a (deep) copy
>>> G = nx.MultiDiGraph()
\ggg G.add_path ([0,1])
$\ggg H=$ G.to_directed()
>>> H.edges()
$[(0,1)]$

subgraph

MultiDiGraph.subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.
The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.

Parameters nbunch : list, iterable

A container of nodes which will be iterated through once.

Returns G: Graph

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will not be reflected in the original graph while changes to the attributes will.
To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()
For an inplace reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n not in set(nbunch)])

Examples

```
>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.subgraph([0,1,2])
>>> H.edges()
[(0, 1), (1, 2)]
```

reverse

```
MultiDiGraph.reverse (copy=True)
```

Return the reverse of the graph.
The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.
Parameters copy : bool optional (default=True)
If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse graph is created using the original graph (this changes the original graph).

ALGORITHMS

4.1 Approximation

4.1.1 Clique

Cliques.

max_clique(G)	Find the Maximum Clique
clique_removal(G)	Repeatedly remove cliques from the graph.

```
max_clique
max_clique(G)
```

Find the Maximum Clique
Finds the $O\left(|V| /(\log |V|)^{2}\right)$ apx of maximum clique/independent set in the worst case.
Parameters G:NetworkX graph
Undirected graph
Returns clique : set
The apx-maximum clique of the graph

Notes

A clique in an undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset of the vertex set $C \subseteq V$, such that for every two vertices in C , there exists an edge connecting the two. This is equivalent to saying that the subgraph induced by C is complete (in some cases, the term clique may also refer to the subgraph).

A maximum clique is a clique of the largest possible size in a given graph. The clique number $\omega(G)$ of a graph G is the number of vertices in a maximum clique in G . The intersection number of G is the smallest number of cliques that together cover all edges of G .
http://en.wikipedia.org/wiki/Maximum_clique

References

[R126]
clique_removal
clique_removal (G)
Repeatedly remove cliques from the graph.
Results in a $O\left(|V| /(\log |V|)^{2}\right)$ approximation of maximum clique $\&$ independent set. Returns the largest independent set found, along with found maximal cliques.

Parameters G : NetworkX graph
Undirected graph
Returns max_ind_cliques: (set, list) tuple
Maximal independent set and list of maximal cliques (sets) in the graph.

References

[R125]

4.1.2 Dominating Set

A dominating set for a graph $G=(V, E)$ is a subset D of V such that every vertex not in D is joined to at least one member of D by some edge. The domination number $\operatorname{gamma}(\mathrm{G})$ is the number of vertices in a smallest dominating set for G . Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ find a minimum weight dominating set V '.
http://en.wikipedia.org/wiki/Dominating_set
An edge dominating set for a graph $G=(V, E)$ is a subset D of E such that every edge not in D is adjacent to at least one edge in D.
http://en.wikipedia.org/wiki/Edge_dominating_set
min_weighted_dominating_set(G[, weight]) \quad Return minimum weight vertex dominating set.
min_weighted_dominating_set
min_weighted_dominating_set $(G$, weight $=$ None $)$
Return minimum weight vertex dominating set.
Parameters G:NetworkX graph
Undirected graph
weight : None or string, optional $($ default $=$ None $)$
If None, every edge has weight/distance/weight 1 . If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1 .

Returns min_weight_dominating_set : set

Returns a set of vertices whose weight sum is no more than $\log \mathrm{w}(\mathrm{V})$ * OPT

Notes

This algorithm computes an approximate minimum weighted dominating set for the graph G . The upper-bound on the size of the solution is $\log \mathrm{w}(\mathrm{V}) * \mathrm{OPT}$. Runtime of the algorithm is $O(|E|)$.

References

[R127]

```
min_edge_dominating_set
```

min_edge_dominating_set (G)

Return minimum cardinality edge dominating set.
Parameters G : NetworkX graph
Undirected graph
Returns min_edge_dominating_set : set
Returns a set of dominating edges whose size is no more than 2 * OPT.

Notes

The algorithm computes an approximate solution to the edge dominating set problem. The result is no more than $2 *$ OPT in terms of size of the set. Runtime of the algorithm is $O(|E|)$.

4.1.3 Independent Set

Independent Set

Independent set or stable set is a set of vertices in a graph, no two of which are adjacent. That is, it is a set I of vertices such that for every two vertices in I, there is no edge connecting the two. Equivalently, each edge in the graph has at most one endpoint in I. The size of an independent set is the number of vertices it contains.

A maximum independent set is a largest independent set for a given graph G and its size is denoted $\alpha(\mathrm{G})$. The problem of finding such a set is called the maximum independent set problem and is an NP-hard optimization problem. As such, it is unlikely that there exists an efficient algorithm for finding a maximum independent set of a graph.
http://en.wikipedia.org/wiki/Independent_set_(graph_theory)
Independent set algorithm is based on the following paper:
$O\left(|V| /(l o g|V|)^{2}\right)$ apx of maximum clique/independent set.
Boppana, R., \& Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180-196. Springer. doi:10.1007/BF01994876

$$
\text { maximum_independent_set }(G) \quad \text { Return an approximate maximum independent set. }
$$

maximum_independent_set
maximum_independent_set (G)
Return an approximate maximum independent set.

Parameters G: NetworkX graph

Undirected graph
Returns iset: Set
The apx-maximum independent set

Notes

Finds the $O\left(|V| /(\log |V|)^{2}\right)$ apx of independent set in the worst case.

References

[R128]

4.1.4 Matching

Given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex.
http://en.wikipedia.org/wiki/Matching_(graph_theory)
min_maximal_matching(G) Returns the minimum maximal matching of G. That is, out of all maximal
min_maximal_matching
min_maximal_matching (G)
Returns the minimum maximal matching of G . That is, out of all maximal matchings of the graph G , the smallest is returned.

Parameters G: NetworkX graph
Undirected graph
Returns min_maximal_matching : set
Returns a set of edges such that no two edges share a common endpoint and every edge not in the set shares some common endpoint in the set. Cardinality will be $2 *$ OPT in the worst case.

Notes

The algorithm computes an approximate solution fo the minimum maximal cardinality matching problem. The solution is no more than $2 *$ OPT in size. Runtime is $O(|E|)$.

References

[R129]

4.1.5 Ramsey

Ramsey numbers.

$$
\text { ramsey_R2(G) } \quad \text { Approximately computes the Ramsey number } R(2 ; s, t) \text { for graph. }
$$

ramsey_R2

ramsey_R2 (G)
Approximately computes the Ramsey number $R(2 ; s, t)$ for graph.
Parameters G:NetworkX graph
Undirected graph
Returns max_pair : (set, set) tuple
Maximum clique, Maximum independent set.

4.1.6 Vertex Cover

Given an undirected graph $G=(V, E)$ and a function w assigning nonnegative weights to its vertices, find a minimum weight subset of V such that each edge in E is incident to at least one vertex in the subset.
http://en.wikipedia.org/wiki/Vertex_cover

> min_weighted_vertex_cover(G[, weight]) 2-OPT Local Ratio for Minimum Weighted Vertex Cover

```
min_weighted_vertex_cover
min_weighted_vertex_cover(G, weight=None)
    2-OPT Local Ratio for Minimum Weighted Vertex Cover
Find an approximate minimum weighted vertex cover of a graph.
```

Parameters G:NetworkX graph
Undirected graph
weight : None or string, optional $($ default $=$ None $)$
If None, every edge has weight/distance/cost 1 . If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1 .

Returns min_weighted_cover : set
Returns a set of vertices whose weight sum is no more than 2 * OPT.

Notes

Local-Ratio algorithm for computing an approximate vertex cover. Algorithm greedily reduces the costs over edges and iteratively builds a cover. Worst-case runtime is $O(|E|)$.

References

[R130]

4.2 Assortativity

4.2.1 Assortativity

degree_assortativity_coefficient(G[, $x, y, \ldots])$	Compute degree assortativity of graph.
attribute_assortativity_coefficient(G, attribute)	Compute assortativity for node attributes.
numeric_assortativity_coefficient(G, attribute)	Compute assortativity for numerical node attributes.
degree_pearson_correlation_coefficient(G[,..])	Compute degree assortativity of graph.

degree_assortativity_coefficient

degree_assortativity_coefficient ($G, x=$ 'out', $y=$ 'in', weight=None, nodes=None)
Compute degree assortativity of graph.
Assortativity measures the similarity of connections in the graph with respect to the node degree.

Parameters G:NetworkX graph

x: string ('in','out') :
The degree type for source node (directed graphs only).

$$
\mathrm{y}: \text { string ('in','out') : }
$$

The degree type for target node (directed graphs only).

weight: string or None, optional (default=None) :

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

nodes: list or iterable (optional) :

Compute degree assortativity only for nodes in container. The default is all nodes.

Returns r: float

Assortativity of graph by degree.

See also:

attribute_assortativity_coefficient, numeric_assortativity_coefficient, neighbor_connectivity, degree_mixing_dict, degree_mixing_matrix

Notes

This computes Eq. (21) in Ref. [R134], where e is the joint probability distribution (mixing matrix) of the degrees. If G is directed than the matrix e is the joint probability of the user-specified degree type for the source and target.

References

[R134], [R135]

Examples

```
>>> G=nx.path_graph(4)
>>> r=nx.degree_assortativity_coefficient(G)
>>> print("%3.1f"%r)
-0.5
```

attribute_assortativity_coefficient
attribute_assortativity_coefficient (G, attribute, nodes=None)

Compute assortativity for node attributes.
Assortativity measures the similarity of connections in the graph with respect to the given attribute.
Parameters G: NetworkX graph
attribute : string
Node attribute key
nodes: list or iterable (optional) :
Compute attribute assortativity for nodes in container. The default is all nodes.

Returns r: float:

Assortativity of graph for given attribute

Notes

This computes Eq. (2) in Ref. [R131] , trace(M)-sum(M))/(1-sum(M), where M is the joint probability distribution (mixing matrix) of the specified attribute.

References

[R131]

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edges_from([(0,1), (2,3)])
>>> print(nx.attribute_assortativity_coefficient(G,'color'))
1.0
```

numeric_assortativity_coefficient
numeric_assortativity_coefficient (G, attribute, nodes=None)
Compute assortativity for numerical node attributes.
Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute.
Parameters G: NetworkX graph
attribute : string
Node attribute key
nodes: list or iterable (optional) :
Compute numeric assortativity only for attributes of nodes in container. The default is all nodes.

Returns r: float:

Assortativity of graph for given attribute

Notes

This computes Eq. (21) in Ref. [R139] , for the mixing matrix of of the specified attribute.

References
[R139]

Examples

>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],size=2)
>>> G.add_nodes_from ([2,3],size=3)
>>> G.add_edges_from ([$(0,1),(2,3)])$
>>> print(nx.numeric_assortativity_coefficient (G,'size'))
1.0
degree_pearson_correlation_coefficient
degree_pearson_correlation_coefficient ($G, x=$ 'out', $y=$ 'in', weight=None, nodes=None)
Compute degree assortativity of graph.
Assortativity measures the similarity of connections in the graph with respect to the node degree.
This is the same as degree_assortativity_coefficient but uses the potentially faster scipy.stats.pearsonr function.

Parameters G: NetworkX graph

x: string ('in','out') :
The degree type for source node (directed graphs only).

\mathbf{y} : string ('in','out') :

The degree type for target node (directed graphs only).
weight: string or None, optional (default=None) :

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

nodes: list or iterable (optional) :

Compute pearson correlation of degrees only for specified nodes. The default is all nodes.

Returns r: float
Assortativity of graph by degree.

Notes

This calls scipy.stats.pearsonr.

References

[R136], [R137]

Examples

```
>>> G=nx.path_graph(4)
>>> r=nx.degree_pearson_correlation_coefficient(G)
>>> r
-0.5
```


4.2.2 Average neighbor degree

```
average_neighbor_degree(G[, source, target, ..]) Returns the average degree of the neighborhood of each node.
```

```
average_neighbor_degree
```

average_neighbor_degree (G, source='out', target='out', nodes $=$ None, weight $=$ None)

Returns the average degree of the neighborhood of each node.
The average degree of a node i is

$$
k_{n n, i}=\frac{1}{|N(i)|} \sum_{j \in N(i)} k_{j}
$$

where $N(i)$ are the neighbors of node i and k_{j} is the degree of node j which belongs to $N(i)$. For weighted graphs, an analogous measure can be defined [R133],

$$
k_{n n, i}^{w}=\frac{1}{s_{i}} \sum_{j \in N(i)} w_{i j} k_{j}
$$

where s_{i} is the weighted degree of node $i, w_{i j}$ is the weight of the edge that links i and j and $N(i)$ are the neighbors of node i.

Parameters G: NetworkX graph
source : string ("in"|"out")

Directed graphs only. Use "in"- or "out"-degree for source node.
target : string ("in"|"out")
Directed graphs only. Use "in"- or "out"-degree for target node.
nodes : list or iterable, optional
Compute neighbor degree for specified nodes. The default is all nodes in the graph.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d: dict :

A dictionary keyed by node with average neighbors degree value.

See also:

```
average_degree_connectivity
```


Notes

For directed graphs you can also specify in-degree or out-degree by passing keyword arguments.

References

[R133]

Examples

```
>>> G=nx.path_graph(4)
>>> G.edge[0][1]['weight'] = 5
>>> G.edge[2][3]['weight'] = 3
>>> nx.average_neighbor_degree(G)
{0: 2.0, 1: 1.5, 2: 1.5, 3: 2.0}
>>> nx.average_neighbor_degree(G, weight='weight')
{0: 2.0, 1: 1.1666666666666667, 2: 1.25, 3: 2.0}
>>> G=nx.DiGraph()
>>> G.add_path([0,1,2,3])
>>> nx.average_neighbor_degree(G, source='in', target='in')
{0: 1.0, 1: 1.0, 2: 1.0, 3: 0.0}
>>> nx.average_neighbor_degree(G, source='out', target='out')
{0: 1.0, 1: 1.0, 2: 0.0, 3: 0.0}
```


4.2.3 Average degree connectivity

average_degree_connectivity(G[, source, ...])	Compute the average degree connectivity of graph.
k_nearest_neighbors(G[, source, $\operatorname{target,~...])~}$	Compute the average degree connectivity of graph.

average_degree_connectivity

average_degree_connectivity (G, source='in+out', target='in+out', nodes=None, weight=None)
Compute the average degree connectivity of graph.
The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in [R132], for a node i, as:

$$
k_{n n, i}^{w}=\frac{1}{s_{i}} \sum_{j \in N(i)} w_{i j} k_{j}
$$

where s_{i} is the weighted degree of node $i, w_{i j}$ is the weight of the edge that links i and j, and $N(i)$ are the neighbors of node i.

Parameters G : NetworkX graph source : "in"|"out"l"in+out" (default:"in+out")

Directed graphs only. Use "in"- or "out"-degree for source node.
target : "in"|"out"|"in+out" (default:"in+out"
Directed graphs only. Use "in"- or "out"-degree for target node.
nodes: list or iterable (optional) :
Compute neighbor connectivity for these nodes. The default is all nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns d: dict :
A dictionary keyed by degree k with the value of average connectivity.

See also:

```
    neighbors_average_degree
```


Notes

This algorithm is sometimes called " k nearest neighbors'.

References

[R132]

Examples

>>> G=nx.path_graph (4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
\{1: 2.0, 2: 1.5\}
>>> nx.k_nearest_neighbors(G, weight='weight')
\{1: 2.0, 2: 1.75\}
k_nearest_neighbors
k_nearest_neighbors (G, source='in+out', target='in+out', nodes=None, weight=None)
Compute the average degree connectivity of graph.
The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in [R138], for a node i, as:

$$
k_{n n, i}^{w}=\frac{1}{s_{i}} \sum_{j \in N(i)} w_{i j} k_{j}
$$

where s_{i} is the weighted degree of node $i, w_{i j}$ is the weight of the edge that links i and j, and $N(i)$ are the neighbors of node i.

Parameters G: NetworkX graph source : "in" " "out" " "in+out" (default:"in+out")

Directed graphs only. Use "in"- or "out"-degree for source node.
target : "in" "l"out"" $"$ "in+out" (default:"in+out"
Directed graphs only. Use "in"- or "out"-degree for target node.
nodes: list or iterable (optional) :
Compute neighbor connectivity for these nodes. The default is all nodes.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 .

Returns d: dict:

A dictionary keyed by degree k with the value of average connectivity.

See also:

```
neighbors_average_degree
```


Notes

This algorithm is sometimes called " k nearest neighbors'.

References

[R138]

Examples

```
    >>> G=nx.path_graph(4)
    >>> G.edge[1][2]['weight'] = 3
    >>> nx.k_nearest_neighbors(G)
    {1: 2.0, 2: 1.5}
    >>> nx.k_nearest_neighbors(G, weight='weight')
    {1: 2.0, 2: 1.75}
```


4.2.4 Mixing

attribute_mixing_matrix(G, attribute[, ..] $])$	Return mixing matrix for attribute.
degree_mixing_matrix(G[, x, y, weight, ...])	Return mixing matrix for attribute.
degree_mixing_dict(G[, x, y, weight, nodes, ...])	Return dictionary representation of mixing matrix for degree.
attribute_mixing_dict(G, attribute[, nodes, ...])	Return dictionary representation of mixing matrix for attribute.

attribute_mixing_matrix

attribute_mixing_matrix (G, attribute, nodes $=$ None, mapping $=$ None, normalized $=$ True $)$
Return mixing matrix for attribute.
Parameters G: graph
NetworkX graph object.
attribute : string
Node attribute key.
nodes: list or iterable (optional) :
Use only nodes in container to build the matrix. The default is all nodes.
mapping : dictionary, optional
Mapping from node attribute to integer index in matrix. If not specified, an arbitrary ordering will be used.
normalized : bool (default=False)
Return counts if False or probabilities if True.

Returns m: numpy array :

Counts or joint probability of occurrence of attribute pairs.

```
degree_mixing_matrix
```

degree_mixing_matrix $(G, x=$ 'out', $y=$ 'in', weight $=$ None, nodes $=$ None, normalized $=$ True $)$

Return mixing matrix for attribute.
Parameters G: graph
NetworkX graph object.
x : string ('in','out') :
The degree type for source node (directed graphs only).

```
y: string ('in','out') :
```

The degree type for target node (directed graphs only).
nodes: list or iterable (optional) :
Build the matrix using only nodes in container. The default is all nodes.
weight: string or None, optional (default=None) :
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.
normalized : bool (default=False)
Return counts if False or probabilities if True.

Returns m: numpy array :

Counts, or joint probability, of occurrence of node degree.

```
degree_mixing_dict
degree_mixing_dict ( }G,x=\mathrm{ 'out', y='in', weight=None, nodes=None, normalized=False)
    Return dictionary representation of mixing matrix for degree.
        Parameters G:graph
            NetworkX graph object.
        x: string ('in','out') :
            The degree type for source node (directed graphs only).
        y: string ('in','out') :
            The degree type for target node (directed graphs only).
        weight: string or None, optional (default=None) :
```

 The edge attribute that holds the numerical value used as a weight. If None, then each
 edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.
 normalized : bool (default=False)
 Return counts if False or probabilities if True.

Returns d: dictionary :

Counts or joint probability of occurrence of degree pairs.

attribute_mixing_dict

attribute_mixing_dict (G, attribute, nodes $=$ None, normalized $=$ False)
Return dictionary representation of mixing matrix for attribute.
Parameters G: graph
NetworkX graph object.
attribute : string
Node attribute key.
nodes: list or iterable (optional) :
Unse nodes in container to build the dict. The default is all nodes.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns d: dictionary
Counts or joint probability of occurrence of attribute pairs.

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([0,1],color='red')
>>> G.add_nodes_from([2,3],color='blue')
>>> G.add_edge(1,3)
>>> d=nx.attribute_mixing_dict(G,' color')
>>> print(d['red']['blue'])
1
>>> print(d['blue']['red']) # d symmetric for undirected graphs
1
```


4.3 Bipartite

This module provides functions and operations for bipartite graphs. Bipartite graphs $B=(U, V, E)$ have two node sets U, V and edges in E that only connect nodes from opposite sets. It is common in the literature to use an spatial analogy referring to the two node sets as top and bottom nodes.

The bipartite algorithms are not imported into the networkx namespace at the top level so the easiest way to use them is with:

```
>>> import networkx as nx
>>> from networkx.algorithms import bipartite
```

NetworkX does not have a custom bipartite graph class but the Graph() or DiGraph() classes can be used to represent bipartite graphs. However, you have to keep track of which set each node belongs to, and make sure that there is no edge between nodes of the same set. The convention used in NetworkX is to use a node attribute named "bipartite" with values 0 or 1 to identify the sets each node belongs to.
For example:

```
>>> B = nx.Graph()
>>> B.add_nodes_from([1,2,3,4], bipartite=0) # Add the node attribute "bipartite"
>>> B.add_nodes_from(['a',' b' ,' C'], bipartite=1)
>>> B.add_edges_from([(1,' a'), (1,'b'), (2,'b'), (2,'c'), (3,'c'), (4,' a')])
```

Many algorithms of the bipartite module of NetworkX require, as an argument, a container with all the nodes that belong to one set, in addition to the bipartite graph B. If B is connected, you can find the node sets using a twocoloring algorithm:

```
>>> nx.is_connected(B)
True
>>> bottom_nodes, top_nodes = bipartite.sets(B)
```

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b']
However, if the input graph is not connected, there are more than one possible colorations. Thus, the following result is correct:

```
>>> B.remove_edge (2,'C')
>>> nx.is_connected(B)
False
>>> bottom_nodes, top_nodes = bipartite.sets(B)
```

list(top_nodes) [1, 2, 4, 'c'] list(bottom_nodes) ['a', 3, 'b']
Using the "bipartite" node attribute, you can easily get the two node sets:

```
>>> top_nodes = set(n for n,d in B.nodes(data=True) if d['bipartite']==0)
>>> bottom_nodes = set(B) - top_nodes
```

list(top_nodes) [1, 2, 3, 4] list(bottom_nodes) ['a', 'c', 'b']
So you can easily use the bipartite algorithms that require, as an argument, a container with all nodes that belong to one node set:

```
>>> print(round(bipartite.density(B, bottom_nodes), 2))
0.42
>>> G = bipartite.projected_graph(B, top_nodes)
>>> G.edges()
[(1, 2), (1, 4)]
```

All bipartite graph generators in NetworkX build bipartite graphs with the "bipartite" node attribute. Thus, you can use the same approach:

```
>>> RB = nx.bipartite_random_graph(5, 7, 0.2)
>>> RB_top = set(n for n,d in RB.nodes(data=True) if d['bipartite']==0)
>>> RB_bottom = set(RB) - RB_top
>>> list(RB_top)
[0, 1, 2, 3, 4]
>>> list(RB_bottom)
[5, 6, 7, 8, 9, 10, 11]
```

For other bipartite graph generators see the bipartite section of Graph generators.

4.3.1 Basic functions

is__bipartite(G)	Returns True if graph G is bipartite, False if not.
is_bipartite_node_set(G, nodes)	Returns True if nodes and G/nodes are a bipartition of G.
sets(G)	Returns bipartite node sets of graph G.
color(G)	Returns a two-coloring of the graph.
density(B, nodes)	Return density of bipartite graph B.
degrees(B, nodes[, weight])	Return the degrees of the two node sets in the bipartite graph B.
biadjacency_matrix(G, row_order[, ...])	Return the biadjacency matrix of the bipartite graph G.

is_bipartite

is_bipartite (G)

Returns True if graph G is bipartite, False if not.
Parameters G:NetworkX graph
See also:

```
    color,is_bipartite_node_set
```


Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True
is_bipartite_node_set
is_bipartite_node_set (G, nodes)
Returns True if nodes and $\mathrm{G} /$ nodes are a bipartition of G .
Parameters G:NetworkX graph nodes: list or container :

Check if nodes are a one of a bipartite set.

Notes

For connected graphs the bipartite sets are unique. This function handles disconnected graphs.

Examples

>>> from networkx.algorithms import bipartite
>>> G $=$ nx.path_graph (4)
$\ggg X=\operatorname{set}([1,3])$
>>> bipartite.is_bipartite_node_set (G,X)
True
sets
sets (G)
Returns bipartite node sets of graph G.
Raises an exception if the graph is not bipartite.
Parameters G : NetworkX graph
Returns (X,Y) : two-tuple of sets
One set of nodes for each part of the bipartite graph.

See also:

color

Examples

>>> from networkx.algorithms import bipartite
>>> G $=$ nx.path_graph (4)
$\ggg X, Y=$ bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list (Y)
$[1,3]$
color
color (G)
Returns a two-coloring of the graph.

Raises an exception if the graph is not bipartite.
Parameters G: NetworkX graph
Returns color: dictionary
A dictionary keyed by node with a 1 or 0 as data for each node color.
Raises NetworkXError if the graph is not two-colorable. :

Examples

>>> from networkx.algorithms import bipartite
$\ggg G=n x \cdot p a t h _g r a p h(4)$
$\ggg c=$ bipartite.color (G)
>>> print (c)
$\{0: 1,1: 0,2: 1,3: 0\}$
You can use this to set a node attribute indicating the biparite set:
>>> nx.set_node_attributes (G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
0

density

density (B, nodes)
Return density of bipartite graph B.
Parameters G:NetworkX graph nodes: list or container :

Nodes in one set of the bipartite graph.
Returns d: float
The bipartite density

See also:

color

Examples

>>> from networkx.algorithms import bipartite
>>> G $=$ nx.complete_bipartite_graph $(3,2)$
$\ggg X=\operatorname{set}([0,1,2])$
>>> bipartite.density (G,X)
1.0
>>> $Y=\operatorname{set}([3,4])$
>>> bipartite.density(G,Y)
1.0

degrees

degrees (B, nodes, weight=None)
Return the degrees of the two node sets in the bipartite graph B.
Parameters G: NetworkX graph

nodes: list or container :

Nodes in one set of the bipartite graph.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1 . The degree is the sum of the edge weights adjacent to the node.

Returns (degX,degY) : tuple of dictionaries
The degrees of the two bipartite sets as dictionaries keyed by node.

See also:

color, density

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph $(3,2)$
>>> $Y=\operatorname{set}([3,4])$
>>> degX, degY=bipartite.degrees (G,Y)
>>> degX
\{0: 2, 1: 2, 2: 2\}

biadjacency matrix

biadjacency_matrix (G, row_order, column_order=None, weight='weight', dtype=None)
Return the biadjacency matrix of the bipartite graph G.
Let $G=(U, V, E)$ be a bipartite graph with node sets $U=u_{1}, \ldots, u_{r}$ and $V=v_{1}, \ldots, v_{s}$. The biadjacency matrix [1] is the $r \mathrm{x} s$ matrix B in which $b_{i, j}=1$ if, and only if, $\left(u_{i}, v_{j}\right) \in E$. If the parameter weight is not None and matches the name of an edge attribute, its value is used instead of 1 .

Parameters G:graph
A NetworkX graph
row_order : list of nodes
The rows of the matrix are ordered according to the list of nodes.
column_order : list, optional
The columns of the matrix are ordered according to the list of nodes. If column_order is None, then the ordering of columns is arbitrary.
weight : string or None, optional (default='weight')
The edge data key used to provide each value in the matrix. If None, then each edge has weight 1.
dtype : NumPy data type, optional

A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used.

Returns B : numpy matrix
Biadjacency matrix representation of the bipartite graph G.

See also:

```
to_numpy_matrix, adjacency_matrix
```


Notes

No attempt is made to check that the input graph is bipartite.
For directed bipartite graphs only successors are considered as neighbors. To obtain an adjacency matrix with ones (or weight values) for both predecessors and successors you have to generate two biadjacency matrices where the rows of one of them are the columns of the other, and then add one to the transpose of the other.

References

[1] http://en.wikipedia.org/wiki/Adjacency_matrix\#Adjacency_matrix_of_a_bipartite_graph

4.3.2 Projections

One-mode (unipartite) projections of bipartite graphs.

projected_graph(B, nodes[, multigraph])	Returns the projection of B onto one of its node sets.
weighted_projected_graph(B, nodes[, ratio])	Returns a weighted projection of B onto one of its node sets.
collaboration_weighted_projected_graph(B, nodes)	Newman's weighted projection of B onto one of its node sets.
overlap_weighted_projected_graph(B, nodes[, ...])	Overlap weighted projection of B onto one of its node sets.
generic_weighted_projected_graph(B, nodes[, ...])	Weighted projection of B with a user-specified weight function.

```
projected_graph
projected_graph ( }B\mathrm{ , nodes, multigraph=False)
```

Returns the projection of B onto one of its node sets.
Returns the graph G that is the projection of the bipartite graph B onto the specified nodes. They retain their attributes and are connected in G if they have a common neighbor in B.

Parameters B : NetworkX graph
The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto (the "bottom" nodes).
multigraph: bool (default=False) :
If True return a multigraph where the multiple edges represent multiple shared neighbors. They edge key in the multigraph is assigned to the label of the neighbor.

Returns Graph : NetworkX graph or multigraph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
collaboration_weighted_projected_graph, overlap_weighted_projected_graph,
generic__weighted_projected_graph
```


Notes

No attempt is made to verify that the input graph B is bipartite. Returns a simple graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. If multigraph=True then a multigraph is returned with an edge for every shared neighbor.

Directed graphs are allowed as input. The output will also then be a directed graph with edges if there is a directed path between the nodes.

The graph and node properties are (shallow) copied to the projected graph.

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges())
[(1, 3)]
```

If nodes a, and b are connected through both nodes 1 and 2 then building a multigraph results in two edges in the projection onto [$a,{ }^{\text {'b }}$ ‘]:

```
>>> B = nx.Graph()
>>> B.add_edges_from([('a', 1), ('b', 1), ('a', 2), ('b', 2)])
>>> G = bipartite.projected_graph(B, [' a', 'b'], multigraph=True)
>>> print([sorted((u,v)) for u,v in G.edges()])
[['a', 'b'], ['a', 'b']]
```


weighted_projected_graph

weighted_projected_graph (B, nodes, ratio=False)
Returns a weighted projection of B onto one of its node sets.
The weighted projected graph is the projection of the bipartite network B onto the specified nodes with weights representing the number of shared neighbors or the ratio between actual shared neighbors and possible shared neighbors if ratio=True [R149]. The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.

Parameters B: NetworkX graph
The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto (the "bottom" nodes).
ratio: Bool (default=False) :

If True, edge weight is the ratio between actual shared neighbors and possible shared neighbors. If False, edges weight is the number of shared neighbors.

Returns Graph : NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite,is_bipartite_node_set, sets, collaboration_weighted_projected_graph,
overlap_weighted_projected_graph, generic_weighted_projected_graph,
projected_graph
```


Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

References

[R149]

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(4)
>>> G = bipartite.weighted_projected_graph(B, [1,3])
>>> print(G.nodes())
[1, 3]
>>> print(G.edges(data=True))
[(1, 3, {'weight': 1})]
>>> G = bipartite.weighted_projected_graph(B, [1,3], ratio=True)
>>> print(G.edges(data=True))
[(1, 3, {'weight': 0.5})]
```


collaboration_weighted_projected_graph

```
collaboration_weighted_projected_graph(B, nodes)
```

Newman's weighted projection of B onto one of its node sets.
The collaboration weighted projection is the projection of the bipartite network B onto the specified nodes with weights assigned using Newman's collaboration model [R147]:

$$
w_{v, u}=\sum_{k} \frac{\delta_{v}^{w} \delta_{w}^{k}}{k_{w}-1}
$$

where v and u are nodes from the same bipartite node set, and w is a node of the opposite node set. The value k_{w} is the degree of node w in the bipartite network and δ_{v}^{w} is 1 if node v is linked to node w in the original bipartite graph or 0 otherwise.
The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph.

Parameters B : NetworkX graph

The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto (the "bottom" nodes).

Returns Graph : NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
overlap_weighted_projected_graph, generic_weighted_projected_graph,
```

projected_graph

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

References

[R147]

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> B.add_edge (1,5)
>>> G = bipartite.collaboration_weighted_projected_graph(B, [0, 2, 4, 5])
>>> print(G.nodes())
[0, 2, 4, 5]
>>> for edge in G.edges(data=True): print(edge)
.
(0, 2, {'weight': 0.5})
(0, 5, {'weight': 0.5})
(2, 4, {'weight': 1.0})
(2, 5, {'weight': 0.5})
```


overlap_weighted_projected_graph

overlap_weighted_projected_graph (B, nodes, jaccard=True)
Overlap weighted projection of B onto one of its node sets.
The overlap weighted projection is the projection of the bipartite network B onto the specified nodes with weights representing the Jaccard index between the neighborhoods of the two nodes in the original bipartite network [R148]:

$$
w_{v, u}=\frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}
$$

or if the parameter 'jaccard' is False, the fraction of common neighbors by minimum of both nodes degree in the original bipartite graph [R148]:

$$
w_{v, u}=\frac{|N(u) \cap N(v)|}{\min (|N(u)|,|N(v)|)}
$$

The nodes retain their attributes and are connected in the resulting graph if have an edge to a common node in the original bipartite graph.

Parameters B: NetworkX graph
The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto (the "bottom" nodes).
jaccard: Bool (default=True) :
Returns Graph : NetworkX graph
A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
```

collaboration_weighted_projected_graph, generic_weighted_projected_graph,
projected_graph

Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

References

Examples

```
>>> from networkx.algorithms import bipartite
>>> B = nx.path_graph(5)
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4])
>>> print(G.nodes())
[0, 2, 4]
>>> print(G.edges(data=True))
[(0, 2, {'weight': 0.5}), (2, 4, {'weight': 0.5})]
>>> G = bipartite.overlap_weighted_projected_graph(B, [0, 2, 4], jaccard=False)
>>> print(G.edges(data=True))
[(0, 2, {'weight': 1.0}), (2, 4, {'weight': 1.0})]
```


generic_weighted_projected_graph

generic_weighted_projected_graph (B, nodes, weight_function=None)
Weighted projection of B with a user-specified weight function.

The bipartite network B is projected on to the specified nodes with weights computed by a user-specified function. This function must accept as a parameter the neighborhood sets of two nodes and return an integer or a float.

The nodes retain their attributes and are connected in the resulting graph if they have an edge to a common node in the original graph.

Parameters B: NetworkX graph
The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto (the "bottom" nodes).

weight_function: function :

This function must accept as parameters the same input graph that this function, and two nodes; and return an integer or a float. The default function computes the number of shared neighbors.

Returns Graph : NetworkX graph

A graph that is the projection onto the given nodes.

See also:

```
is_bipartite, is_bipartite_node_set, sets, weighted_projected_graph,
collaboration_weighted_projected_graph, overlap_weighted_projected_graph,
projected_graph
```


Notes

No attempt is made to verify that the input graph B is bipartite. The graph and node properties are (shallow) copied to the projected graph.

Examples

```
>>> from networkx.algorithms import bipartite
>>> # Define some custom weight functions
>>> def jaccard(G, u, v):
... unbrs = set(G[u])
... vnbrs = set(G[v])
... return float(len(unbrs & vnbrs)) / len(unbrs | vnbrs)
...
>>> def my_weight(G, u, v, weight='weight'):
... W = 0
... for nbr in set(G[u]) & set(G[v]):
... w += G.edge[u][nbr].get(weight, 1) + G.edge[v][nbr].get(weight, 1)
... return w
>>> # A complete bipartite graph with 4 nodes and 4 edges
>>> B = nx.complete_bipartite_graph (2,2)
>>> # Add some arbitrary weight to the edges
>>> for i,(u,v) in enumerate(B.edges()):
... B.edge[u][v]['weight'] = i + 1
...
>>> for edge in B.edges(data=True):
... print (edge)
```

```
(0, 2, {'weight': 1})
(0, 3, {'weight': 2})
(1, 2, {'weight': 3})
(1, 3, {'weight': 4})
>>> # Without specifying a function, the weight is equal to # shared partners
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1])
>>> print(G.edges(data=True))
[(0, 1, {'weight': 2})]
>>> # To specify a custom weight function use the weight_function parameter
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=jaccard)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 1.0})]
>>> G = bipartite.generic_weighted_projected_graph(B, [0, 1], weight_function=my_weight)
>>> print(G.edges(data=True))
[(0, 1, {'weight': 10})]
```


4.3.3 Spectral

Spectral bipartivity measure.

$$
\text { spectral_bipartivity(G[, nodes, weight]) } \quad \text { Returns the spectral bipartivity. }
$$

spectral_bipartivity

spectral_bipartivity (G, nodes=None, weight='weight')
Returns the spectral bipartivity.
Parameters G : NetworkX graph
nodes : list or container optional(default is all nodes)
Nodes to return value of spectral bipartivity contribution.
weight $:$ string or None optional $($ default $=$ 'weight' $)$
Edge data key to use for edge weights. If None, weights set to 1 .
Returns sb: float or dict
A single number if the keyword nodes is not specified, or a dictionary keyed by node with the spectral bipartivity contribution of that node as the value.

See also:

color

Notes

This implementation uses Numpy (dense) matrices which are not efficient for storing large sparse graphs.

References

[R151]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> bipartite.spectral_bipartivity(G)
1.0
```


4.3.4 Clustering

clustering(G[, nodes, mode])	Compute a bipartite clustering coefficient for nodes.
average_clustering(G[, nodes, mode $])$	Compute the average bipartite clustering coefficient.
latapy_clustering(G[, nodes, mode])	Compute a bipartite clustering coefficient for nodes.
robins_alexander_clustering (G)	Compute the bipartite clustering of G.

clustering

clustering (G, nodes=None, mode='dot')
Compute a bipartite clustering coefficient for nodes.
The bipartie clustering coefficient is a measure of local density of connections defined as [R144]:

$$
c_{u}=\frac{\sum_{v \in N(N(v))} c_{u v}}{|N(N(u))|}
$$

where $N(N(u))$ are the second order neighbors of u in G excluding u, and $c_{u v}$ is the pairwise clustering coefficient between nodes u and v.

The mode selects the function for $c_{u v}$ which can be:
dot:

$$
c_{u v}=\frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}
$$

min:

$$
c_{u v}=\frac{|N(u) \cap N(v)|}{\min (|N(u)|,|N(v)|)}
$$

$\max :$

$$
c_{u v}=\frac{|N(u) \cap N(v)|}{\max (|N(u)|,|N(v)|)}
$$

Parameters G: graph
A bipartite graph
nodes : list or iterable (optional)
Compute bipartite clustering for these nodes. The default is all nodes in G .
mode : string
The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min".

Returns clustering : dictionary

A dictionary keyed by node with the clustering coefficient value.

See also:

```
robins_alexander_clustering, square_clustering, average_clustering
```


References

[R144]

Examples

>>> from networkx.algorithms import bipartite
$\ggg G=n x \cdot p a t h _g r a p h(4)$ \# path graphs are bipartite
>>> c = bipartite.clustering (G)
>>> c[0]
0.5
>>> $c=$ bipartite.clustering(G,mode='min')
$\ggg c[0]$
1.0

average_clustering

average_clustering (G, nodes=None, mode='dot')
Compute the average bipartite clustering coefficient.
A clustering coefficient for the whole graph is the average,

$$
C=\frac{1}{n} \sum_{v \in G} c_{v},
$$

where n is the number of nodes in G.
Similar measures for the two bipartite sets can be defined [R143]

$$
C_{X}=\frac{1}{|X|} \sum_{v \in X} c_{v},
$$

where X is a bipartite set of G.
Parameters G: graph
a bipartite graph
nodes : list or iterable, optional
A container of nodes to use in computing the average. The nodes should be either the entire graph (the default) or one of the bipartite sets.
mode : string
The pariwise bipartite clustering method. It must be "dot", "max", or "min"
Returns clustering : float
The average bipartite clustering for the given set of nodes or the entire graph if no nodes are specified.

See also:

clustering

Notes

The container of nodes passed to this function must contain all of the nodes in one of the bipartite sets ("top" or "bottom") in order to compute the correct average bipartite clustering coefficients.

References

Examples

```
>>> from networkx.algorithms import bipartite
>>> G=nx.star_graph(3) # star graphs are bipartite
>>> bipartite.average_clustering(G)
0.75
>>> X,Y=bipartite.sets(G)
>>> bipartite.average_clustering(G,X)
0.0
>>> bipartite.average_clustering(G,Y)
1.0
```


latapy_clustering

latapy_clustering (G, nodes=None, mode='dot')
Compute a bipartite clustering coefficient for nodes.
The bipartie clustering coefficient is a measure of local density of connections defined as [R145]:

$$
c_{u}=\frac{\sum_{v \in N(N(v))} c_{u v}}{|N(N(u))|}
$$

where $N(N(u))$ are the second order neighbors of u in G excluding u, and $c_{u v}$ is the pairwise clustering coefficient between nodes u and v.

The mode selects the function for $c_{u v}$ which can be:
dot:

$$
c_{u v}=\frac{|N(u) \cap N(v)|}{|N(u) \cup N(v)|}
$$

min:

$$
c_{u v}=\frac{|N(u) \cap N(v)|}{\min (|N(u)|,|N(v)|)}
$$

$\max :$

$$
c_{u v}=\frac{|N(u) \cap N(v)|}{\max (|N(u)|,|N(v)|)}
$$

Parameters G: graph
A bipartite graph
nodes : list or iterable (optional)

Compute bipartite clustering for these nodes. The default is all nodes in G.
mode : string
The pariwise bipartite clustering method to be used in the computation. It must be "dot", "max", or "min".

Returns clustering : dictionary
A dictionary keyed by node with the clustering coefficient value.

See also:

```
robins_alexander_clustering, square_clustering, average_clustering
```


References

[R145]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4) \# path graphs are bipartite
>>> c = bipartite.clustering(G)
>>> c[0]
0.5
>>> c = bipartite.clustering(G,mode='min')
>>> c[0]
1.0
robins_alexander_clustering
robins_alexander_clustering (G)
Compute the bipartite clustering of G.
Robins and Alexander [R146] defined bipartite clustering coefficient as four times the number of four cycles C_{4} divided by the number of three paths L_{3} in a bipartite graph:

$$
C C_{4}=\frac{4 * C_{4}}{L_{3}}
$$

Parameters G:graph a bipartite graph
Returns clustering : float
The Robins and Alexander bipartite clustering for the input graph.
See also:
latapy_clustering, square_clustering

References
[R146]

Examples

```
>>> from networkx.algorithms import bipartite
>>> G = nx.davis_southern_women_graph()
>>> print(round(bipartite.robins_alexander_clustering(G), 3))
0.468
```


4.3.5 Redundancy

Node redundancy for bipartite graphs.

$$
\text { node_redundancy }(G[, \text { nodes }]) \quad \text { Compute bipartite node redundancy coefficient. }
$$

```
node_redundancy
```

node_redundancy (G, nodes=None)

Compute bipartite node redundancy coefficient.
The redundancy coefficient of a node v is the fraction of pairs of neighbors of v that are both linked to other nodes. In a one-mode projection these nodes would be linked together even if v were not there.

$$
r c(v)=\frac{\mid\left\{\{u, w\} \subseteq N(v), \exists v^{\prime} \neq v,\left(v^{\prime}, u\right) \in E \text { and }\left(v^{\prime}, w\right) \in E\right\} \mid}{\frac{|N(v)|(|N(v)|-1)}{2}}
$$

where $N(v)$ are the neighbors of v in G.
Parameters G:graph
A bipartite graph
nodes : list or iterable (optional)
Compute redundancy for these nodes. The default is all nodes in G .
Returns redundancy : dictionary
A dictionary keyed by node with the node redundancy value.

References

[R150]

Examples

>>> from networkx.algorithms import bipartite
>>> G = nx.cycle_graph (4)
\ggg rc $=$ bipartite.node_redundancy (G)
$\ggg \operatorname{rc}[0]$
1.0

Compute the average redundancy for the graph:
>>> sum(rc.values())/len(G)
1.0

Compute the average redundancy for a set of nodes:

```
>>> nodes = [0, 2]
>>> sum(rc[n] for n in nodes)/len(nodes)
1.0
```


4.3.6 Centrality

closeness_centrality(G, nodes[, normalized])	Compute the closeness centrality for nodes in a bipartite network.
degree_centrality(G, nodes)	Compute the degree centrality for nodes in a bipartite network.
betweenness_centrality $(G$, nodes $)$	Compute betweenness centrality for nodes in a bipartite network.

closeness_centrality
closeness_centrality (G, nodes, normalized=True)
Compute the closeness centrality for nodes in a bipartite network.
The closeness of a node is the distance to all other nodes in the graph or in the case that the graph is not connected to all other nodes in the connected component containing that node.

Parameters G: graph

A bipartite network
nodes : list or container
Container with all nodes in one bipartite node set.
normalized : bool, optional
If True (default) normalize by connected component size.
Returns closeness : dictionary
Dictionary keyed by node with bipartite closeness centrality as the value.

See also:

betweenness_centrality, degree_centrality, sets, is_bipartite

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets.

Closeness centrality is normalized by the minimum distance possible. In the bipartite case the minimum distance for a node in one bipartite node set is 1 from all nodes in the other node set and 2 from all other nodes in its own set [R141]. Thus the closeness centrality for node v in the two bipartite sets U with n nodes and V with m nodes is

$$
\begin{aligned}
& c_{v}=\frac{m+2(n-1)}{d}, \text { for } v \in U, \\
& c_{v}=\frac{n+2(m-1)}{d}, \text { for } v \in V
\end{aligned}
$$

where d is the sum of the distances from v to all other nodes.
Higher values of closeness indicate higher centrality.

As in the unipartite case, setting normalized=True causes the values to normalized further to $\mathrm{n}-1 / \operatorname{size}(\mathrm{G})-1$ where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately.

References

[R141]

degree_centrality

degree_centrality (G, nodes)

Compute the degree centrality for nodes in a bipartite network.
The degree centrality for a node v is the fraction of nodes connected to it.
Parameters G:graph
A bipartite network
nodes : list or container
Container with all nodes in one bipartite node set.
Returns centrality: dictionary
Dictionary keyed by node with bipartite degree centrality as the value.

See also:

betweenness_centrality, closeness_centrality, sets, is_bipartite

Notes

The nodes input parameter must conatin all nodes in one bipartite node set, but the dictionary returned contains all nodes from both bipartite node sets.

For unipartite networks, the degree centrality values are normalized by dividing by the maximum possible degree (which is $n-1$ where n is the number of nodes in G).

In the bipartite case, the maximum possible degree of a node in a bipartite node set is the number of nodes in the opposite node set [R142]. The degree centrality for a node v in the bipartite sets U with n nodes and V with m nodes is

$$
\begin{aligned}
& d_{v}=\frac{\operatorname{deg}(v)}{m}, \text { for } v \in U, \\
& d_{v}=\frac{d e g(v)}{n}, \text { for } v \in V
\end{aligned}
$$

where $\operatorname{deg}(v)$ is the degree of node v.

References

[R142]

betweenness_centrality

betweenness_centrality (G, nodes)

Compute betweenness centrality for nodes in a bipartite network.
Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v.
Values of betweenness are normalized by the maximum possible value which for bipartite graphs is limited by the relative size of the two node sets [R140].

Let n be the number of nodes in the node set U and m be the number of nodes in the node set V, then nodes in U are normalized by dividing by

$$
\frac{1}{2}\left[m^{2}(s+1)^{2}+m(s+1)(2 t-s-1)-t(2 s-t+3)\right]
$$

where

$$
s=(n-1) \div m, t=(n-1) \quad \bmod m,
$$

and nodes in V are normalized by dividing by

$$
\frac{1}{2}\left[n^{2}(p+1)^{2}+n(p+1)(2 r-p-1)-r(2 p-r+3)\right],
$$

where,

$$
p=(m-1) \div n, r=(m-1) \quad \bmod n .
$$

Parameters G: graph
A bipartite graph
nodes : list or container
Container with all nodes in one bipartite node set.
Returns betweenness : dictionary
Dictionary keyed by node with bipartite betweenness centrality as the value.

See also:

```
    degree_centrality,closeness_centrality,sets,is_bipartite
```


Notes

The nodes input parameter must contain all nodes in one bipartite node set, but the dictionary returned contains all nodes from both node sets.

References

[R140]

4.4 Blockmodeling

Functions for creating network blockmodels from node partitions.
Created by Drew Conway <drew.conway @ nyu.edu> Copyright (c) 2010. All rights reserved.

4.4.1 blockmodel

blockmodel (G, partitions, multigraph=False)

Returns a reduced graph constructed using the generalized block modeling technique.
The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each partition of nodes (block) is represented as a single node in the reduced graph.
Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights between nodes in the original graph The default is a weight of 1 if weights are not specified. If the parameter multigraph is True then multiple edges are added each with the edge data from the original graph.

Parameters G:graph
A networkx Graph or DiGraph
partitions : list of lists, or list of sets
The partition of the nodes. Must be non-overlapping.
multigraph : bool, optional
If True return a MultiGraph with the edge data of the original graph applied to each corresponding edge in the new graph. If False return a Graph with the sum of the edge weights, or a count of the edges if the original graph is unweighted.
Returns blockmodel : a Networkx graph object

References

[R152]

Examples

>>> G=nx.path_graph (6)
\ggg partition $=[[0,1],[2,3],[4,5]]$
>>> M=nx.blockmodel(G,partition)

4.5 Boundary

Routines to find the boundary of a set of nodes.
Edge boundaries are edges that have only one end in the set of nodes.
Node boundaries are nodes outside the set of nodes that have an edge to a node in the set.

> | edge_boundary(G, nbunch1[, nbunch2]) | Return the edge boundary. |
| :--- | :--- |
| node_boundary(G, nbunch1[, nbunch2]) | Return the node boundary. |

4.5.1 edge_boundary

edge_boundary (G, nbunch1, nbunch2=None)
Return the edge boundary.
Edge boundaries are edges that have only one end in the given set of nodes.
Parameters G: graph
A networkx graph
nbunch1 : list, container
Interior node set
nbunch2 : list, container
Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.

Returns elist : list

List of edges

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.
nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.

4.5.2 node_boundary

node_boundary (G, nbunch1, nbunch2=None)
Return the node boundary.
The node boundary is all nodes in the edge boundary of a given set of nodes that are in the set.

Parameters G:graph

A networkx graph
nbunch1 : list, container
Interior node set
nbunch2 : list, container
Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.

Returns nlist : list

List of nodes.

Notes

Nodes in nbunch1 and nbunch2 that are not in G are ignored.
nbunch1 and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not required here.

4.6 Centrality

4.6.1 Degree

degree_centrality (\mathbf{G})	Compute the degree centrality for nodes.
in_degree_centrality (\mathbf{G})	Compute the in-degree centrality for nodes.
out_degree_centrality (\mathbf{G})	Compute the out-degree centrality for nodes.

degree_centrality

degree_centrality (G)
Compute the degree centrality for nodes.
The degree centrality for a node v is the fraction of nodes it is connected to.
Parameters G:graph
A networkx graph
Returns nodes: dictionary
Dictionary of nodes with degree centrality as the value.

See also:

betweenness_centrality, load_centrality, eigenvector_centrality

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph $\mathrm{n}-1$ where n is the number of nodes in G .

For multigraphs or graphs with self loops the maximum degree might be higher than $\mathrm{n}-1$ and values of degree centrality greater than 1 are possible.
in_degree_centrality
in_degree_centrality (G)
Compute the in-degree centrality for nodes.
The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.
Parameters G: graph
A NetworkX graph
Returns nodes: dictionary
Dictionary of nodes with in-degree centrality as values.

See also:

```
    degree_centrality,out_degree_centrality
```


Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph $\mathrm{n}-1$ where n is the number of nodes in G .

For multigraphs or graphs with self loops the maximum degree might be higher than $\mathrm{n}-1$ and values of degree centrality greater than 1 are possible.

```
out_degree_centrality
```

out_degree_centrality (G)

Compute the out-degree centrality for nodes.
The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.
Parameters G:graph
A NetworkX graph
Returns nodes: dictionary
Dictionary of nodes with out-degree centrality as values.

See also:

```
degree_centrality, in_degree_centrality
```


Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph $\mathrm{n}-1$ where n is the number of nodes in G .

For multigraphs or graphs with self loops the maximum degree might be higher than $n-1$ and values of degree centrality greater than 1 are possible.

4.6.2 Closeness

$$
\text { closeness_centrality }(\mathrm{G}[, \mathrm{u}, \text { distance, ...]) } \quad \text { Compute closeness centrality for nodes. }
$$

```
closeness_centrality
```

closeness_centrality ($G, u=$ None, distance=None, normalized $=$ True)

Compute closeness centrality for nodes.
Closeness centrality [R157] of a node u is the reciprocal of the sum of the shortest path distances from u to all $n-1$ other nodes. Since the sum of distances depends on the number of nodes in the graph, closeness is normalized by the sum of minimum possible distances $n-1$.

$$
C(u)=\frac{n-1}{\sum_{v=1}^{n} d(v, u)}
$$

where $d(v, u)$ is the shortest-path distance between v and u, and n is the number of nodes in the graph.
Notice that higher values of closeness indicate higher centrality.
Parameters G:graph

A NetworkX graph
u : node, optional
Return only the value for node u
distance : edge attribute key, optional (default=None)
Use the specified edge attribute as the edge distance in shortest path calculations
normalized : bool, optional
If True (default) normalize by the number of nodes in the connected part of the graph.
Returns nodes : dictionary
Dictionary of nodes with closeness centrality as the value.

See also:

```
betweenness_centrality, load_centrality, eigenvector_centrality,
degree_centrality
```


Notes

The closeness centrality is normalized to $(n-1) /(|G|-1)$ where n is the number of nodes in the connected part of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness centrality for each connected part separately.

If the 'distance' keyword is set to an edge attribute key then the shortest-path length will be computed using Dijkstra's algorithm with that edge attribute as the edge weight.

References

[R157]

4.6.3 Betweenness

```
betweenness_centrality( \(\mathrm{G}[, \mathrm{k}\), normalized, ...]) Compute the shortest-path betweenness centrality for nodes.
edge_betweenness_centrality(G[, normalized, ...]) Compute betweenness centrality for edges.
```


betweenness_centrality

betweenness_centrality ($G, k=$ None, normalized $=$ True, weight=None, endpoints $=$ False, seed $=$ None)
Compute the shortest-path betweenness centrality for nodes.
Betweenness centrality of a node v is the sum of the fraction of all-pairs shortest paths that pass through v :

$$
c_{B}(v)=\sum_{s, t \in V} \frac{\sigma(s, t \mid v)}{\sigma(s, t)}
$$

where V is the set of nodes, $\sigma(s, t)$ is the number of shortest (s, t)-paths, and $\sigma(s, t \mid v)$ is the number of those paths passing through some node v other than s, t. If $s=t, \sigma(s, t)=1$, and if $v \in s, t, \sigma(s, t \mid v)=0$ [R155].

Parameters G:graph
A NetworkX graph
\mathbf{k} : int, optional (default=None)
If k is not None use k node samples to estimate betweenness. The value of $\mathrm{k}<=\mathrm{n}$ where n is the number of nodes in the graph. Higher values give better approximation.
normalized : bool, optional
If True the betweenness values are normalized by $2 /((n-1)(n-2))$ for graphs, and $1 /((n-1)(n-2))$ for directed graphs where n is the number of nodes in G.
weight : None or string, optional
If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.
endpoints : bool, optional
If True include the endpoints in the shortest path counts.
Returns nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.

See also:

```
edge_betweenness_centrality,load_centrality
```


Notes

The algorithm is from Ulrik Brandes [R154]. See [R155] for details on algorithms for variations and related metrics.

For approximate betweenness calculations set $\mathrm{k}=\#$ samples to use k nodes ("pivots") to estimate the betweenness values. For an estimate of the number of pivots needed see [R156].

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes.

References

[R154], [R155], [R156]
edge_betweenness_centrality
edge_betweenness_centrality (G, normalized=True, weight=None)
Compute betweenness centrality for edges.
Betweenness centrality of an edge e is the sum of the fraction of all-pairs shortest paths that pass through e :

$$
c_{B}(v)=\sum_{s, t \in V} \frac{\sigma(s, t \mid e)}{\sigma(s, t)}
$$

where V is the set of nodes, 'sigma(s, t$)^{\text {' }}$ is the number of shortest (s, t)-paths, and $\sigma(s, t \mid e)$ is the number of those paths passing through edge e [R171].

Parameters G:graph
A NetworkX graph
normalized : bool, optional

If True the betweenness values are normalized by $2 /(n(n-1))$ for graphs, and $1 /(n(n-$ $1)$) for directed graphs where n is the number of nodes in G.
weight : None or string, optional
If None, all edge weights are considered equal. Otherwise holds the name of the edge attribute used as weight.

Returns edges: dictionary
Dictionary of edges with betweenness centrality as the value.

See also:

betweenness_centrality, edge_load

Notes

The algorithm is from Ulrik Brandes [R170].
For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite number of equal length paths between pairs of nodes.

References

[R170], [R171]

4.6.4 Current Flow Closeness

```
current_flow_closeness_centrality
```

current_flow_closeness_centrality (G, normalized=True, weight='weight', dtype=<type
'float'>, solver='lu')

Compute current-flow closeness centrality for nodes.
A variant of closeness centrality based on effective resistance between nodes in a network. This metric is also known as information centrality.

Parameters G:graph
A NetworkX graph
normalized : bool, optional
If True the values are normalized by $1 /(\mathrm{n}-1)$ where n is the number of nodes in G .
dtype: data type (float) :
Default data type for internal matrices. Set to np.float32 for lower memory consumption.
solver: string (default='lu') :
Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

Returns nodes: dictionary
Dictionary of nodes with current flow closeness centrality as the value.

See also:

closeness_centrality

Notes

The algorithm is from Brandes [R168].
See also [R169] for the original definition of information centrality.

References

[R168], [R169]

4.6.5 Current-Flow Betweenness

current_flow_betweenness_centrality $(G[, \ldots])$	Compute current-flow betweenness centrality for nodes.
edge_current_flow_betweenness_centrality (G)	Compute current-flow betweenness centrality for edges.
approximate_current_flow_betweenness_centrality (G)	Compute the approximate current-flow betweenness cent

current_flow_betweenness_centrality

current_flow_betweenness_centrality (G, normalized=True, weight='weight', dtype $=<$ type 'float'>, solver='full')
Compute current-flow betweenness centrality for nodes.
Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality [R167].
Parameters G:graph
A NetworkX graph
normalized : bool, optional (default=True)
If True the betweenness values are normalized by $2 /[(n-1)(n-2)]$ where n is the number of nodes in G.
weight : string or None, optional (default='weight')
Key for edge data used as the edge weight. If None, then use 1 as each edge weight.

dtype: data type (float) :

Default data type for internal matrices. Set to np.float32 for lower memory consumption.
solver: string (default='lu') :
Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

Returns nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.

See also:

```
approximate_current_flow_betweenness_centrality, betweenness_centrality,
edge_betweenness_centrality, edge_current_flow_betweenness_centrality
```


Notes

Current-flow betweenness can be computed in $O(I(n-1)+m n \log n)$ time [R166], where $I(n-1)$ is the time needed to compute the inverse Laplacian. For a full matrix this is $O\left(n^{3}\right)$ but using sparse methods you can achieve $O(n m \sqrt{k})$ where k is the Laplacian matrix condition number.

The space required is $O(n w) w h e r e^{6} w$ is the width of the sparse Laplacian matrix. Worse case is $w=n$ for $O\left(n^{2}\right)$.

If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1 .

References

[R166], [R167]
edge_current_flow_betweenness_centrality
edge_current_flow_betweenness_centrality(G, normalized=True, weight='weight', dtype=<type 'float'>, solver='full')
Compute current-flow betweenness centrality for edges.
Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality [R173].
Parameters G:graph
A NetworkX graph
normalized : bool, optional (default=True)
If True the betweenness values are normalized by $2 /[(n-1)(n-2)]$ where n is the number of nodes in G.
weight : string or None, optional (default='weight')
Key for edge data used as the edge weight. If None, then use 1 as each edge weight.
dtype: data type (float) :
Default data type for internal matrices. Set to np.float 32 for lower memory consumption.
solver: string (default='lu') :
Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

Returns nodes: dictionary

Dictionary of edge tuples with betweenness centrality as the value.

See also:

```
betweenness_centrality,edge_betweenness_centrality, current_flow_betweenness_centrality
```


Notes

Current-flow betweenness can be computed in $O(I(n-1)+m n \log n)$ time [R172], where $I(n-1)$ is the time needed to compute the inverse Laplacian. For a full matrix this is $O\left(n^{3}\right)$ but using sparse methods you can achieve $O(n m \sqrt{k})$ where k is the Laplacian matrix condition number.

The space required is $O(n w) w h e r e^{\text {t }} w$ is the width of the sparse Laplacian matrix. Worse case is $w=n$ for $O\left(n^{2}\right)$.

If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1 .

References

[R172], [R173]

approximate_current_flow_betweenness_centrality

approximate_current_flow_betweenness_centrality (G, normalized=True, weight='weight', dtype $=$ <type 'float'>, solver='full', epsilon $=0.5, k m a x=10000$)
Compute the approximate current-flow betweenness centrality for nodes.
Approximates the current-flow betweenness centrality within absolute error of epsilon with high probability [R153].

Parameters G:graph
A NetworkX graph
normalized : bool, optional (default=True)
If True the betweenness values are normalized by $2 /[(n-1)(n-2)]$ where n is the number of nodes in G.
weight : string or None, optional (default='weight')
Key for edge data used as the edge weight. If None, then use 1 as each edge weight.

dtype: data type (float) :

Default data type for internal matrices. Set to np.float32 for lower memory consumption.
solver: string (default='lu') :
Type of linear solver to use for computing the flow matrix. Options are "full" (uses most memory), "lu" (recommended), and "cg" (uses least memory).

epsilon: float :

Absolute error tolerance.
kmax: int :

Maximum number of sample node pairs to use for approximation.
Returns nodes: dictionary
Dictionary of nodes with betweenness centrality as the value.

See also:

```
current_flow_betweenness_centrality
```


Notes

The running time is $O\left(\left(1 / \epsilon^{2}\right) m \sqrt{k} \log n\right)$ and the space required is $O(m)$ for n nodes and m edges.
If the edges have a 'weight' attribute they will be used as weights in this algorithm. Unspecified weights are set to 1 .

References

[R153]

4.6.6 Eigenvector

eigenvector_centrality(G[, max_iter, tol, ...] $)$	Compute the eigenvector centrality for the graph G.
eigenvector_centrality_numpy(G)	Compute the eigenvector centrality for the graph G.
katz_centrality(G[, alpha, beta, max_iter,...$])$	Compute the Katz centrality for the nodes of the graph G.
katz_centrality_numpy(G[, alpha, beta,..$])$	Compute the Katz centrality for the graph G.

eigenvector_centrality
eigenvector_centrality (G, max_iter=100, tol=1e-06, nstart=None)
Compute the eigenvector centrality for the graph G .
Uses the power method to find the eigenvector for the largest eigenvalue of the adjacency matrix of G.
Parameters G: graph
A networkx graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of eigenvector iteration for each node.
Returns nodes: dictionary
Dictionary of nodes with eigenvector centrality as the value.

See also:

eigenvector_centrality_numpy, pagerank, hits

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes $(\mathrm{G}) *$ tol has been reached.

For directed graphs this is "right" eigevector centrality. For "left" eigenvector centrality, first reverse the graph with G.reverse().

Examples

>>> G=nx.path_graph (4)
>>> centrality=nx.eigenvector_centrality (G)
>>> print([' \%s \% 0.2f' (node, centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

eigenvector_centrality_numpy

eigenvector_centrality_numpy (G)
Compute the eigenvector centrality for the graph G.
Parameters G: graph
A networkx graph
Returns nodes : dictionary
Dictionary of nodes with eigenvector centrality as the value.

See also:

```
eigenvector_centrality, pagerank,hits
```


Notes

This algorithm uses the NumPy eigenvalue solver.
For directed graphs this is "right" eigevector centrality. For "left" eigenvector centrality, first reverse the graph with G.reverse().

Examples

```
>>> G=nx.path_graph(4)
```

>>> centrality=nx.eigenvector_centrality_numpy (G)
>>> print(['\%S \%0.2f'\%(node, centrality[node]) for node in centrality])
['0 0.37', '1 0.60', '2 0.60', '3 0.37']

```
katz_centrality
```

katz_centrality (G, alpha=0.1, beta $=1.0$, max_iter $=1000$, tol $=1 e-06$, nstart $=$ None, normalized $=$ True)

Compute the Katz centrality for the nodes of the graph G.

Katz centrality is related to eigenvalue centrality and PageRank. The Katz centrality for node i is

$$
x_{i}=\alpha \sum_{j} A_{i j} x_{j}+\beta,
$$

where A is the adjacency matrix of the graph G with eigenvalues λ.
The parameter β controls the initial centrality and

$$
\alpha<\frac{1}{\lambda_{\max }} .
$$

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter β. Connections made with distant neighbors are, however, penalized by an attenuation factor α which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in [R175].

Parameters G: graph

A NetworkX graph
alpha : float
Attenuation factor
beta : scalar or dictionary, optional (default=1.0)
Weight attributed to the immediate neighborhood. If not a scalar the dictionary must have an value for every node.
max_iter : integer, optional (default=1000)
Maximum number of iterations in power method.
tol : float, optional (default=1.0e-6)
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of Katz iteration for each node.
normalized : bool, optional (default=True)
If True normalize the resulting values.
Returns nodes: dictionary
Dictionary of nodes with Katz centrality as the value.

See also:

katz_centrality_numpy, eigenvector_centrality, eigenvector_centrality_numpy, pagerank, hits

Notes

This algorithm it uses the power method to find the eigenvector corresponding to the largest eigenvalue of the adjacency matrix of G. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for the algorithm to converge. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

When $\alpha=1 / \lambda_{\max }$ and $\beta=1 \mathrm{Katz}$ centrality is the same as eigenvector centrality.

References

[R175]

Examples

>>> import math
>>> G = nx.path_graph (4)
>>> phi $=(1+$ math.sqrt(5))/2.0 \# largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality(G,1/phi-0.01)
>>> for n, c in sorted(centrality.items()):
... print (" $\%$ d $\% 0.2 f " \%(n, c))$
00.37
10.60
20.60
30.37

katz_centrality_numpy

```
katz_centrality_numpy (G, alpha=0.1, beta=1.0, normalized=True)
```

Compute the Katz centrality for the graph G.
Katz centrality is related to eigenvalue centrality and PageRank. The Katz centrality for node i is

$$
x_{i}=\alpha \sum_{j} A_{i j} x_{j}+\beta
$$

where A is the adjacency matrix of the graph G with eigenvalues λ.
The parameter β controls the initial centrality and

$$
\alpha<\frac{1}{\lambda_{\max }} .
$$

Katz centrality computes the relative influence of a node within a network by measuring the number of the immediate neighbors (first degree nodes) and also all other nodes in the network that connect to the node under consideration through these immediate neighbors.

Extra weight can be provided to immediate neighbors through the parameter β. Connections made with distant neighbors are, however, penalized by an attenuation factor α which should be strictly less than the inverse largest eigenvalue of the adjacency matrix in order for the Katz centrality to be computed correctly. More information is provided in [R176] .

Parameters G:graph

A NetworkX graph
alpha: float
Attenuation factor
beta : scalar or dictionary, optional (default=1.0)
Weight attributed to the immediate neighborhood. If not a scalar the dictionary must have an value for every node.

normalized : bool

If True normalize the resulting values.
Returns nodes : dictionary
Dictionary of nodes with Katz centrality as the value.

See also:

```
katz_centrality, eigenvector_centrality_numpy, eigenvector_centrality,
pagerank,hits
```


Notes

This algorithm uses a direct linear solver to solve the above equation. The constant alpha should be strictly less than the inverse of largest eigenvalue of the adjacency matrix for there to be a solution. When $\alpha=1 / \lambda_{\max }$ and $\beta=1$ Katz centrality is the same as eigenvector centrality.

References

[R176]

Examples

```
>>> import math
>>> G = nx.path_graph(4)
>>> phi = (1+math.sqrt(5))/2.0 # largest eigenvalue of adj matrix
>>> centrality = nx.katz_centrality_numpy(G,1/phi)
>>> for n,c in sorted(centrality.items()):
... print("%d %0.2f"%(n,c))
0 0.37
10.60
2 0.60
30.37
```


4.6.7 Communicability

communicability (G)	Return communicability between all pairs of nodes in G.
communicability_exp(G)	Return communicability between all pairs of nodes in G.
communicability_centrality (\mathbf{G})	Return communicability centrality for each node in G.
communicability_centrality_exp(G)	Return the communicability centrality for each node of G
communicability_betweenness_centrality $(\mathrm{G}[, \ldots])$	Return communicability betweenness for all pairs of nodes in G.
estrada_index (G)	Return the Estrada index of a the graph G.

communicability

communicability (G)

Return communicability between all pairs of nodes in G.
The communicability between pairs of nodes in G is the sum of closed walks of different lengths starting at node u and ending at node v .

Parameters G: graph :

Returns comm: dictionary of dictionaries :
Dictionary of dictionaries keyed by nodes with communicability as the value.
Raises NetworkXError:
If the graph is not undirected and simple.

See also:

communicability_centrality_exp Communicability centrality for each node of G using matrix exponential.
communicability_centrality Communicability centrality for each node in G using spectral decomposition.
communicability Communicability between pairs of nodes in G.

Notes

This algorithm uses a spectral decomposition of the adjacency matrix. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v based on the graph spectrum is [R158]

$$
C(u, v)=\sum_{j=1}^{n} \phi_{j}(u) \phi_{j}(v) e^{\lambda_{j}}
$$

where $\phi_{j}(u)$ is the u th element of the j th orthonormal eigenvector of the adjacency matrix associated with the eigenvalue λ_{j}.

References

[R158]

Examples

```
>>> G = nx.Graph ([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> c = nx.communicability(G)
```

communicability_exp
communicability_exp (G)
Return communicability between all pairs of nodes in G.
Communicability between pair of node (u, v) of node in G is the sum of closed walks of different lengths starting at node u and ending at node v.

Parameters G: graph :

Returns comm: dictionary of dictionaries :

Dictionary of dictionaries keyed by nodes with communicability as the value.

Raises NetworkXError :

If the graph is not undirected and simple.

See also:

communicability_centrality_exp Communicability centrality for each node of G using matrix exponential.
communicability_centrality Communicability centrality for each node in G using spectral decomposition.
communicability_exp Communicability between all pairs of nodes in G using spectral decomposition.

Notes

This algorithm uses matrix exponentiation of the adjacency matrix.
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a simple undirected graph. Using the connection between the powers of the adjacency matrix and the number of walks in the graph, the communicability between nodes u and v is [R165],

$$
C(u, v)=\left(e^{A}\right)_{u v},
$$

where A is the adjacency matrix of G .

References

[R165]

Examples

>>> $G=n x . \operatorname{Graph}([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])$
>>> c = nx.communicability_exp(G)

communicability_centrality

communicability_centrality (G)

Return communicability centrality for each node in G.
Communicability centrality, also called subgraph centrality, of a node n is the sum of closed walks of all lengths starting and ending at node n.

Parameters G: graph :
Returns nodes: dictionary :
Dictionary of nodes with communicability centrality as the value.

Raises NetworkXError :

If the graph is not undirected and simple.

See also:

communicability Communicability between all pairs of nodes in G .
communicability_centrality Communicability centrality for each node of G.

Notes

This version of the algorithm computes eigenvalues and eigenvectors of the adjacency matrix.
Communicability centrality of a node u in G can be found using a spectral decomposition of the adjacency matrix [R161] [R162],

$$
S C(u)=\sum_{j=1}^{N}\left(v_{j}^{u}\right)^{2} e^{\lambda_{j}}
$$

where v_{j} is an eigenvector of the adjacency matrix A of G corresponding corresponding to the eigenvalue λ_{j}.

References

[R161], [R162]

Examples

```
>>> G = nx.Graph ([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> sc = nx.communicability_centrality(G)
```


communicability_centrality_exp

communicability_centrality_exp (G)

Return the communicability centrality for each node of G
Communicability centrality, also called subgraph centrality, of a node n is the sum of closed walks of all lengths starting and ending at node n.

Parameters G: graph :

Returns nodes:dictionary :

Dictionary of nodes with communicability centrality as the value.

Raises NetworkXError:

If the graph is not undirected and simple.

See also:

communicability Communicability between all pairs of nodes in G .
communicability_centrality Communicability centrality for each node of G.

Notes

This version of the algorithm exponentiates the adjacency matrix. The communicability centrality of a node u in G can be found using the matrix exponential of the adjacency matrix of G [R163] [R164],

$$
S C(u)=\left(e^{A}\right)_{u u}
$$

References

[R163], [R164]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
```

>>> sc = nx.communicability_centrality_exp(G)
communicability_betweenness_centrality
communicability_betweenness_centrality (G, normalized=True)
Return communicability betweenness for all pairs of nodes in G.
Communicability betweenness measure makes use of the number of walks connecting every pair of nodes as the basis of a betweenness centrality measure.

Parameters G: graph

Returns nodes:dictionary :

Dictionary of nodes with communicability betweenness as the value.

Raises NetworkXError :

If the graph is not undirected and simple.

See also:

communicability Communicability between all pairs of nodes in G .
communicability_centrality Communicability centrality for each node of G using matrix exponential.
communicability_centrality_exp Communicability centrality for each node in G using spectral decomposition.

Notes

Let $G=(V, E)$ be a simple undirected graph with n nodes and m edges, and A denote the adjacency matrix of G.

Let $G(r)=(V, E(r))$ be the graph resulting from removing all edges connected to node r but not the node itself.

The adjacency matrix for $G(r)$ is $A+E(r)$, where $E(r)$ has nonzeros only in row and column r.
The communicability betweenness of a node r is [R160]

$$
\omega_{r}=\frac{1}{C} \sum_{p} \sum_{q} \frac{G_{p r q}}{G_{p q}}, p \neq q, q \neq r,
$$

where $G_{p r q}=\left(e_{p q}^{A}-\left(e^{A+E(r)}\right)_{p q}\right.$ is the number of walks involving node $\mathrm{r}, G_{p q}=\left(e^{A}\right)_{p q}$ is the number of closed walks starting at node p and ending at node q, and $C=(n-1)^{2}-(n-1)$ is a normalization factor equal to the number of terms in the sum.

The resulting ω_{r} takes values between zero and one. The lower bound cannot be attained for a connected graph, and the upper bound is attained in the star graph.

References

[R160]

Examples

```
>>> G = nx.Graph([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])
>>> cbc = nx.communicability_betweenness_centrality(G)
```


estrada_index

```
estrada_index(G)
```

Return the Estrada index of a the graph G.

Parameters G: graph :

Returns estrada index: float :

Raises NetworkXError :

If the graph is not undirected and simple.

See also:

```
estrada_index_exp
```


Notes

Let $G=(V, E)$ be a simple undirected graph with n nodes and let $\lambda_{1} \leq \lambda_{2} \leq \cdots \lambda_{n}$ be a non-increasing ordering of the eigenvalues of its adjacency matrix A. The Estrada index is

$$
E E(G)=\sum_{j=1}^{n} e^{\lambda_{j}}
$$

References

[R174]

Examples

>>> $G=n x . \operatorname{Graph}([(0,1),(1,2),(1,5),(5,4),(2,4),(2,3),(4,3),(3,6)])$
>>> ei=nx.estrada_index(G)

4.6.8 Load

load_centrality(G[, v, cutoff, normalized, ...])	Compute load centrality for nodes.
edge_load(G[, nodes, cutoff])	Compute edge load.

load_centrality
load_centrality ($G, v=$ None, cutoff=None, normalized=True, weight=None)
Compute load centrality for nodes.
The load centrality of a node is the fraction of all shortest paths that pass through that node.
Parameters G:graph
A networkx graph
normalized : bool, optional
If True the betweenness values are normalized by $b=b /(n-1)(n-2)$ where n is the number of nodes in G.
weight : None or string, optional
If None, edge weights are ignored. Otherwise holds the name of the edge attribute used as weight.
cutoff : bool, optional
If specified, only consider paths of length $<=$ cutoff.
Returns nodes: dictionary
Dictionary of nodes with centrality as the value.

See also:

betweenness_centrality

Notes

Load centrality is slightly different than betweenness. For this load algorithm see the reference Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).

```
edge_load
edge_load (G, nodes=None, cutoff=False)
    Compute edge load.
    WARNING:
```

This module is for demonstration and testing purposes.

4.7 Chordal

Algorithms for chordal graphs.
A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle). http://en.wikipedia.org/wiki/Chordal_graph

is_chordal(G)	Checks whether G is a chordal graph.
chordal_graph_cliques(G)	Returns the set of maximal cliques of a chordal graph.
chordal_graph_treewidth(G)	Returns the treewidth of the chordal graph G.
find_induced_nodes(G, s, t[, treewidth_bound $])$	Returns the set of induced nodes in the path from s to t.

4.7.1 is_chordal

```
is_chordal(G)
```

Checks whether G is a chordal graph.
A graph is chordal if every cycle of length at least 4 has a chord (an edge joining two nodes not adjacent in the cycle).

Parameters G:graph

A NetworkX graph.
Returns chordal : bool
True if G is a chordal graph and False otherwise.

Raises NetworkXError :

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised.

Notes

The routine tries to go through every node following maximum cardinality search. It returns False when it finds that the separator for any node is not a clique. Based on the algorithms in [R179].

References

[R179]

Examples

>>> import networkx as nx
>>> $e=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)]$
>>> G=nx.Graph (e)
>>> nx.is_chordal(G)
True

4.7.2 chordal_graph_cliques

```
chordal_graph_cliques(G)
```

Returns the set of maximal cliques of a chordal graph.
The algorithm breaks the graph in connected components and performs a maximum cardinality search in each component to get the cliques.

Parameters G:graph

A NetworkX graph

Returns cliques: A set containing the maximal cliques in G.

Raises NetworkXError:

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Examples

```
>>> import networkx as nx
>>> e= [(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]
>>> G = nx.Graph(e)
>>> G.add_node (9)
>>> setlist = nx.chordal_graph_cliques(G)
```


4.7.3 chordal_graph_treewidth

chordal_graph_treewidth (G)

Returns the treewidth of the chordal graph G .
Parameters G: graph
A NetworkX graph
Returns treewidth: int
The size of the largest clique in the graph minus one.

Raises NetworkXError:

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

References

[R177]

Examples

>>> import networkx as nx
$\ggg=[(1,2),(1,3),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),(7,8)]$
$\ggg G=n x . G r a p h(e)$
>>> G.add_node (9)
>>> nx.chordal_graph_treewidth(G)
3

4.7.4 find_induced_nodes

find_induced_nodes (G, s, t, treewidth_bound=9223372036854775807)
Returns the set of induced nodes in the path from s to t.
Parameters G:graph
A chordal NetworkX graph
s: node
Source node to look for induced nodes
t: node
Destination node to look for induced nodes

treewith_bound: float :

Maximum treewidth acceptable for the graph H . The search for induced nodes will end as soon as the treewidth_bound is exceeded.

Returns I: Set of nodes
The set of induced nodes in the path from s to t in G

Raises NetworkXError :

The algorithm does not support DiGraph, MultiGraph and MultiDiGraph. If the input graph is an instance of one of these classes, a NetworkXError is raised. The algorithm can only be applied to chordal graphs. If the input graph is found to be non-chordal, a NetworkXError is raised.

Notes

G must be a chordal graph and (s, t) an edge that is not in G .
If a treewidth_bound is provided, the search for induced nodes will end as soon as the treewidth_bound is exceeded.

The algorithm is inspired by Algorithm 4 in [R178]. A formal definition of induced node can also be found on that reference.

References

[R178]

Examples

>>> import networkx as nx
>>> G=nx.Graph()
>>> G = nx.generators.classic.path_graph(10)
>>> I = nx.find_induced_nodes (G,1,9,2)
>>> list(I)
$[1,2,3,4,5,6,7,8,9]$

4.8 Clique

Find and manipulate cliques of graphs.
Note that finding the largest clique of a graph has been shown to be an NP-complete problem; the algorithms here could take a long time to run.
http://en.wikipedia.org/wiki/Clique_problem

find_cliques(G)	Search for all maximal cliques in a graph.
make_max_clique_graph(G[, create_using, name])	Create the maximal clique graph of a graph.
make_clique_bipartite(G[, fpos, ...])	Create a bipartite clique graph from a graph G.
graph_clique_number(G[, cliques])	Return the clique number (size of the largest clique) for G.
graph_number_of_cliques(G[, cliques])	Returns the number of maximal cliques in G.
node_clique_number(G[, nodes, cliques])	Returns the size of the largest maximal clique containing each given node
number_of_cliques(G[, nodes, cliques])	Returns the number of maximal cliques for each node.
cliques_containing_node(G[, nodes, cliques])	Returns a list of cliques containing the given node.

4.8.1 find_cliques

find_cliques (G)

Search for all maximal cliques in a graph.
Maximal cliques are the largest complete subgraph containing a given node. The largest maximal clique is sometimes called the maximum clique.

Returns generator of lists: genetor of member list for each maximal clique :

See also:

find_cliques_recursive, A

Notes

To obtain a list of cliques, use list(find_cliques(G)).
Based on the algorithm published by Bron \& Kerbosch (1973) [R180] as adapated by Tomita, Tanaka and Takahashi (2006) [R181] and discussed in Cazals and Karande (2008) [R182]. The method essentially unrolls the recursion used in the references to avoid issues of recursion stack depth.

This algorithm is not suitable for directed graphs.
This algorithm ignores self-loops and parallel edges as clique is not conventionally defined with such edges.
There are often many cliques in graphs. This algorithm can run out of memory for large graphs.

References

[R180], [R181], [R182]

4.8.2 make_max_clique_graph
 make_max_clique_graph $(G$, create_using $=$ None, name $=$ None $)$

Create the maximal clique graph of a graph.

Finds the maximal cliques and treats these as nodes. The nodes are connected if they have common members in the original graph. Theory has done a lot with clique graphs, but I haven't seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed by project_up, but it saves all the intermediate steps.

4.8.3 make_clique_bipartite

make_clique_bipartite $(G, f p o s=$ None, create_using $=$ None, , ame $=$ None)
Create a bipartite clique graph from a graph G.
Nodes of G are retained as the "bottom nodes" of B and cliques of G become "top nodes" of B. Edges are present if a bottom node belongs to the clique represented by the top node.

Returns a Graph with additional attribute dict B.node_type which is keyed by nodes to "Bottom" or "Top" appropriately.
if fpos is not None, a second additional attribute dict B.pos is created to hold the position tuple of each node for viewing the bipartite graph.

4.8.4 graph_clique_number

graph_clique_number $(G$, cliques=None)
Return the clique number (size of the largest clique) for G.
An optional list of cliques can be input if already computed.

4.8.5 graph_number_of_cliques

graph_number_of_cliques (G, cliques=None)
Returns the number of maximal cliques in G.
An optional list of cliques can be input if already computed.

4.8.6 node_clique_number

node_clique_number (G, nodes=None, cliques=None)
Returns the size of the largest maximal clique containing each given node.
Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.7 number_of_cliques

number_of_cliques (G, nodes=None, cliques=None)
Returns the number of maximal cliques for each node.
Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.8.8 cliques_containing_node

cliques_containing_node (G, nodes=None, cliques=None)
Returns a list of cliques containing the given node.
Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already computed.

4.9 Clustering

Algorithms to characterize the number of triangles in a graph.

triangles $(\mathrm{G}[$, nodes $])$	Compute the number of triangles.
transitivity (G)	Compute graph transitivity, the fraction of all possible triangles
clustering(G[, nodes, weight $])$	Compute the clustering coefficient for nodes.
average_clustering(G[, nodes, weight, ...])	Compute the average clustering coefficient for the graph G.
square_clustering(G[, nodes])	Compute the squares clustering coefficient for nodes.

4.9.1 triangles

triangles (G, nodes=None)
Compute the number of triangles.
Finds the number of triangles that include a node as one vertex.

Parameters G: graph

A networkx graph
nodes : container of nodes, optional (default= all nodes in G)
Compute triangles for nodes in this container.

Returns out : dictionary

Number of triangles keyed by node label.

Notes

When computing triangles for the entire graph each triangle is counted three times, once at each node. Self loops are ignored.

Examples

```
>>> G=nx.complete_graph(5)
>>> print(nx.triangles(G,0))
6
>>> print(nx.triangles(G))
{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}
>>> print(list(nx.triangles(G,(0,1)).values()))
[6, 6]
```


4.9.2 transitivity

transitivity (G)
Compute graph transitivity, the fraction of all possible triangles present in G.
Possible triangles are identified by the number of "triads" (two edges with a shared vertex).
The transitivity is

$$
T=3 \frac{\# \text { triangles }}{\# \text { triads }}
$$

Parameters G:graph
Returns out : float
Transitivity

Examples

$\ggg G=n x . c o m p l e t e _g r a p h(5)$
>>> print(nx.transitivity(G))
1.0

4.9.3 clustering

clustering (G, nodes $=$ None, weight $=$ None)
Compute the clustering coefficient for nodes.
For unweighted graphs, the clustering of a node u is the fraction of possible triangles through that node that exist,

$$
c_{u}=\frac{2 T(u)}{\operatorname{deg}(u)(\operatorname{deg}(u)-1)}
$$

where $T(u)$ is the number of triangles through node u and $\operatorname{deg}(u)$ is the degree of u.
For weighted graphs, the clustering is defined as the geometric average of the subgraph edge weights [R185],

$$
c_{u}=\frac{1}{\operatorname{deg}(u)(\operatorname{deg}(u)-1))} \sum_{u v}\left(\hat{w}_{u v} \hat{w}_{u w} \hat{w}_{v w}\right)^{1 / 3}
$$

The edge weights $\hat{w}_{u v}$ are normalized by the maximum weight in the network $\hat{w}_{u v}=w_{u v} / \max (w)$.
The value of c_{u} is assigned to 0 if $\operatorname{deg}(u)<2$.
Parameters G:graph
nodes : container of nodes, optional (default=all nodes in G)
Compute clustering for nodes in this container.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns out : float, or dictionary
Clustering coefficient at specified nodes

Notes

Self loops are ignored.

References

[R185]

Examples

```
>>> G=nx.complete_graph(5)
>>> print(nx.clustering(G,0))
1.0
>>> print(nx.clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
```


4.9.4 average_clustering

average_clustering (G, nodes=None, weight=None, count_zeros=True)
Compute the average clustering coefficient for the graph G .
The clustering coefficient for the graph is the average,

$$
C=\frac{1}{n} \sum_{v \in G} c_{v},
$$

where n is the number of nodes in G.
Parameters G:graph
nodes : container of nodes, optional (default=all nodes in G)
Compute average clustering for nodes in this container.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.
count_zeros : bool (default=False)
If False include only the nodes with nonzero clustering in the average.
Returns avg : float
Average clustering

Notes

This is a space saving routine; it might be faster to use the clustering function to get a list and then take the average.

Self loops are ignored.

References

[R183], [R184]

Examples

>>> G=nx.complete_graph (5)
>>> print(nx.average_clustering (G))
1.0

4.9.5 square_clustering

square_clustering (G, nodes=None)

Compute the squares clustering coefficient for nodes.
For each node return the fraction of possible squares that exist at the node [R186]

$$
C_{4}(v)=\frac{\sum_{u=1}^{k_{v}} \sum_{w=u+1}^{k_{v}} q_{v}(u, w)}{\sum_{u=1}^{k_{v}} \sum_{w=u+1}^{k_{v}}\left[a_{v}(u, w)+q_{v}(u, w)\right]},
$$

where $q_{v}(u, w)$ are the number of common neighbors of u and w other than v (ie squares), and $a_{v}(u, w)=$ $\left(k_{u}-\left(1+q_{v}(u, w)+\theta_{u v}\right)\right)\left(k_{w}-\left(1+q_{v}(u, w)+\theta_{u w}\right)\right)$, where $\theta_{u w}=1$ if u and w are connected and 0 otherwise.

Parameters G: graph

nodes : container of nodes, optional (default=all nodes in G)
Compute clustering for nodes in this container.
Returns c4: dictionary
A dictionary keyed by node with the square clustering coefficient value.

Notes

While $C_{3}(v)$ (triangle clustering) gives the probability that two neighbors of node v are connected with each other, $C_{4}(v)$ is the probability that two neighbors of node v share a common neighbor different from v . This algorithm can be applied to both bipartite and unipartite networks.

References

[R186]

Examples

```
>>> G=nx.complete_graph (5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}
```


4.10 Communities

4.10.1 K-Clique

```
k_clique_communities(G, k[, cliques]) Find k-clique communities in graph using the percolation method.
```

k_clique_communities
k_clique_communities (G, k, cliques=None)
Find k-clique communities in graph using the percolation method.
A k -clique community is the union of all cliques of size k that can be reached through adjacent (sharing $\mathrm{k}-1$ nodes) k-cliques.

Parameters G : NetworkX graph
\mathbf{k} : int
Size of smallest clique
cliques: list or generator :
Precomputed cliques (use networkx.find_cliques(G))
Returns Yields sets of nodes, one for each k-clique community. :

References

[R187]

Examples

>>> G = nx.complete_graph(5)
>>> K5 = nx.convert_node_labels_to_integers (G,first_label=2)
>>> G.add_edges_from(K5.edges())
>>> c = list(nx.k_clique_communities(G, 4))
>>> list(c[0])
[0, 1, 2, 3, 4, 5, 6]
>>> list(nx.k_clique_communities (G, 6))
[]

4.11 Components

4.11.1 Connectivity

Connected components.

is_connected (\mathbf{G})	Test graph connectivity.
number_connected_components (\mathbf{G})	Return number of connected components in graph.
connected_components (\mathbf{G})	Return nodes in connected components of graph.

Table 4.32 - continued from previous page
connected_component_subgraphs(G) Return connected components as subgraphs.
node_connected_component(G, n) Return nodes in connected components of graph containing node n .

is_connected

```
is_connected (G)
```

Test graph connectivity.
Parameters G : NetworkX Graph
An undirected graph.
Returns connected : bool
True if the graph is connected, false otherwise.
See also:
connected_components

Notes

For undirected graphs only.

Examples
>>> G=nx.path_graph (4)
>>> print(nx.is_connected(G))
True
number_connected_components
number_connected_components (G)
Return number of connected components in graph.
Parameters G: NetworkX Graph
An undirected graph.
Returns \mathbf{n} : integer
Number of connected components
See also:
connected_components

Notes

For undirected graphs only.

connected_components

connected_components (G)
Return nodes in connected components of graph.
Parameters G: NetworkX Graph
An undirected graph.
Returns comp : list of lists
A list of nodes for each component of G.

See also:

```
strongly_connected_components
```


Notes

The list is ordered from largest connected component to smallest. For undirected graphs only.
connected_component_subgraphs
connected_component_subgraphs (G)
Return connected components as subgraphs.
Parameters G:NetworkX Graph
An undirected graph.
Returns glist : list
A list of graphs, one for each connected component of G.
See also:
connected_components

Notes

The list is ordered from largest connected component to smallest. For undirected graphs only.
Graph, node, and edge attributes are copied to the subgraphs.

Examples

Get largest connected component as subgraph
>>> G=nx.path_graph (4)
\ggg G.add_edge $(5,6)$
>>> H=nx.connected_component_subgraphs(G) [0]

node_connected_component

```
node_connected_component ( }G,n\mathrm{ )
```

Return nodes in connected components of graph containing node n.
Parameters G: NetworkX Graph
An undirected graph.
\mathbf{n} : node label
A node in G
Returns comp : lists
A list of nodes in component of G containing node n.
See also:
connected_components

Notes

For undirected graphs only.

4.11.2 Strong connectivity

Strongly connected components.

is_strongly_connected (\mathbf{G})	Test directed graph for strong connectivity.
number_strongly_connected_components (G)	Return number of strongly connected components in graph.
strongly_connected_components(G)	Return nodes in strongly connected components of graph.
strongly_connected_component_subgraphs (G)	Return strongly connected components as subgraphs.
strongly_connected_components_recursive (G)	Return nodes in strongly connected components of graph.
kosaraju_strongly_connected_components $(\mathrm{G}[, \ldots])$	Return nodes in strongly connected components of graph.
condensation(G[, scc])	Returns the condensation of G.

is_strongly_connected

is_strongly_connected (G)
Test directed graph for strong connectivity.
Parameters G: NetworkX Graph
A directed graph.
Returns connected : bool
True if the graph is strongly connected, False otherwise.
See also:
strongly_connected_components

Notes

For directed graphs only.

number_strongly_connected_components

number_strongly_connected_components (G)
Return number of strongly connected components in graph.
Parameters G:NetworkX graph
A directed graph.
Returns \mathbf{n} : integer
Number of strongly connected components
See also:
connected_components

Notes

For directed graphs only.
strongly_connected_components
strongly_connected_components (G)
Return nodes in strongly connected components of graph.
Parameters G: NetworkX Graph
An directed graph.
Returns comp : list of lists
A list of nodes for each component of G. The list is ordered from largest connected component to smallest.

Raises NetworkXError: If G is undirected.

See also:
connected_components, weakly_connected_components

Notes

Uses Tarjan's algorithm with Nuutila's modifications. Nonrecursive version of algorithm.

References

[R193], [R194]
strongly_connected_component_subgraphs
strongly_connected_component_subgraphs (G)
Return strongly connected components as subgraphs.
Parameters G: NetworkX Graph
A graph.

Returns glist : list
A list of graphs, one for each strongly connected component of G.
See also:
connected_component_subgraphs

Notes

The list is ordered from largest strongly connected component to smallest.
Graph, node, and edge attributes are copied to the subgraphs.
strongly_connected_components_recursive
strongly_connected_components_recursive (G)
Return nodes in strongly connected components of graph.
Recursive version of algorithm.
Parameters G: NetworkX Graph
An directed graph.
Returns comp : list of lists
A list of nodes for each component of G. The list is ordered from largest connected component to smallest.
Raises NetworkXError: If G is undirected

See also:

connected_components

Notes

Uses Tarjan's algorithm with Nuutila's modifications.

References
[R195], [R196]
kosaraju_strongly_connected_components
kosaraju_strongly_connected_components $(G$, source=None)
Return nodes in strongly connected components of graph.
Parameters G : NetworkX Graph
An directed graph.
Returns comp : list of lists
A list of nodes for each component of G. The list is ordered from largest connected component to smallest.

Raises NetworkXError: If G is undirected :

See also:

connected_components

Notes

Uses Kosaraju's algorithm.

condensation

```
condensation (G, scc=None)
```

Returns the condensation of G.
The condensation of G is the graph with each of the strongly connected components contracted into a single node.

Parameters G: NetworkX DiGraph
A directed graph.
scc: list (optional, default=None) :
A list of strongly connected components. If provided, the elements in scc must partition the nodes in G. If not provided, it will be calculated as scc=nx.strongly_connected_components(G).

Returns C: NetworkX DiGraph

The condensation of G . The node labels are integers corresponding to the index of the component in the list of strongly connected components.

Raises NetworkXError: If G is not directed :

Notes

After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic graph.

4.11.3 Weak connectivity

Weakly connected components.

is_weakly_connected (G)	Test directed graph for weak connectivity.
number_weakly_connected_components (G)	Return the number of connected components in G.
weakly_connected_components(G)	Return weakly connected components of G.
weakly_connected_component_subgraphs (G)	Return weakly connected components as subgraphs.

is_weakly_connected
is_weakly_connected (G)
Test directed graph for weak connectivity.
Parameters G: NetworkX Graph

A directed graph.
Returns connected : bool
True if the graph is weakly connected, False otherwise.
See also:
strongly_connected_components

Notes

For directed graphs only.

```
number_weakly_connected_components
```

number_weakly_connected_components (G)

Return the number of connected components in G. For directed graphs only.
weakly_connected_components
weakly_connected_components (G)
Return weakly connected components of G .
weakly_connected_component_subgraphs
weakly_connected_component_subgraphs (G)
Return weakly connected components as subgraphs.
Graph, node, and edge attributes are copied to the subgraphs.

4.11.4 Atrracting components

Attracting components.

is_attracting_component (G)	Returns True if G consists of a single attracting component.
number_attracting_components (\mathbf{G})	Returns the number of attracting components in G.
attracting_components (\mathbf{G})	Returns a list of attracting components in G.
attracting_component_subgraphs (\mathbf{G})	Returns a list of attracting component subgraphs from G.

is_attracting_component
is_attracting_component (G)
Returns True if G consists of a single attracting component.
Parameters G: DiGraph, MultiDiGraph
The graph to be analyzed.
Returns attracting: bool
True if G has a single attracting component. Otherwise, False.
See also:
attracting_components, number_attracting_components, attracting_component_subgraphs
number_attracting_components
number_attracting_components (G)
Returns the number of attracting components in G.
Parameters G: DiGraph, MultiDiGraph
The graph to be analyzed.
Returns \mathbf{n} : int
The number of attracting components in G.

See also:

```
    attracting_components,is_attracting_component,attracting_component_subgraphs
```


attracting_components

attracting_components (G)

Returns a list of attracting components in G.
An attracting component in a directed graph G is a strongly connected component with the property that a random walker on the graph will never leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the attractor containing the node, then the node will be visited infinitely often.

Parameters G: DiGraph, MultiDiGraph
The graph to be analyzed.
Returns attractors : list
The list of attracting components, sorted from largest attracting component to smallest attracting component.

See also:

```
number_attracting_components, is_attracting_component,
attracting_component_subgraphs
```


attracting_component_subgraphs

```
attracting_component_subgraphs (G)
```

Returns a list of attracting component subgraphs from G.
Parameters G: DiGraph, MultiDiGraph
The graph to be analyzed.
Returns subgraphs : list
A list of node-induced subgraphs of the attracting components of G.

See also:

```
attracting_components, number_attracting_components,is_attracting_component
```


Notes

Graph, node, and edge attributes are copied to the subgraphs.

4.11.5 Biconnected components

Biconnected components and articulation points.

is_biconnected(G)	Return True if the graph is biconnected, False otherwise.
biconnected_components(G)	Return a generator of sets of nodes, one set for each biconnected
biconnected_component_edges (\mathbf{G})	Return a generator of lists of edges, one list for each biconnected component of tt
biconnected_component_subgraphs (\mathbf{G})	Return a generator of graphs, one graph for each biconnected component of the it
articulation_points (\mathbf{G})	Return a generator of articulation points, or cut vertices, of a graph.

is_biconnected

is_biconnected (G)

Return True if the graph is biconnected, False otherwise.
A graph is biconnected if, and only if, it cannot be disconnected by removing only one node (and all edges incident on that node). If removing a node increases the number of disconnected components in the graph, that node is called an articulation point, or cut vertex. A biconnected graph has no articulation points.

Parameters G: NetworkX Graph

An undirected graph.

Returns biconnected : bool

True if the graph is biconnected, False otherwise.

Raises NetworkXError: :

If the input graph is not undirected.

See also:

biconnected_components, articulation_points, biconnected_component_edges, biconnected_component_subgraphs

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R192]

Examples

```
>>> G=nx.path_graph(4)
>>> print(nx.is_biconnected(G))
False
>>> G.add__edge(0,3)
>>> print(nx.is_biconnected(G))
True
```


biconnected_components

biconnected_components (G)

Return a generator of sets of nodes, one set for each biconnected component of the graph
Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G:NetworkX Graph

An undirected graph.
Returns nodes : generator
Generator of sets of nodes, one set for each biconnected component.

Raises NetworkXError: :

If the input graph is not undirected.

See also:

```
is_biconnected, articulation_points, biconnected_component_edges,
```

biconnected_component_subgraphs

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R191]

Examples

```
>>> G = nx.barbell_graph(4,2)
>>> print(nx.is_biconnected(G))
False
>>> components = nx.biconnected_components(G)
>>> G.add_edge (2, 8)
>>> print(nx.is_biconnected(G))
True
>>> components = nx.biconnected_components(G)
```


biconnected_component_edges

biconnected_component_edges (G)

Return a generator of lists of edges, one list for each biconnected component of the input graph.
Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. However, each edge belongs to one, and only one, biconnected component.

Notice that by convention a dyad is considered a biconnected component.

Parameters G: NetworkX Graph

An undirected graph.
Returns edges : generator
Generator of lists of edges, one list for each bicomponent.

Raises NetworkXError: :

If the input graph is not undirected.

See also:

```
is_biconnected, biconnected_components, articulation_points,
biconnected_component_subgraphs
```


Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R189]

Examples

```
>>> G = nx.barbell_graph (4,2)
>>> print(nx.is_biconnected(G))
False
>>> components = nx.biconnected_component_edges(G)
>>> G.add_edge (2, 8)
>>> print(nx.is_biconnected(G))
True
>>> components = nx.biconnected_component_edges(G)
```


biconnected_component_subgraphs

biconnected_component_subgraphs (G)

Return a generator of graphs, one graph for each biconnected component of the input graph.
Biconnected components are maximal subgraphs such that the removal of a node (and all edges incident on that node) will not disconnect the subgraph. Note that nodes may be part of more than one biconnected component. Those nodes are articulation points, or cut vertices. The removal of articulation points will increase the number of connected components of the graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G:NetworkX Graph

An undirected graph.
Returns graphs : generator
Generator of graphs, one graph for each biconnected component.

Raises NetworkXError: :

If the input graph is not undirected.

See also:

```
is_biconnected, articulation_points, biconnected_component_edges,
```

biconnected_components

Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

Graph, node, and edge attributes are copied to the subgraphs.

References

[R190]

Examples

>>> G = nx.barbell_graph (4, 2)
>>> print(nx.is_biconnected(G))
False
>>> subgraphs = nx.biconnected_component_subgraphs (G)

articulation_points

articulation_points (G)

Return a generator of articulation points, or cut vertices, of a graph.
An articulation point or cut vertex is any node whose removal (along with all its incident edges) increases the number of connected components of a graph. An undirected connected graph without articulation points is biconnected. Articulation points belong to more than one biconnected component of a graph.

Notice that by convention a dyad is considered a biconnected component.

Parameters G:NetworkX Graph

An undirected graph.
Returns articulation points : generator
generator of nodes

Raises NetworkXError : :

If the input graph is not undirected.

See also:

```
is_biconnected, biconnected_components, biconnected_component_edges,
biconnected_component_subgraphs
```


Notes

The algorithm to find articulation points and biconnected components is implemented using a non-recursive depth-first-search (DFS) that keeps track of the highest level that back edges reach in the DFS tree. A node n is an articulation point if, and only if, there exists a subtree rooted at n such that there is no back edge from any successor of n that links to a predecessor of n in the DFS tree. By keeping track of all the edges traversed by the DFS we can obtain the biconnected components because all edges of a bicomponent will be traversed consecutively between articulation points.

References

[R188]

Examples

```
>>> G = nx.barbell_graph(4,2)
>>> print(nx.is_biconnected(G))
False
>>> list(nx.articulation_points(G))
[6, 5, 4, 3]
```

```
>>> G.add__edge (2, 8)
>>> print(nx.is_biconnected(G))
True
>>> list(nx.articulation_points(G))
[]
```


4.12 Connectivity

Flow based connectivity and cut algorithms

4.12.1 Connectivity functions

Flow based connectivity algorithms

average_node_connectivity (G)	Returns the average connectivity of a graph G.
local_node_connectivity $(\mathrm{G}, \mathrm{s}, \mathrm{t}[, \ldots])$	Computes local node connectivity for nodes s and t.
node_connectivity $(\mathrm{G}[, \mathrm{s}, \mathrm{t}])$	Returns node connectivity for a graph or digraph G.
local_edge_connectivity $(\mathrm{G}, \mathrm{u}, \mathrm{v}[$, aux_digraph $])$	Returns local edge connectivity for nodes s and t in G.
edge_connectivity $(\mathrm{G}[, \mathrm{s}, \mathrm{t}])$	Returns the edge connectivity of the graph or digraph G.
all_pairs_node_connectivity_matrix (G)	Return a numpy 2d ndarray with node connectivity between all pairs of I

```
average_node_connectivity
```

average_node_connectivity (G)

Returns the average connectivity of a graph G.
The average connectivity $\bar{\kappa}$ of a graph G is the average of local node connectivity over all pairs of nodes of G [R197].

$$
\bar{\kappa}(G)=\frac{\sum_{u, v} \kappa_{G}(u, v)}{\binom{n}{2}}
$$

Parameters G: NetworkX graph
Undirected graph
Returns K: float
Average node connectivity
See also:

```
local_node_connectivity, node_connectivity, local_edge_connectivity,
```

edge_connectivity, max_flow, ford_fulkerson

References

[R197]

local_node_connectivity

local_node_connectivity (G, s, t, aux_digraph=None, mapping=None)
Computes local node connectivity for nodes s and t.
Local node connectivity for two non adjacent nodes s and t is the minimum number of nodes that must be removed (along with their incident edges) to disconnect them.
This is a flow based implementation of node connectivity. We compute the maximum flow on an auxiliary digraph build from the original input graph (see below for details). This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [R201].

Parameters G:NetworkX graph
Undirected graph
\mathbf{s} : node
Source node
t: node
Target node
aux_digraph : NetworkX DiGraph (default=None)
Auxiliary digraph to compute flow based node connectivity. If None the auxiliary digraph is build.
mapping : dict (default=None)
Dictionary with a mapping of node names in G and in the auxiliary digraph.
Returns K : integer
local node connectivity for nodes s and t

See also:

```
node_connectivity, all_pairs_node_connectivity_matrix,
local_edge_connectivity,edge_connectivity,max_flow, ford_fulkerson
```


Notes

This is a flow based implementation of node connectivity. We compute the maximum flow using the Ford and Fulkerson algorithm on an auxiliary digraph build from the original input graph:
For an undirected graph G having n nodes and m edges we derive a directed graph D with 2 n nodes and $2 \mathrm{~m}+\mathrm{n}$ arcs by replacing each original node v with two nodes v_{A}, v_{B} linked by an (internal) arc in D. Then for each edge (u, v) in G we add two $\operatorname{arcs}\left(u_{B}, v_{A}\right)$ and $\left(v_{B}, u_{A}\right)$ in D. Finally we set the attribute capacity $=1$ for each arc in D [R201].

For a directed graph G having n nodes and m arcs we derive a directed graph D with $2 n$ nodes and $m+n$ arcs by replacing each original node v with two nodes v_{A}, v_{B} linked by an (internal) arc $\left(v_{A}, v_{B}\right)$ in D . Then for each $\operatorname{arc}(u, v)$ in G we add one $\operatorname{arc}\left(u_{B}, v_{A}\right)$ in D. Finally we set the attribute capacity $=1$ for each arc in D.
This is equal to the local node connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

References

[R201]

Examples

```
>>> # Platonic icosahedral graph has node connectivity 5
```

>>> \# for each non adjacent node pair
$\ggg G=n x . i c o s a h e d r a l _g r a p h()$
>>> nx.local_node_connectivity (G, 0, 6)
5
node_connectivity
node_connectivity ($G, s=$ None, $t=$ None)
Returns node connectivity for a graph or digraph G.
Node connectivity is equal to the minimum number of nodes that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local node connectivity: the minimum number of nodes that must be removed to break all paths from source to target in G.

This is a flow based implementation. The algorithm is based in solving a number of max-flow problems (ie local st-node connectivity, see local_node_connectivity) to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs.

Parameters G: NetworkX graph
Undirected graph
\mathbf{s} : node
Source node. Optional (default=None)
t : node
Target node. Optional (default=None)
Returns K:integer
Node connectivity of G, or local node connectivity if source and target were provided

See also:

local_node_connectivity, all_pairs_node_connectivity_matrix, local_edge_connectivity, edge_connectivity, max_flow, ford_fulkerson

Notes

This is a flow based implementation of node connectivity. The algorithm works by solving $O((n-\delta-1+\delta(\delta-$ $1) / 2$) max-flow problems on an auxiliary digraph. Where δ is the minimum degree of G. For details about the auxiliary digraph and the computation of local node connectivity see local_node_connectivity.

This implementation is based on algorithm 11 in [R202]. We use the Ford and Fulkerson algorithm to compute max flow (see ford_fulkerson).

References

[R202]

Examples

>>> \# Platonic icosahedral graph is 5-node-connected
>>> G $=$ nx.icosahedral_graph()
>>> nx.node_connectivity (G)
5
>>> nx.node_connectivity (G, 3, 7)
5

local_edge_connectivity

local_edge_connectivity (G, u, v, aux_digraph=None)
Returns local edge connectivity for nodes s and t in G.
Local edge connectivity for two nodes s and t is the minimum number of edges that must be removed to disconnect them.
This is a flow based implementation of edge connectivity. We compute the maximum flow on an auxiliary digraph build from the original network (see below for details). This is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [R199].

Parameters G: NetworkX graph

Undirected or directed graph
\mathbf{s} : node
Source node
t: node
Target node
aux_digraph : NetworkX DiGraph (default=None)
Auxiliary digraph to compute flow based edge connectivity. If None the auxiliary digraph is build.

Returns K:integer

local edge connectivity for nodes s and t

See also:

```
local_node_connectivity, node_connectivity, edge_connectivity, max_flow,
ford_fulkerson
```


Notes

This is a flow based implementation of edge connectivity. We compute the maximum flow using the Ford and Fulkerson algorithm on an auxiliary digraph build from the original graph:

If the input graph is undirected, we replace each edge (u, v) with two reciprocal arcs (u, v) and (v, u) and then we set the attribute 'capacity' for each arc to 1 . If the input graph is directed we simply add the 'capacity' attribute. This is an implementation of algorithm 1 in [R199].

The maximum flow in the auxiliary network is equal to the local edge connectivity because the value of a maximum s-t-flow is equal to the capacity of a minimum s-t-cut (Ford and Fulkerson theorem).

References

[R199]

Examples

>>> \# Platonic icosahedral graph has edge connectivity 5
>>> \# for each non adjacent node pair
>>> G $=$ nx.icosahedral_graph()
>>> nx.local_edge_connectivity (G, 0, 6)
5
edge_connectivity
edge_connectivity ($G, s=$ None, $t=$ None)
Returns the edge connectivity of the graph or digraph G.
The edge connectivity is equal to the minimum number of edges that must be removed to disconnect G or render it trivial. If source and target nodes are provided, this function returns the local edge connectivity: the minimum number of edges that must be removed to break all paths from source to target in G.

This is a flow based implementation. The algorithm is based in solving a number of max-flow problems (ie local st-edge connectivity, see local_edge_connectivity) to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum edge cut of G. It handles both directed and undirected graphs.

Parameters G: NetworkX graph

Undirected or directed graph
\mathbf{s} : node
Source node. Optional (default=None)
t : node
Target node. Optional (default=None)
Returns K : integer
Edge connectivity for G, or local edge connectivity if source and target were provided

See also:

```
local_node_connectivity, node_connectivity,local_edge_connectivity,max_flow,
```

ford_fulkerson

Notes

This is a flow based implementation of global edge connectivity. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in [R198]) and computing local max flow (see
local_edge_connectivity) between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in [R198].

For directed graphs, the algorithm does n calls to the max flow function. This is an implementation of algorithm 8 in [R198]. We use the Ford and Fulkerson algorithm to compute max flow (see ford_fulkerson).

References

[R198]

Examples

```
>>> # Platonic icosahedral graph is 5-edge-connected
```

>>> G $=$ nx.icosahedral_graph()
>>> nx.edge_connectivity(G)
5

all_pairs_node_connectivity_matrix

```
all_pairs_node_connectivity_matrix(G)
```

Return a numpy 2 d ndarray with node connectivity between all pairs of nodes.

Parameters G: NetworkX graph Undirected graph

Returns K : 2d numpy ndarray node connectivity between all pairs of nodes.

See also:

local_node_connectivity, node_connectivity, local_edge_connectivity, edge_connectivity, max_flow, ford_fulkerson

4.12.2 Cut functions

Flow based cut algorithms

minimum_st_node_cut $(G, \mathrm{~s}, \mathrm{t}[$, aux_digraph, ...])	Returns a set of nodes of minimum cardinality that disconnect source
minimum_node_cut $(\mathrm{G}[, \mathrm{s}, \mathrm{t}])$	Returns a set of nodes of minimum cardinality that disconnects G.
minimum_st_edge_cut $(\mathrm{G}, \mathrm{s}, \mathrm{t}[$, capacity $])$	Returns the edges of the cut-set of a minimum (s, t)-cut.
minimum_edge_cut $(\mathrm{G}[, \mathrm{s}, \mathrm{t}])$	Returns a set of edges of minimum cardinality that disconnects G.

minimum_st_node_cut

minimum_st_node_cut (G, s, t, aux_digraph=None, mapping=None)
Returns a set of nodes of minimum cardinality that disconnect source from target in G.
This function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G.

Parameters G: NetworkX graph
s: node
Source node.
t: node
Target node.

Returns cutset : set

Set of nodes that, if removed, would destroy all paths between source and target in G.

See also:

```
node_connectivity, edge_connectivity, minimum_edge_cut, max_flow,
ford_fulkerson
```


Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of max-flow problems (ie local st-node connectivity, see local_node_connectivity) to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G . It handles both directed and undirected graphs.

This implementation is based on algorithm 11 in [R205]. We use the Ford and Fulkerson algorithm to compute max flow (see ford_fulkerson).

References

[R205]

Examples

```
>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_node_cut(G, 0, 6))
5
```

```
minimum_node_cut
```

minimum_node_cut ($G, s=N o n e, t=N o n e$)

Returns a set of nodes of minimum cardinality that disconnects G.
If source and target nodes are provided, this function returns the set of nodes of minimum cardinality that, if removed, would destroy all paths among source and target in G . If not, it returns a set of nodes of minimum cardinality that disconnects G .

Parameters G: NetworkX graph
s : node
Source node. Optional (default=None)
t : node
Target node. Optional (default=None)
Returns cutset : set

Set of nodes that, if removed, would disconnect G. If source and target nodes are provided, the set contians the nodes that if removed, would destroy all paths between source and target.

See also:

node_connectivity, edge_connectivity, minimum_edge_cut, max_flow, ford_fulkerson

Notes

This is a flow based implementation of minimum node cut. The algorithm is based in solving a number of max-flow problems (ie local st-node connectivity, see local_node_connectivity) to determine the capacity of the minimum cut on an auxiliary directed network that corresponds to the minimum node cut of G. It handles both directed and undirected graphs.

This implementation is based on algorithm 11 in [R204]. We use the Ford and Fulkerson algorithm to compute max flow (see ford_fulkerson).

References

[R204]

Examples

```
>>> # Platonic icosahedral graph has node connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_node_cut(G))
5
>>> # this is the minimum over any pair of non adjacent nodes
>>> from itertools import combinations
>>> for u,v in combinations(G, 2):
... if v not in G[u]:
... assert(len(nx.minimum_node_cut (G,u,v)) == 5)
...
```

minimum_st_edge_cut
minimum_st_edge_cut (G, s, t, capacity='capacity')
Returns the edges of the cut-set of a minimum (s, t)-cut.
We use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow.

Parameters G : NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
\mathbf{s} : node
Source node for the flow.
t : node
Sink node for the flow.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

Returns cutset : set
Set of edges that, if removed from the graph, will disconnect it

Raises NetworkXUnbounded :

If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError.

Examples

```
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge(' x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b' ,'c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)
>>> sorted(nx.minimum_edge_cut(G, ' x', 'Y'))
[('C', 'Y'), ('x', 'b')]
>>> nx.min_cut(G, 'x', 'y')
3.0
```


minimum_edge_cut

minimum_edge_cut ($G, s=N o n e, t=N o n e$)
Returns a set of edges of minimum cardinality that disconnects G.
If source and target nodes are provided, this function returns the set of edges of minimum cardinality that, if removed, would break all paths among source and target in G. If not, it returns a set of edges of minimum cardinality that disconnects G.

Parameters G: NetworkX graph
\mathbf{s} : node
Source node. Optional (default=None)
t : node
Target node. Optional (default=None)
Returns cutset : set
Set of edges that, if removed, would disconnect G. If source and target nodes are provided, the set contians the edges that if removed, would destroy all paths between source and target.

See also:

```
node_connectivity, edge_connectivity, minimum_node_cut, max_flow,
ford_fulkerson
```


Notes

This is a flow based implementation of minimum edge cut. For undirected graphs the algorithm works by finding a 'small' dominating set of nodes of G (see algorithm 7 in [R203]) and computing the maximum flow between an arbitrary node in the dominating set and the rest of nodes in it. This is an implementation of algorithm 6 in [R203].

For directed graphs, the algorithm does n calls to the max flow function. This is an implementation of algorithm 8 in [R203]. We use the Ford and Fulkerson algorithm to compute max flow (see ford_fulkerson).

References

[R203]

Examples

```
>>> # Platonic icosahedral graph has edge connectivity 5
>>> G = nx.icosahedral_graph()
>>> len(nx.minimum_edge_cut(G))
5
>>> # this is the minimum over any pair of nodes
>>> from itertools import combinations
>>> for u,v in combinations(G, 2):
... assert(len(nx.minimum_edge_cut (G,u,v)) == 5)
...
```


4.13 Cores

Find the k-cores of a graph.
The k-core is found by recursively pruning nodes with degrees less than k .
See the following reference for details:
An $\mathrm{O}(\mathrm{m})$ Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049

core_number(G)	Return the core number for each vertex.
k_core(G[, k, core_number])	Return the k-core of G.
k_shell(G[, k, core_number $])$	Return the k-shell of G.
k_crust(G[, k, core_number])	Return the k-crust of G.
k_corona(G, k[, core_number])	Return the k-crust of G.

4.13.1 core_number

core_number (G)

Return the core number for each vertex.
A k-core is a maximal subgraph that contains nodes of degree k or more.
The core number of a node is the largest value k of a k -core containing that node.

Parameters G: NetworkX graph
A graph or directed graph
Returns core_number : dictionary
A dictionary keyed by node to the core number.

Raises NetworkXError :

The k-core is not defined for graphs with self loops or parallel edges.

Notes

Not implemented for graphs with parallel edges or self loops.
For directed graphs the node degree is defined to be the in-degree + out-degree

References

[R206]

4.13.2 k_core

\mathbf{k} _core ($G, k=$ None, core_number=None)
Return the k -core of G .
A k-core is a maximal subgraph that contains nodes of degree k or more.
Parameters G: NetworkX graph
A graph or directed graph
k: int, optional
The order of the core. If not specified return the main core.
core_number : dictionary, optional
Precomputed core numbers for the graph G.
Returns G:NetworkX graph
The k-core subgraph
Raises NetworkXError :
The k-core is not defined for graphs with self loops or parallel edges.

See also:

core_number

Notes

The main core is the core with the largest degree.
Not implemented for graphs with parallel edges or self loops.
For directed graphs the node degree is defined to be the in-degree + out-degree.
Graph, node, and edge attributes are copied to the subgraph.

References

[R207]

4.13.3 k_shell

\mathbf{k} _shell $(G, k=$ None, core_number=None $)$
Return the k-shell of G.
The k -shell is the subgraph of nodes in the k-core containing nodes of exactly degree k .

Parameters G : NetworkX graph

A graph or directed graph.
\mathbf{k} : int, optional
The order of the shell. If not specified return the main shell.
core_number : dictionary, optional
Precomputed core numbers for the graph G.
Returns G: NetworkX graph
The k-shell subgraph

Raises NetworkXError :

The k-shell is not defined for graphs with self loops or parallel edges.

See also:

```
core_number, k_corona, ----------
```

Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154
http //www.pnas.org/content/104/27/11150.full

Notes

This is similar to k_corona but in that case only neighbors in the k-core are considered.
Not implemented for graphs with parallel edges or self loops.
For directed graphs the node degree is defined to be the in-degree + out-degree.
Graph, node, and edge attributes are copied to the subgraph.

4.13.4 k_crust

k_crust $(G, k=$ None, core_number $=$ None $)$
Return the k-crust of G.
The k-crust is the graph G with the k -core removed.
Parameters G: NetworkX graph
A graph or directed graph.
\mathbf{k} : int, optional

The order of the shell. If not specified return the main crust.
core_number : dictionary, optional
Precomputed core numbers for the graph G.
Returns G:NetworkX graph
The k-crust subgraph

Raises NetworkXError :

The k-crust is not defined for graphs with self loops or parallel edges.

See also:

```
core__number
```


Notes

This definition of k-crust is different than the definition in [R209]. The k-crust in [R209] is equivalent to the $\mathrm{k}+1$ crust of this algorithm.

Not implemented for graphs with parallel edges or self loops.
For directed graphs the node degree is defined to be the in-degree + out-degree .
Graph, node, and edge attributes are copied to the subgraph.

References

[R209]

4.13.5 k_corona

\mathbf{k} _corona $(G, k$, core_number=None)
Return the k-crust of G.
The k-corona is the subset of vertices in the k -core which have exactly k neighbours in the k -core.
Parameters G:NetworkX graph
A graph or directed graph
\mathbf{k} : int
The order of the corona.
core_number : dictionary, optional
Precomputed core numbers for the graph G.
Returns G: NetworkX graph
The k-corona subgraph

Raises NetworkXError :

The k-cornoa is not defined for graphs with self loops or parallel edges.

See also:

```
    core_number
```


Notes

Not implemented for graphs with parallel edges or self loops.
For directed graphs the node degree is defined to be the in-degree + out-degree.
Graph, node, and edge attributes are copied to the subgraph.

References

[R208]

4.14 Cycles

cycle__basis(G[, root])	Returns a list of cycles which form a basis for cycles of G.
simple_cycles(G)	Find simple cycles (elementary circuits) of a directed graph.

4.14.1 cycle_basis

```
cycle_basis(G,root=None)
```

Returns a list of cycles which form a basis for cycles of G.
A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written as a sum of cycles in the basis. Here summation of cycles is defined as "exclusive or" of the edges. Cycle bases are useful, e.g. when deriving equations for electric circuits using Kirchhoff's Laws.

Parameters G: NetworkX Graph

root : node, optional
Specify starting node for basis.

Returns A list of cycle lists. Each cycle list is a list of nodes :

which forms a cycle (loop) in G. :
See also:

```
simple_cycles
```


Notes

This is adapted from algorithm CACM 491 [R210].

References

[R210]

Examples

```
>>> G=nx.Graph()
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print(nx.cycle_basis(G,0))
[[3, 4, 5, 0], [1, 2, 3, 0]]
```


4.14.2 simple_cycles

```
simple_cycles (G)
```

Find simple cycles (elementary circuits) of a directed graph.
An simple cycle, or elementary circuit, is a closed path where no node appears twice, except that the first and last node are the same. Two elementary circuits are distinct if they are not cyclic permutations of each other.

This is a nonrecursive, iterator/generator version of Johnson's algorithm [R211]. There may be better algorithms for some cases [R212] [R213].

Parameters G: NetworkX DiGraph
A directed graph

Returns cycle_generator: generator :

A generator that produces elementary cycles of the graph. Each cycle is a list of nodes with the first and last nodes being the same.

See also:

```
cycle_basis
```


Notes

The implementation follows pp. 79-80 in [R211].
The time complexity is $\mathrm{O}((\mathrm{n}+\mathrm{e})(\mathrm{c}+1))$ for n nodes, e edges and c elementary circuits.
To filter the cycles so that they don't include certain nodes or edges, copy your graph and eliminate those nodes or edges before calling. >>> copyG $=$ G.copy() >>> copyG.remove_nodes_from([1]) >>> copyG.remove_edges_from $([(0,1)]) \ggg$ list(nx.simple_cycles(copyG)) [[2], [2, 0], [0]]

References

[R211], [R212], [R213]

Examples

```
>>> G = nx.DiGraph([(0, 0), (0, 1), (0, 2), (1, 2), (2, 0), (2, 1), (2, 2)])
>>> list(nx.simple_cycles(G))
    [[2], [2, 1], [2, 0], [2, 0, 1], [0]]
```


4.15 Directed Acyclic Graphs

ancestors(G, source)	Return all nodes having a path to source in G.
descendants(G, source)	Return all nodes reachable from source in G.
topological_sort(G[, nbunch])	Return a list of nodes in topological sort order.
topological_sort_recursive(G[, nbunch])	Return a list of nodes in topological sort order.
is_directed_acyclic_graph(G)	Return True if the graph G is a directed acyclic graph (DAG) or
is_aperiodic(G)	Return True if G is aperiodic.

4.15.1 ancestors

```
ancestors(G, source)
```

Return all nodes having a path to source in G.
Parameters G: NetworkX DiGraph source : node in G

Returns ancestors: set()
The ancestors of source in G

4.15.2 descendants

descendants (G, source)

Return all nodes reachable from source in G.
Parameters G:NetworkX DiGraph
source : node in G
Returns des: set()
The descendants of source in G

4.15.3 topological_sort

topological_sort (G, nbunch=None)
Return a list of nodes in topological sort order.
A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order.

Parameters G: NetworkX digraph
A directed graph
nbunch : container of nodes (optional)
Explore graph in specified order given in nbunch

Raises NetworkXError :

Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised.

NetworkXUnfeasible :

If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised.

See also:

```
is__directed_acyclic_graph
```

Notes

This algorithm is based on a description and proof in The Algorithm Design Manual [R215] .

References

[R215]

4.15.4 topological_sort_recursive

topological_sort_recursive (G, nbunch=None)

Return a list of nodes in topological sort order.
A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears before v in the topological sort order.

Parameters G: NetworkX digraph
nbunch : container of nodes (optional)
Explore graph in specified order given in nbunch

Raises NetworkXError :

Topological sort is defined for directed graphs only. If the graph G is undirected, a NetworkXError is raised.

NetworkXUnfeasible :
If G is not a directed acyclic graph (DAG) no topological sort exists and a NetworkXUnfeasible exception is raised.

See also:
topological_sort, is_directed_acyclic_graph

Notes

This is a recursive version of topological sort.

4.15.5 is_directed_acyclic_graph

is_directed_acyclic_graph (G)
Return True if the graph G is a directed acyclic graph (DAG) or False if not.
Parameters G: NetworkX graph
A graph
Returns is_dag : bool
True if G is a DAG, false otherwise

4.15.6 is_aperiodic

is_aperiodic (G)
Return True if G is aperiodic.
A directed graph is aperiodic if there is no integer $k>1$ that divides the length of every cycle in the graph.
Parameters G : NetworkX DiGraph
Graph
Returns aperiodic : boolean
True if the graph is aperiodic False otherwise

Raises NetworkXError:

If G is not directed

Notes

This uses the method outlined in [R214], which runs in $\mathrm{O}(\mathrm{m})$ time given m edges in G. Note that a graph is not aperiodic if it is acyclic as every integer trivial divides length 0 cycles.

References

[R214]

4.16 Distance Measures

Graph diameter, radius, eccentricity and other properties.

center $(\mathrm{G}[, \mathrm{e}])$	Return the center of the graph G.
diameter $(\mathrm{G}[, \mathrm{e}])$	Return the diameter of the graph G.
eccentricity $(\mathrm{G}[, \mathrm{v}, \mathrm{sp}])$	Return the eccentricity of nodes in G.
periphery $(\mathrm{G}[, \mathrm{e}])$	Return the periphery of the graph G.
radius $(\mathrm{G}[, \mathrm{e}])$	Return the radius of the graph G.

4.16.1 center

center ($G, e=$ None)
Return the center of the graph G.
The center is the set of nodes with eccentricity equal to radius.
Parameters G:NetworkX graph
A graph
e: eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns c: list
List of nodes in center

4.16.2 diameter

diameter ($G, e=$ None)
Return the diameter of the graph G.
The diameter is the maximum eccentricity.
Parameters G:NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns d: integer
Diameter of graph
See also:
eccentricity

4.16.3 eccentricity

eccentricity ($G, v=$ None, $s p=$ None)
Return the eccentricity of nodes in G.
The eccentricity of a node v is the maximum distance from v to all other nodes in G.
Parameters G: NetworkX graph
A graph
\mathbf{v} : node, optional
Return value of specified node
sp : dict of dicts, optional
All pairs shortest path lengths as a dictionary of dictionaries
Returns ecc: dictionary
A dictionary of eccentricity values keyed by node.

4.16.4 periphery

periphery ($G, e=$ None)
Return the periphery of the graph G.
The periphery is the set of nodes with eccentricity equal to the diameter.
Parameters G:NetworkX graph
A graph
e: eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns p: list
List of nodes in periphery

4.16.5 radius

radius $(G, e=$ None)
Return the radius of the graph G .
The radius is the minimum eccentricity.
Parameters G:NetworkX graph
A graph
e: eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns r:integer
Radius of graph

4.17 Distance-Regular Graphs

is_distance_regular(G)	Returns True if the graph is distance regular, False otherwise.
intersection_array (G)	Returns the intersection array of a distance-regular graph.
global_parameters (\mathbf{b}, \mathbf{c})	Return global parameters for a given intersection array.

4.17.1 is_distance_regular

is_distance_regular (G)
Returns True if the graph is distance regular, False otherwise.
A connected graph G is distance-regular if for any nodes x, y and any integers $i, j=0,1, \ldots, d$ (where d is the graph diameter), the number of vertices at distance i from x and distance j from y depends only on i, j and the graph distance between x and y, independently of the choice of x and y.

Parameters G: Networkx graph (undirected) :

Returns bool :
True if the graph is Distance Regular, False otherwise

See also:

intersection_array, global_parameters

Notes

For undirected and simple graphs only

References

[R218], [R219]

Examples

```
>>> G=nx.hypercube_graph(6)
>>> nx.is_distance_regular(G)
True
```


4.17.2 intersection_array

intersection_array (G)

Returns the intersection array of a distance-regular graph.
Given a distance-regular graph G with integers $b _i, c _i, i=0, \ldots ., d$ such that for any 2 vertices x, y in G at a distance $\mathrm{i}=\mathrm{d}(\mathrm{x}, \mathrm{y})$, there are exactly $\mathrm{c} \mathrm{_i}$ neighbors of y at a distance of $\mathrm{i}-1$ from x and $\mathrm{b} _i$ neighbors of y at a distance of $i+1$ from x.

A distance regular graph'sintersection array is given by, [b_0,b_1,.....b_\{d-1\};c_1,c_2,.....c_d]

Parameters G: Networkx graph (undirected) :

Returns b,c: tuple of lists :

See also:

```
global_parameters
```


References

[R217]

Examples
>>> G=nx.icosahedral_graph()
>>> nx.intersection_array (G)
([5, 2, 1], [1, 2, 5])

4.17.3 global_parameters

global_parameters (b, c)

Return global parameters for a given intersection array.
Given a distance-regular graph G with integers $b _i, c_{-} i, i=0, \ldots ., d$ such that for any 2 vertices x, y in G at a distance $\mathrm{i}=\mathrm{d}(\mathrm{x}, \mathrm{y})$, there are exactly $\mathrm{c}_{-} \mathrm{i}$ neighbors of y at a distance of $\mathrm{i}-1$ from x and $\mathrm{b}_{-} \mathrm{i}$ neighbors of y at a distance of $\mathrm{i}+1$ from x .

Thus, a distance regular graph has the global parameters, [[c_0,a_0,b_0],[c_1,a_1,b_1],......,[c_d,a_d,b_d]] for the intersection array $\left[b _0, b _1, \ldots . . . b _\{d-1\} ; c _1, c _2, \ldots . . . c _d\right]$ where $a _i+b _i+c _i=k, k=$ degree of every vertex.

Parameters b,c: tuple of lists :
Returns p: list of three-tuples

See also:

intersection_array

References

[R216]

Examples

>>> G=nx.dodecahedral_graph()
>>> b, c=nx.intersection_array (G)
>>> list (nx.global_parameters (b, c))
$[(0,0,3),(1,0,2),(1,1,1),(1,1,1),(2,0,1),(3,0,0)]$

4.18 Eulerian

Eulerian circuits and graphs.

is_eulerian(G)	Return True if G is an Eulerian graph, False otherwise.
eulerian_circuit(G[, source])	Return the edges of an Eulerian circuit in G.

4.18.1 is_eulerian

is_eulerian (G)

Return True if G is an Eulerian graph, False otherwise.
An Eulerian graph is a graph with an Eulerian circuit.
Parameters G:graph
A NetworkX Graph

Notes

This implementation requires the graph to be connected (or strongly connected for directed graphs).

Examples

>>> nx.is_eulerian(nx.DiGraph(\{0:[3], 1:[2], 2:[3], 3:[0, 1]\}))
True
>>> nx.is_eulerian(nx.complete_graph(5))
True
>>> nx.is_eulerian(nx.petersen_graph())
False

4.18.2 eulerian_circuit

eulerian_circuit (G, source=None)
Return the edges of an Eulerian circuit in G.
An Eulerian circuit is a path that crosses every edge in G exactly once and finishes at the starting node.
Parameters G:graph

A NetworkX Graph
source : node, optional
Starting node for circuit.
Returns edges : generator
A generator that produces edges in the Eulerian circuit.

Raises NetworkXError:

If the graph is not Eulerian.

See also:

is_eulerian

Notes

Uses Fleury's algorithm [R220],[R221]_

References

[R220], [R221]

Examples

```
>>> G=nx.complete_graph(3)
>>> list(nx.eulerian_circuit(G))
[(0, 1), (1, 2), (2, 0)]
>>> list(nx.eulerian_circuit(G,source=1))
[(1, 0), (0, 2), (2, 1)]
>>> [u for u,v in nx.eulerian_circuit(G)] # nodes in circuit
[0, 1, 2]
```


4.19 Flows

4.19.1 Ford-Fulkerson

max_flow(G, s, t[, capacity $])$	Find the value of a maximum single-commodity flow.
min_cut(G, s, t[, capacity $])$	Compute the value of a minimum (s, t)-cut.
ford_fulkerson(G, s, $[$, capacity $])$	Find a maximum single-commodity flow using the Ford-Fulkerson
ford_fulkerson_flow(G, s, t[, capacity $])$	Return a maximum flow for a single-commodity flow problem.
ford_fulkerson_flow_and_auxiliary(G, s, t[, ...])	Find a maximum single-commodity flow using the Ford-Fulkerson

max_flow
max_flow (G, s, t, capacity='capacity')
Find the value of a maximum single-commodity flow.
Parameters G:NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
\mathbf{s} : node
Source node for the flow.
t : node
Sink node for the flow.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.
Returns flow_value : integer, float
Value of the maximum flow, i.e., net outflow from the source.

Raises NetworkXError :

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded :

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> flow = nx.max_flow(G, 'x', 'y')
>>> flow
3.0
```

min_cut
min_cut (G, s, t, capacity='capacity')

Compute the value of a minimum (s, t)-cut.
Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a maximum flow.

Parameters G : NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
\mathbf{s} : node

Source node for the flow.
t : node
Sink node for the flow.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

Returns cutValue : integer, float
Value of the minimum cut.

Raises NetworkXUnbounded :

If the graph has a path of infinite capacity, all cuts have infinite capacity and the function raises a NetworkXError.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity = 3.0)
>>> G.add_edge('x','b', capacity = 1.0)
>>> G.add_edge('a','c', capacity = 3.0)
>>> G.add_edge('b','c', capacity = 5.0)
>>> G.add_edge('b','d', capacity = 4.0)
>>> G.add_edge('d','e', capacity = 2.0)
>>> G.add_edge('c','y', capacity = 2.0)
>>> G.add_edge('e','y', capacity = 3.0)
>>> nx.min_cut(G, 'x', 'y')
3.0
```


ford_fulkerson

ford_fulkerson (G, s, t, capacity='capacity')

Find a maximum single-commodity flow using the Ford-Fulkerson algorithm
This algorithm uses Edmonds-Karp-Dinitz path selection rule which guarantees a running time of $O\left(\mathrm{~nm}^{2}\right)$ for n nodes and m edges.

Parameters G:NetworkX graph
Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
\mathbf{s} : node
Source node for the flow.
t : node
Sink node for the flow.
capacity: string :
Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

Returns flow_value : integer, float
Value of the maximum flow, i.e., net outflow from the source.

flow_dict : dictionary

Dictionary of dictionaries keyed by nodes such that flow_dict[u][v] is the flow edge (u, v).

Raises NetworkXError :

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded :

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge(' }\mp@subsup{x}{}{\prime},',\mp@subsup{a}{}{\prime}, capacity=3.0
>>> G.add_edge(' (',''b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','C', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('C','Y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> flow, F = nx.ford_fulkerson(G, ' X', ' Y')
>>> flow
3.0
```


ford_fulkerson_flow

```
ford_fulkerson_flow(G, s,t, capacity='capacity')
```

Return a maximum flow for a single-commodity flow problem.
Parameters G:NetworkX graph
Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
\mathbf{s} : node
Source node for the flow.
t: node
Sink node for the flow.
capacity: string :
Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

Returns flow_dict : dictionary

Dictionary of dictionaries keyed by nodes such that flow_dict[u][v] is the flow edge (u, v).

Raises NetworkXError:

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded :

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge(' x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','Y', capacity=2.0)
>>> G.add_edge(' ' ','y', capacity=3.0)
>>> F = nx.ford_fulkerson_flow(G, ' x', ' y')
>>> for u, v in sorted(G.edges_iter()) :
... print('(%S, %S) %.2f' % (u, v, F[u][v]))
*••
(a, c) 2.00
(b, c) 0.00
(b, d) 1.00
(c, y) 2.00
(d, e) 1.00
(e, y) 1.00
(x, a) 2.00
(x, b) 1.00
```


ford_fulkerson_flow_and_auxiliary

```
ford_fulkerson_flow_and_auxiliary (G, s,t, capacity='capacity')
```

Find a maximum single-commodity flow using the Ford-Fulkerson algorithm.
This function returns both the value of the maximum flow and the auxiliary network resulting after finding the maximum flow, which is also named residual network in the literature. The auxiliary network has edges with capacity equal to the capacity of the edge in the original network minus the flow that went throught that edge. Notice that it can happen that a flow from v to u is allowed in the auxiliary network, though disallowed in the original network. A dictionary with infinite capacity edges can be found as an attribute of the auxiliary network.

Parameters G: NetworkX graph

Edges of the graph are expected to have an attribute called 'capacity'. If this attribute is not present, the edge is considered to have infinite capacity.
s: node
Source node for the flow.
t : node

Sink node for the flow.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

Returns flow_value : integer, float

Value of the maximum flow, i.e., net outflow from the source.
auxiliary : DiGraph
Residual/auxiliary network after finding the maximum flow. A dictionary with infinite capacity edges can be found as an attribute of this network: auxiliary.graph['inf_capacity_flows']

Raises NetworkXError:

The algorithm does not support MultiGraph and MultiDiGraph. If the input graph is an instance of one of these two classes, a NetworkXError is raised.

NetworkXUnbounded :

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is unbounded above and the function raises a NetworkXUnbounded.

Notes

This algorithm uses Edmonds-Karp-Dinitz path selection rule which guarantees a running time of $O\left(\mathrm{~nm}^{2}\right)$ for n nodes and m edges.

Examples

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> flow, auxiliary = nx.ford_fulkerson_flow_and_auxiliary(G, 'x', 'y')
>>> flow
3.0
>>> # A dictionary with infinite capacity flows can be found as an
>>> # attribute of the auxiliary network
>>> inf_capacity_flows = auxiliary.graph['inf_capacity_flows']
```


4.19.2 Network Simplex

network_simplex(G[, demand, capacity, weight])	Find a minimum cost flow satisfying all demands in digraph G.

Table 4.46 - continued from previous page

min_cost_flow_cost $(G[$, demand, capacity, weight $])$	Find the cost of a minimum cost flow satisfying all demands in digraph
min_cost_flow $(G[$, demand, capacity, weight $])$	Return a minimum cost flow satisfying all demands in digraph G.
cost_of_flow $(G$, flowDict[, weight $])$	Compute the cost of the flow given by flowDict on graph G.
max_flow_min_cost $(G, s, t[$, capacity, weight $])$	Return a maximum (s, t) flow of minimum cost.

network_simplex

network_simplex (G, demand='demand', capacity='capacity', weight='weight')
Find a minimum cost flow satisfying all demands in digraph G.
This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling.
G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string :

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string :

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0 . Default value: 'weight'.

Returns flowCost: integer, float :

Cost of a minimum cost flow satisfying all demands.

flowDict: dictionary :

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises NetworkXError:

This exception is raised if the input graph is not directed, not connected or is a multigraph.

NetworkXUnfeasible :

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded :

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
cost_of_flow,max_flow_min_cost,min_cost_flow,min_cost_flow_cost
```


Notes

This algorithm is not guaranteed to work if edge weights are floating point numbers (overflows and roundoff errors can cause problems).

References

W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver. Combinatorial Optimization. WileyInterscience, 1998.

Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}
```

The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1 . Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path.

```
>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s','u',10), ('s','x',5),
... ('u','v',1), ('u','x',2),
... ('v','y',1), ('x','u',3),
... ('x','v',5), ('x','y',2),
... ('y','s',7), ('y','v',6)])
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weight = 'weight')
True
>>> sorted([(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0])
[('s', 'x'), ('u', 'v'), ('x', 'u')]
>>> nx.shortest_path(G, 's', 'v', weight = 'weight')
['s', 'x', 'u', 'v']
```

It is possible to change the name of the attributes used for the algorithm.

```
>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
>>> G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node ('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
>>> G.add_edge(' q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.network_simplex(G, demand = 'spam',
... capacity = 'vacancies',
... weight = 'cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, ' d': {'w': 2}, ' q' : {' d': 1}, 'p': {' q': 2, 'a': 2}, 't': {' q': 1, 'w' : 1}, 'w':
```

min_cost_flow_cost
min_cost_flow_cost (G, demand='demand', capacity='capacity', weight='weight')
Find the cost of a minimum cost flow satisfying all demands in digraph G.
G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G:NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string :

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string :

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0 . Default value: 'weight'.

Returns flowCost: integer, float :

Cost of a minimum cost flow satisfying all demands.

Raises NetworkXError:

This exception is raised if the input graph is not directed or not connected.

NetworkXUnfeasible :

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded :

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
cost_of_flow,max_flow_min__cost,min_cost_flow, network_simplex
```


Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost = nx.min_cost_flow_cost(G)
>>> flowCost
24
```

```
min_cost_flow
```

min_cost_flow (G, demand='demand', capacity='capacity', weight='weight')

Return a minimum cost flow satisfying all demands in digraph G .
G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.

demand: string :

Nodes of the graph G are expected to have an attribute demand that indicates how much flow a node wants to send (negative demand) or receive (positive demand). Note that the sum of the demands should be 0 otherwise the problem in not feasible. If this attribute is not present, a node is considered to have 0 demand. Default value: 'demand'.
capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string :

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0 . Default value: 'weight'.

Returns flowDict: dictionary :

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises NetworkXError :

This exception is raised if the input graph is not directed or not connected.

NetworkXUnfeasible :

This exception is raised in the following situations:

- The sum of the demands is not zero. Then, there is no flow satisfying all demands.
- There is no flow satisfying all demand.

NetworkXUnbounded :

This exception is raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow satisfying all demands is unbounded below.

See also:

```
cost_of_flow,max_flow_min__cost,min__cost_flow__cost,network_simplex
```


Examples

A simple example of a min cost flow problem.

```
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node(' a', demand = -5)
>>> G.add_node(' d', demand = 5)
>>> G.add__edge(' a', ' b', weight = 3, capacity = 4)
>>> G.add__edge('a', 'c', weight = 6, capacity = 10)
>>> G.add__edge(' b' , 'd', weight = 1, capacity = 9)
>>> G.add__edge('C'', ' d', weight = 2, capacity = 5)
>>> flowDict = nx.min__cost_flow(G)
```

cost_of_flow
cost_of_flow (G, flowDict, weight='weight')
Compute the cost of the flow given by flowDict on graph G.
Note that this function does not check for the validity of the flow flowDict. This function will fail if the graph G and the flow don't have the same edge set.

Parameters G: NetworkX graph
DiGraph on which a minimum cost flow satisfying all demands is to be found.

weight: string :

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0 . Default value: 'weight'.

flowDict: dictionary :

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Returns cost: Integer, float :

The total cost of the flow. This is given by the sum over all edges of the product of the edge's flow and the edge's weight.

See also:

```
max_flow_min__cost,min__cost_flow,min__cost_flow__cost,network_simplex
```

max_flow_min_cost
max_flow_min_cost $(G, s, t$, capacity='capacity', weight='weight')
Return a maximum (s, t)-flow of minimum cost.
G is a digraph with edge costs and capacities. There is a source node s and a sink node t. This function finds a maximum flow from s to t whose total cost is minimized.

Parameters G: NetworkX graph

DiGraph on which a minimum cost flow satisfying all demands is to be found.
s: node label :
Source of the flow.
t: node label :
Destination of the flow.

capacity: string :

Edges of the graph G are expected to have an attribute capacity that indicates how much flow the edge can support. If this attribute is not present, the edge is considered to have infinite capacity. Default value: 'capacity'.

weight: string :

Edges of the graph G are expected to have an attribute weight that indicates the cost incurred by sending one unit of flow on that edge. If not present, the weight is considered to be 0 . Default value: 'weight'.

Returns flowDict: dictionary :

Dictionary of dictionaries keyed by nodes such that flowDict[u][v] is the flow edge (u, v).

Raises NetworkXError :

This exception is raised if the input graph is not directed or not connected.

NetworkXUnbounded :

This exception is raised if there is an infinite capacity path from s to t in G. In this case there is no maximum flow. This exception is also raised if the digraph G has a cycle of negative cost and infinite capacity. Then, the cost of a flow is unbounded below.

See also:

```
cost_of_flow, ford_fulkerson, min_cost_flow, min_cost_flow_cost,
network_simplex
```


Examples

```
>>> G = nx.DiGraph()
>>> G.add_edges_from([(1, 2, {'capacity': 12, 'weight': 4}),
... (1, 3, {'capacity': 20, 'weight': 6}),
... (2, 3, {'capacity': 6, 'weight': -3}),
... (2, 6, {'capacity': 14, 'weight': 1}),
... (3, 4, {'weight': 9}),
... (3, 5, {'capacity': 10, 'weight': 5}),
... (4, 2, {'capacity': 19, 'weight': 13}),
... (4, 5, {'capacity': 4, 'weight': 0}),
... (5, 7, {'capacity': 28, 'weight': 2}),
... (6, 5, {'capacity': 11, 'weight': 1}),
... (6, 7, {'weight': 8}),
... (7, 4, {'capacity': 6, 'weight': 6})])
>>> mincostFlow = nx.max_flow_min_cost(G, 1, 7)
>>> nx.cost_of_flow(G, mincostFlow)
373
>>> maxFlow = nx.ford_fulkerson_flow(G, 1, 7)
>>> nx.cost_of_flow(G, maxFlow)
428
>>> mincostFlowValue = (sum((mincostFlow[u][7] for u in G.predecessors(7)))
... - sum((mincostFlow[7][v] for v in G.successors(7))))
>>> mincostFlowValue == nx.max_flow(G, 1, 7)
True
```


4.20 Graphical degree sequence

Test sequences for graphiness.

is_graphical(sequence[, method])	Returns True if sequence is a valid degree sequence.
is_digraphical(in_sequence, out_sequence)	Returns True if some directed graph can realize the in- and out-degree
is_multigraphical(sequence)	Returns True if some multigraph can realize the sequence.
is_pseudographical(sequence)	Returns True if some pseudograph can realize the sequence.
is_valid_degree_sequence_havel_hakimi(...)	Returns True if deg_sequence can be realized by a simple graph.
is_valid_degree_sequence_erdos_gallai(...)	Returns True if deg_sequence can be realized by a simple graph.

4.20.1 is_graphical

is_graphical (sequence, method='eg')
Returns True if sequence is a valid degree sequence.
A degree sequence is valid if some graph can realize it.

Parameters sequence : list or iterable container
A sequence of integer node degrees
method : "eg"। "hh"
The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm.

Returns valid: bool
True if the sequence is a valid degree sequence and False if not.

References

Erdős-Gallai [EG1960], [choudum1986]
Havel-Hakimi [havel1955], [hakimi1962], [CL1996]

Examples

```
>>> G = nx.path_graph(4)
>>> sequence = G.degree().values()
>>> nx.is_valid_degree_sequence(sequence)
True
```


4.20.2 is_digraphical

is_digraphical (in_sequence, out_sequence)
Returns True if some directed graph can realize the in- and out-degree sequences.
Parameters in_sequence : list or iterable container
A sequence of integer node in-degrees
out_sequence : list or iterable container
A sequence of integer node out-degrees
Returns valid: bool
True if in and out-sequences are digraphic False if not.

Notes

This algorithm is from Kleitman and Wang [R222]. The worst case runtime is $O(s * \log n)$ where s and n are the sum and length of the sequences respectively.

References
[R222]

4.20.3 is_multigraphical

is_multigraphical (sequence)

Returns True if some multigraph can realize the sequence.
Parameters deg_sequence : list
A list of integers
Returns valid : bool
True if deg_sequence is a multigraphic degree sequence and False if not.

Notes

The worst-case run time is $\mathrm{O}(\mathrm{n})$ where n is the length of the sequence.

References

[R223]

4.20.4 is_pseudographical

is_pseudographical (sequence)

Returns True if some pseudograph can realize the sequence.
Every nonnegative integer sequence with an even sum is pseudographical (see [R224]).
Parameters sequence : list or iterable container
A sequence of integer node degrees
Returns valid : bool
True if the sequence is a pseudographic degree sequence and False if not.

Notes

The worst-case run time is $\mathrm{O}(\mathrm{n})$ where n is the length of the sequence.

References

[R224]

4.20.5 is_valid_degree_sequence_havel_hakimi

is_valid_degree_sequence_havel_hakimi (deg_sequence)
Returns True if deg_sequence can be realized by a simple graph.
The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is: $\mathrm{O}(\mathrm{s})$ where s is the sum of the sequence.

Parameters deg_sequence : list
A list of integers where each element specifies the degree of a node in a graph.

Returns valid : bool
True if deg_sequence is graphical and False if not.

Notes

The ZZ condition says that for the sequence d if

$$
|d|>=\frac{(\max (d)+\min (d)+1)^{2}}{4 * \min (d)}
$$

then d is graphical. This was shown in Theorem 6 in [R227].

References

[havel1955], [hakimi1962], [CL1996]
[R227]

4.20.6 is_valid_degree_sequence_erdos_gallai

is_valid_degree_sequence_erdos_gallai (deg_sequence)

Returns True if deg_sequence can be realized by a simple graph.
The validation is done using the Erdős-Gallai theorem [EG1960].
Parameters deg_sequence : list
A list of integers
Returns valid : bool
True if deg_sequence is graphical and False if not.

Notes

This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is: $\mathrm{O}(\mathrm{n})$ where n is the length of the sequence.
Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence,

$$
\sum_{i=1}^{k} d_{i} \leq k(k-1)+\sum_{j=k+1}^{n} \min \left(d_{i}, k\right)=k(n-1)-\left(k \sum_{j=0}^{k-1} n_{j}-\sum_{j=0}^{k-1} j n_{j}\right)
$$

A strong index k is any index where $d_{k} \geq k$ and the value n_{j} is the number of occurrences of j in d . The maximal strong index is called the Durfee index.

This particular rearrangement comes from the proof of Theorem 3 in [R226].

The ZZ condition says that for the sequence d if

$$
|d|>=\frac{(\max (d)+\min (d)+1)^{2}}{4 * \min (d)}
$$

then d is graphical. This was shown in Theorem 6 in [R226].

References

[EG1960], [choudum 1986]
[R225], [R226]

4.21 Hierarchy

Flow Hierarchy.
flow_hierarchy(G[, weight]) \quad Returns the flow hierarchy of a directed network.

4.21.1 flow_hierarchy

flow_hierarchy (G, weight=None)

Returns the flow hierarchy of a directed network.
Flow hierarchy is defined as the fraction of edges not participating in cycles in a directed graph [R228].
Parameters G: DiGraph or MultiDiGraph
A directed graph
weight : key,optional (default=None)
Attribute to use for node weights. If None the weight defaults to 1.

Returns h: float

Flow heirarchy value

Notes

The algorithm described in [R228] computes the flow hierarchy through exponentiation of the adjacency matrix. This function implements an alternative approach that finds strongly connected components. An edge is in a cycle if and only if it is in a strongly connected component, which can be found in $O(m)$ time using Tarjan's algorithm.

References

[R228]

4.22 Isolates

Functions for identifying isolate (degree zero) nodes.

is_isolate(G, n)	Determine of node n is an isolate (degree zero).
isolates (\mathbf{G})	Return list of isolates in the graph.

4.22.1 is_isolate

is_isolate (G, n)

Determine of node n is an isolate (degree zero).
Parameters G:graph
A networkx graph
\mathbf{n} : node
A node in G
Returns isolate : bool
True if n has no neighbors, False otherwise.

Examples

>>> G=nx.Graph ()
>>> G.add_edge $(1,2)$
>>> G.add_node (3)
>>> nx.is_isolate ($\mathrm{G}, 2$)
False
>>> nx.is_isolate (G, 3)
True

4.22.2 isolates

isolates (G)

Return list of isolates in the graph.
Isolates are nodes with no neighbors (degree zero).
Parameters G: graph
A networkx graph
Returns isolates : list
List of isolate nodes.

Examples

>>> G = nx.Graph()
>>> G.add_edge $(1,2)$
>>> G.add_node(3)

To remove all isolates in the graph use >>> G.remove_nodes_from(nx.isolates(G)) >>> G.nodes() [1, 2]
For digraphs isolates have zero in-degree and zero out_degre >>> G = nx.DiGraph([(0,1),(1,2)]) >>> G.add_node(3) >>> nx.isolates(G) [3]

4.23 Isomorphism

is_isomorphic(G1, G2[, node_match, edge_match])	Returns True if the graphs G1 and G2 are isomorphic and False otherwise
could_be_isomorphic(G1, G2)	Returns False if graphs are definitely not isomorphic.
fast_could_be_isomorphic(G1, G2)	Returns False if graphs are definitely not isomorphic.
faster_could_be_isomorphic(G1, G2)	Returns False if graphs are definitely not isomorphic.

4.23.1 is_isomorphic

```
is_isomorphic(G1,G2, node_match=None, edge_match=None)
```

Returns True if the graphs G1 and G2 are isomorphic and False otherwise.

Parameters G1, G2: graphs :

The two graphs G1 and G2 must be the same type.
node_match : callable
A function that returns True if node n 1 in G 1 and n 2 in G 2 should be considered equal during the isomorphism test. If node_match is not specified then node attributes are not considered.

The function will be called like

```
node_match(G1.node[n1], G2.node[n2]).
```

That is, the function will receive the node attribute dictionaries for n 1 and n 2 as inputs.
edge_match : callable
A function that returns True if the edge attribute dictionary for the pair of nodes (u1, v 1) in G1 and ($\mathrm{u} 2, \mathrm{v} 2$) in G2 should be considered equal during the isomorphism test. If edge_match is not specified then edge attributes are not considered.

The function will be called like

```
edge_match(G1[u1][v1], G2[u2][v2]).
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration.

See also:

numerical_node_match, numerical_edge_match, numerical_multiedge_match,
categorical_node_match, categorical_edge_match, categorical_multiedge_match

Notes

Uses the vf2 algorithm [R229].

References

[R229]

Examples

>>> import networkx.algorithms.isomorphism as iso
For digraphs G1 and G2, using 'weight' edge attribute (default: 1)

```
>>> G1 = nx.DiGraph()
>>> G2 = nx.DiGraph()
>>> G1.add_path([1,2,3,4],weight=1)
>>> G2.add_path([10, 20,30,40],weight=2)
>>> em = iso.numerical_edge_match('weight', 1)
>>> nx.is_isomorphic(G1, G2) # no weights considered
True
>>> nx.is_isomorphic(G1, G2, edge_match=em) # match weights
False
```

For multidigraphs G1 and G2, using 'fill' node attribute (default: '’)

```
>>> G1 = nx.MultiDiGraph()
>>> G2 = nx.MultiDiGraph()
>>> G1.add_nodes_from([1,2,3],fill='red')
>>> G2.add_nodes_from([10,20,30,40],fill='red')
>>> G1.add_path([1,2,3,4],weight=3, linewidth=2.5)
>>> G2.add_path([10,20,30,40],weight=3)
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, node_match=nm)
True
```

For multidigraphs G1 and G2, using 'weight' edge attribute (default: 7)

```
>>> G1.add_edge(1,2, weight=7)
>>> G2.add_edge (10,20)
>>> em = iso.numerical_multiedge_match('weight', 7, rtol=1e-6)
>>> nx.is_isomorphic(G1, G2, edge_match=em)
True
```

For multigraphs G1 and G2, using 'weight' and 'linewidth' edge attributes with default values 7 and 2.5. Also using 'fill' node attribute with default value 'red'.

```
>>> em = iso.numerical_multiedge_match(['weight', 'linewidth'], [7, 2.5])
>>> nm = iso.categorical_node_match('fill', 'red')
>>> nx.is_isomorphic(G1, G2, edge_match=em, node_match=nm)
True
```


4.23.2 could_be_isomorphic

could_be_isomorphic ($G 1, G 2$)

Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.
Parameters G1, G2 : graphs
The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

4.23.3 fast_could_be_isomorphic

fast_could_be_isomorphic (G1, G2)
Returns False if graphs are definitely not isomorphic.
True does NOT guarantee isomorphism.
Parameters G1, G2 : graphs
The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree and triangle sequences.

4.23.4 faster_could_be_isomorphic

faster_could_be_isomorphic (G1, G2)
Returns False if graphs are definitely not isomorphic.
True does NOT guarantee isomorphism.
Parameters G1, G2 : graphs
The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree sequences.

4.23.5 Advanced Interface to VF2 Algorithm

VF2 Algorithm

An implementation of VF2 algorithm for graph ismorphism testing.
The simplest interface to use this module is to call networkx.is_isomorphic().

Introduction

The GraphMatcher and DiGraphMatcher are responsible for matching graphs or directed graphs in a predetermined manner. This usually means a check for an isomorphism, though other checks are also possible. For example, a subgraph of one graph can be checked for isomorphism to a second graph.

Matching is done via syntactic feasibility. It is also possible to check for semantic feasibility. Feasibility, then, is defined as the logical AND of the two functions.

To include a semantic check, the (Di) GraphMatcher class should be subclassed, and the semantic_feasibility() function should be redefined. By default, the semantic feasibility function always returns True. The effect of this is that semantics are not considered in the matching of G1 and G2.

Examples

Suppose G1 and G2 are isomorphic graphs. Verification is as follows:

```
>>> from networkx.algorithms import isomorphism
>>> G1 = nx.path_graph(4)
>>> G2 = nx.path_graph(4)
>>> GM = isomorphism.GraphMatcher(G1,G2)
>>> GM.is_isomorphic()
True
```

GM.mapping stores the isomorphism mapping from G1 to G2.

```
>>> GM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}
```

Suppose G1 and G2 are isomorphic directed graphs graphs. Verification is as follows:

```
>>> G1 = nx.path_graph(4, create_using=nx.DiGraph())
>>> G2 = nx.path_graph(4, create_using=nx.DiGraph())
>>> DiGM = isomorphism.DiGraphMatcher(G1,G2)
>>> DiGM.is_isomorphic()
True
```

DiGM.mapping stores the isomorphism mapping from G1 to G2.

```
>>> DiGM.mapping
{0: 0, 1: 1, 2: 2, 3: 3}
```


Subgraph Isomorphism

Graph theory literature can be ambiguious about the meaning of the above statement, and we seek to clarify it now.
In the VF2 literature, a mapping M is said to be a graph-subgraph isomorphism iff M is an isomorphism between G2 and a subgraph of G1. Thus, to say that G1 and G2 are graph-subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2.

Other literature uses the phrase 'subgraph isomorphic' as in 'G1 does not have a subgraph isomorphic to G2'. Another use is as an in adverb for isomorphic. Thus, to say that G1 and G2 are subgraph isomorphic is to say that a subgraph of G1 is isomorphic to G2.

Finally, the term 'subgraph' can have multiple meanings. In this context, 'subgraph' always means a 'node-induced subgraph'. Edge-induced subgraph isomorphisms are not directly supported, but one should be able to perform the check by making use of nx.line_graph(). For subgraphs which are not induced, the term 'monomorphism' is preferred over 'isomorphism'. Currently, it is not possible to check for monomorphisms.
Let $G=(N, E)$ be a graph with a set of nodes N and set of edges E.
If $G^{\prime}=\left(\mathbf{N}^{\prime}, E^{\prime}\right)$ is a subgraph, then: N^{\prime} is a subset of $N E$ ' is a subset of E
If $\mathbf{G}^{\prime}=\left(\mathbf{N}^{\prime}, \mathbf{E}^{\prime}\right)$ is a node-induced subgraph, then: N^{\prime} is a subset of N^{\prime} ' is the subset of edges in E relating nodes in N^{\prime}

If $G^{\prime}=\left(\mathbf{N}^{\prime}, \mathbf{E}^{\prime}\right)$ is an edge-induced subgrpah, then: N^{\prime} is the subset of nodes in N related by edges in $E^{\prime} E^{\prime}$ is a subset of E

References

[1] Luigi P. Cordella, Pasquale Foggia, Carlo Sansone, Mario Vento, "A (Sub)Graph Isomorphism Algorithm for Matching Large Graphs", IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 10, pp. 1367-1372, Oct., 2004. http://ieeexplore.ieee.org/iel5/34/29305/01323804.pdf
[2] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf

See Also

syntactic_feasibliity(), semantic_feasibility()

Notes

Modified to handle undirected graphs. Modified to handle multiple edges.
In general, this problem is NP-Complete.

Graph Matcher

GraphMatcher.__init__(G1, G2[, node_match, ...])	Initialize graph matcher.
GraphMatcher.initialize()	Reinitializes the state of the algorithm.
GraphMatcher.is_isomorphic()	Returns True if G1 and G2 are isomorphic graphs.
GraphMatcher.subgraph_is_isomorphic()	Returns True if a subgraph of G1 is isomorphic to G2.
GraphMatcher.isomorphisms_iter()	Generator over isomorphisms between G1 and G2.
GraphMatcher.subgraph_isomorphisms_iter()	Generator over isomorphisms between a subgraph of G1 and G2.
GraphMatcher.candidate_pairs_iter()	Iterator over candidate pairs of nodes in G1 and G2.
GraphMatcher.match()	Extends the isomorphism mapping.
GraphMatcher.semantic_feasibility(G1_node, ...)	Returns True if mapping G1_node to G2_node is semantically fea
GraphMatcher.syntactic_feasibility(G1_node, ...)	Returns True if adding (G1_node, G2_node) is syntactically feasil

__init__
GraphMatcher.__init__(G1, G2, node_match=None, edge_match=None)
Initialize graph matcher.

Parameters G1, G2: graph :

The graphs to be tested.
node_match: callable :
A function that returns True iff node n 1 in G 1 and n 2 in G 2 should be considered equal during the isomorphism test. The function will be called like:

```
node_match(G1.node[n1], G2.node[n2])
```

That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism. edge_match: callable :

A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v 1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like:

```
edge_match(G1[u1][v1], G2[u2][v2])
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism.

initialize

```
GraphMatcher.initialize()
```

Reinitializes the state of the algorithm.
This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a redefinition is not necessary.

is_isomorphic

GraphMatcher.is_isomorphic()
Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic

GraphMatcher.subgraph_is_isomorphic()
Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter

GraphMatcher.isomorphisms_iter()
Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_iter

GraphMatcher.subgraph_isomorphisms_iter()
Generator over isomorphisms between a subgraph of G1 and G2.
candidate_pairs_iter
GraphMatcher.candidate_pairs_iter()
Iterator over candidate pairs of nodes in G1 and G2.

match

GraphMatcher.match ()
Extends the isomorphism mapping.
This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

semantic_feasibility

GraphMatcher.semantic_feasibility (G1_node, G2_node)
Returns True if mapping G1_node to G2_node is semantically feasible.

syntactic_feasibility

GraphMatcher.syntactic_feasibility (G1_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.
This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found.

DiGraph Matcher

DiGraphMatcher.__init__(G1, G2[,...])	Initialize graph matcher.
DiGraphMatcher.initialize()	Reinitializes the state of the algorithm.
DiGraphMatcher.is_isomorphic()	Returns True if G1 and G2 are isomorphic graphs.
DiGraphMatcher.subgraph_is_isomorphic()	Returns True if a subgraph of G1 is isomorphic to G2.
DiGraphMatcher.isomorphisms_iter()	Generator over isomorphisms between G1 and G2.
DiGraphMatcher.subgraph_isomorphisms_iter()	Generator over isomorphisms between a subgraph of G1 and G2
DiGraphMatcher.candidate_pairs_iter()	Iterator over candidate pairs of nodes in G1 and G2.
DiGraphMatcher.match()	Extends the isomorphism mapping.
DiGraphMatcher.semantic_feasibility(G1_node, ...)	Returns True if mapping G1_node to G2_node is semantically fe
DiGraphMatcher.syntactic_feasibility(...)	Returns True if adding (G1_node, G2_node) is syntactically feas

__init__
DiGraphMatcher.__init__(G1,G2, node_match=None, edge_match=None)
Initialize graph matcher.

Parameters G1, G2 : graph

The graphs to be tested.
node_match : callable
A function that returns True iff node n 1 in G 1 and n 2 in G 2 should be considered equal during the isomorphism test. The function will be called like:
node_match(G1.node[n1], G2.node[n2])
That is, the function will receive the node attribute dictionaries of the nodes under consideration. If None, then no attributes are considered when testing for an isomorphism.
edge_match : callable
A function that returns True iff the edge attribute dictionary for the pair of nodes (u1, v 1) in G1 and (u2, v2) in G2 should be considered equal during the isomorphism test. The function will be called like:

```
edge_match(G1[u1][v1], G2[u2][v2])
```

That is, the function will receive the edge attribute dictionaries of the edges under consideration. If None, then no attributes are considered when testing for an isomorphism.

initialize

DiGraphMatcher.initialize()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher, a redefinition is not necessary.

is_isomorphic

DiGraphMatcher.is_isomorphic()
Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic

DiGraphMatcher.subgraph_is_isomorphic()
Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter

DiGraphMatcher.isomorphisms_iter()
Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_iter

DiGraphMatcher.subgraph_isomorphisms_iter()
Generator over isomorphisms between a subgraph of G1 and G2.
candidate_pairs_iter
DiGraphMatcher.candidate_pairs_iter()
Iterator over candidate pairs of nodes in G1 and G2.

match

DiGraphMatcher.match()
Extends the isomorphism mapping.
This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

semantic_feasibility

DiGraphMatcher.semantic_feasibility (G1_node, G2_node)
Returns True if mapping G1_node to G2_node is semantically feasible.

syntactic_feasibility

DiGraphMatcher.syntactic_feasibility (G1_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.
This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an isomorphism to be found.

Match helpers

categorical_node_match(attr, default)	Returns a comparison function for a categorical node attribute.
categorical_edge_match(attr, default)	Returns a comparison function for a categorical edge attribute.
categorical_multiedge_match(attr, default)	Returns a comparison function for a categorical edge attribute.
	Continued on next page

Table 4.53 - continued from previous page

numerical_node_match(attr, default[, rtol, atol])	Returns a comparison function for a numerical node attribute.
numerical_edge_match(attr, default[, rtol, atol] $)$	Returns a comparison function for a numerical edge attribute.
numerical_multiedge_match(attr, default[, ...])	Returns a comparison function for a numerical edge attribute.
generic_node_match(attr, default, op)	Returns a comparison function for a generic attribute.
generic_edge_match(attr, default, op)	Returns a comparison function for a generic attribute.
generic_multiedge_match(attr, default, op)	Returns a comparison function for a generic attribute.

categorical_node_match
 categorical_node_match (attr, default)

Returns a comparison function for a categorical node attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ must be hashable and comparable via the $==$ operator since they are placed into a $\operatorname{set}([])$ object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters attr: string I list

The categorical node attribute to compare, or a list of categorical node attributes to compare.
default : value | list
The default value for the categorical node attribute, or a list of default values for the categorical node attributes.

Returns match : function
The customized, categorical node $_{m}$ atch function.

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_node_match('size', 1)
>>> nm = iso.categorical_node_match(['color', 'size'], ['red', 2])

categorical_edge_match

categorical_edge_match (attr, default)
Returns a comparison function for a categorical edge attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ must be hashable and comparable via the $==$ operator since they are placed into a $\operatorname{set}([])$ object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters attr: string I list
The categorical edge attribute to compare, or a list of categorical edge attributes to compare.
default : value I list
The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.

Returns match : function
The customized, categorical $e d g e_{m}$ atch function.

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.categorical_edge_match('size', 1)
>>> nm = iso.categorical_edge_match(['color', 'size'], ['red', 2])

categorical_multiedge_match

categorical_multiedge_match (attr, default)
Returns a comparison function for a categorical edge attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ must be hashable and comparable via the $==$ operator since they are placed into a $\operatorname{set}([])$ object. If the sets from G1 and G2 are the same, then the constructed function returns True.

Parameters attr : string l list
The categorical edge attribute to compare, or a list of categorical edge attributes to compare.
default : value | list
The default value for the categorical edge attribute, or a list of default values for the categorical edge attributes.
Returns match: function
The customized, categorical $e d g e_{m}$ atch function.

Examples

>>> import networkx.algorithms.isomorphism as iso
$\ggg \mathrm{nm}=$ iso.categorical_multiedge_match('size', 1)
>>> nm = iso.categorical_multiedge_match(['color', 'size'], ['red', 2])

numerical_node_match

numerical_node_match (attr, default, rtol=1e-05, atol=1e-08)
Returns a comparison function for a numerical node attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

Parameters attr : string \| list
The numerical node attribute to compare, or a list of numerical node attributes to compare.
default : value | list
The default value for the numerical node attribute, or a list of default values for the numerical node attributes.
rtol : float
The relative error tolerance.
atol : float
The absolute error tolerance.
Returns match : function

The customized, numerical node $_{m}$ atch function.

Examples

>>> import networkx.algorithms.isomorphism as iso
$\ggg \mathrm{nm}=$ iso.numerical_node_match('weight', 1.0)
$\ggg \mathrm{nm}=\mathrm{iso}$. numerical_node_match(['weight', 'linewidth'], [.25, .5])

numerical_edge_match

numerical_edge_match (attr, default, rtol=1e-05, atol=1e-08)
Returns a comparison function for a numerical edge attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

Parameters attr : string \| list
The numerical edge attribute to compare, or a list of numerical edge attributes to compare.
default : value | list
The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes.
rtol : float
The relative error tolerance.
atol : float
The absolute error tolerance.
Returns match : function
The customized, numerical $e d g e_{m}$ atch function.

Examples

>>> import networkx.algorithms.isomorphism as iso
>>> nm = iso.numerical_edge_match('weight', 1.0)
>>> nm = iso.numerical_edge_match(['weight', 'linewidth'], [.25, .5])

numerical_multiedge_match

numerical_multiedge_match (attr, default, rtol=1e-05, atol=le-08)
Returns a comparison function for a numerical edge attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ must be numerical and sortable. If the sorted list of values from G1 and G2 are the same within some tolerance, then the constructed function returns True.

Parameters attr : string I list
The numerical edge attribute to compare, or a list of numerical edge attributes to compare.
default : value | list

The default value for the numerical edge attribute, or a list of default values for the numerical edge attributes.
rtol : float
The relative error tolerance.
atol : float
The absolute error tolerance.
Returns match : function
The customized, numerical $e d g e_{m}$ atch function.

Examples

>>> import networkx.algorithms.isomorphism as iso
$\ggg \mathrm{nm}=$ iso.numerical_multiedge_match('weight', 1.0)
>>> nm = iso.numerical_multiedge_match(['weight', 'linewidth'], [.25, .5])

generic_node_match

generic_node_match (attr, default, op)
Returns a comparison function for a generic attribute.
The value(s) of the $\operatorname{attr}(s)$ are compared using the specified operators. If all the attributes are equal, then the constructed function returns True.

Parameters attr : string \| list

The node attribute to compare, or a list of node attributes to compare.
default : value | list
The default value for the node attribute, or a list of default values for the node attributes.
op : callable | list
The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.
Returns match: function
The customized, generic node $_{m}$ atch function.

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'], [1.0, 'red'], [close, eq])
generic_edge_match
generic_edge_match (attr, default, op)
Returns a comparison function for a generic attribute.
The value(s) of the attr(s) are compared using the specified operators. If all the attributes are equal, then the constructed function returns True.

Parameters attr : string I list
The edge attribute to compare, or a list of edge attributes to compare.
default : value I list
The default value for the edge attribute, or a list of default values for the edge attributes.
op : callable | list
The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

Returns match: function
The customized, generic $e d g e_{m}$ atch function.

Examples

>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_edge_match
$\ggg \mathrm{nm}=$ generic_edge_match('weight', 1.0, close)
$\ggg \mathrm{nm}=$ generic_edge_match('color', 'red', eq)
>>> nm = generic_edge_match(['weight', 'color'], [1.0, 'red'], [close, eq])

generic_multiedge_match

generic_multiedge_match (attr, default, op)
Returns a comparison function for a generic attribute.
The value(s) of the $\operatorname{attr}(\mathrm{s})$ are compared using the specified operators. If all the attributes are equal, then the constructed function returns True. Potentially, the constructed edge_match function can be slow since it must verify that no isomorphism exists between the multiedges before it returns False.

Parameters attr : string I list
The edge attribute to compare, or a list of node attributes to compare.
default : value | list
The default value for the edge attribute, or a list of default values for the dgeattributes.
op : callable | list
The operator to use when comparing attribute values, or a list of operators to use when comparing values for each attribute.

Returns match : function
The customized, generic $e d g e_{m}$ atch function.

Examples

```
>>> from operator import eq
>>> from networkx.algorithms.isomorphism.matchhelpers import close
>>> from networkx.algorithms.isomorphism import generic_node_match
>>> nm = generic_node_match('weight', 1.0, close)
>>> nm = generic_node_match('color', 'red', eq)
>>> nm = generic_node_match(['weight', 'color'],
... [1.0, 'red'],
... [close, eq])
```

...

4.24 Link Analysis

4.24.1 PageRank

PageRank analysis of graph structure.

pagerank $(G[$, alpha, personalization, ...])	Return the PageRank of the nodes in the graph.
pagerank_numpy $(G[$, alpha, personalization, ...])	Return the PageRank of the nodes in the graph.
pagerank_scipy $(G[$, alpha, personalization,...])	Return the PageRank of the nodes in the graph.
google_matrix $(G[$, alpha, personalization, ...])	Return the Google matrix of the graph.

pagerank
$\operatorname{pagerank}(G, \quad$ alpha=0.85, personalization=None, max_iter=100, tol=1e-08, nstart=None, weight='weight')
Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters G:graph
A NetworkX graph
alpha : float, optional
Damping parameter for PageRank, default $=0.85$

personalization: dict, optional :

The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node.
max_iter : integer, optional
Maximum number of iterations in power method eigenvalue solver.
tol : float, optional
Error tolerance used to check convergence in power method solver.
nstart : dictionary, optional
Starting value of PageRank iteration for each node.
weight : key, optional

Edge data key to use as weight. If None weights are set to 1.
Returns pagerank: dictionary
Dictionary of nodes with PageRank as value

See also:

pagerank_numpy, pagerank_scipy, google_matrix

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes $(\mathrm{G}) *$ tol has been reached.

The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs by converting each oriented edge in the directed graph to two edges.

References

[R236], [R237]

Examples

>>> G=nx.DiGraph(nx.path_graph(4))
>>> pr=nx.pagerank (G, alpha=0.9)

pagerank_numpy

pagerank_numpy (G, alpha $=0.85$, personalization=None, weight='weight')
Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters G: graph
A NetworkX graph
alpha : float, optional
Damping parameter for PageRank, default $=0.85$
personalization: dict, optional :
The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node.
weight : key, optional
Edge data key to use as weight. If None weights are set to 1 .
Returns pagerank: dictionary
Dictionary of nodes with PageRank as value

See also:

```
pagerank,pagerank_scipy,google_matrix
```


Notes

The eigenvector calculation uses NumPy's interface to the LAPACK eigenvalue solvers. This will be the fastest and most accurate for small graphs.

This implementation works with Multi(Di)Graphs.

References

[R238], [R239]

Examples

>>> G=nx.DiGraph(nx.path_graph(4))
>>> pr=nx.pagerank_numpy (G,alpha=0.9)

pagerank_scipy

pagerank_scipy (G, alpha $=0.85$, personalization $=$ None, max_iter $=100$, tol $=1 e-06$, weight $=$ 'weight')
Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters G:graph
A NetworkX graph
alpha : float, optional
Damping parameter for PageRank, default $=0.85$

personalization: dict, optional :

The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node.
max_iter : integer, optional
Maximum number of iterations in power method eigenvalue solver.
tol : float, optional
Error tolerance used to check convergence in power method solver.
weight : key, optional
Edge data key to use as weight. If None weights are set to 1.
Returns pagerank: dictionary
Dictionary of nodes with PageRank as value

See also:

pagerank, pagerank_numpy, google_matrix

Notes

The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.

References

[R240], [R241]

Examples

>>> G=nx.DiGraph(nx.path_graph (4))
>>> pr=nx.pagerank_scipy(G,alpha=0.9)

google_matrix

google_matrix (G, alpha=0.85, personalization=None, nodelist=None, weight='weight')
Return the Google matrix of the graph.
Parameters G:graph
A NetworkX graph
alpha : float
The damping factor
personalization: dict, optional :
The "personalization vector" consisting of a dictionary with a key for every graph node and nonzero personalization value for each node.
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
weight : key, optional
Edge data key to use as weight. If None weights are set to 1 .
Returns A: NumPy matrix
Google matrix of the graph

See also:

```
pagerank, pagerank_numpy,pagerank_scipy
```


4.24.2 Hits

Hubs and authorities analysis of graph structure.

hits(G[, max_iter, tol, nstart, normalized])	Return HITS hubs and authorities values for nodes.
hits_numpy(G[, normalized])	Return HITS hubs and authorities values for nodes.
hits_scipy(G[, max_iter, tol, normalized])	Return HITS hubs and authorities values for nodes.
hub_matrix(G[, nodelist])	Return the HITS hub matrix.

Table 4.55 - continued from previous page
authority_matrix(G[, nodelist]) Return the HITS authority matrix.
hits
hits (G, max_iter $=100$, tol=1e-08, nstart=None, normalized=True)
Return HITS hubs and authorities values for nodes.
The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters G:graph
A NetworkX graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of each node for power method iteration.
normalized : bool (default=True)
Normalize results by the sum of all of the values.
Returns (hubs,authorities) : two-tuple of dictionaries
Two dictionaries keyed by node containing the hub and authority values.

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes $(\mathrm{G}) *$ tol has been reached.
The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

[R230], [R231]

Examples
>>> G=nx.path_graph (4)
>>> h,a=nx.hits(G)
hits_numpy
hits_numpy (G, normalized $=$ True)
Return HITS hubs and authorities values for nodes.
The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters G: graph
A NetworkX graph
normalized : bool (default=True)
Normalize results by the sum of all of the values.
Returns (hubs,authorities) : two-tuple of dictionaries
Two dictionaries keyed by node containing the hub and authority values.

Notes

The eigenvector calculation uses NumPy's interface to LAPACK.
The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

[R232], [R233]

Examples

>>> G=nx.path_graph (4)
>>> h, a=nx.hits (G)
hits_scipy
hits_scipy (G, max_iter=100, tol=1e-06, normalized=True)
Return HITS hubs and authorities values for nodes.
The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the incoming links. Hubs estimates the node value based on outgoing links.

Parameters G:graph
A NetworkX graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of each node for power method iteration.
normalized : bool (default=True)
Normalize results by the sum of all of the values.
Returns (hubs,authorities) : two-tuple of dictionaries
Two dictionaries keyed by node containing the hub and authority values.

Notes

This implementation uses SciPy sparse matrices.
The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.
The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is directed and will execute on undirected graphs.

References

[R234], [R235]

Examples

>>> G=nx.path_graph (4)
>>> h,a=nx.hits(G)

hub_matrix

hub_matrix (G, nodelist=None)
Return the HITS hub matrix.
authority_matrix
authority_matrix (G, nodelist=None)
Return the HITS authority matrix.

4.25 Matching

maximal_matching(G) Find a maximal cardinality matching in the graph.
max_weight_matching(G[, maxcardinality]) Compute a maximum-weighted matching of G.

4.25.1 maximal_matching

maximal_matching (G)

Find a maximal cardinality matching in the graph.
A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges.

Parameters G: NetworkX graph

Undirected graph
Returns matching : set
A maximal matching of the graph.

Notes

The algorithm greedily selects a maximal matching M of the graph G (i.e. no superset of M exists). It runs in $O(|E|)$ time.

4.25.2 max_weight_matching

max_weight_matching (G, maxcardinality=False)
Compute a maximum-weighted matching of G.
A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the number of matched edges. The weight of a matching is the sum of the weights of its edges.

Parameters G: NetworkX graph

Undirected graph
maxcardinality: bool, optional :
If maxcardinality is True, compute the maximum-cardinality matching with maximum weight among all maximum-cardinality matchings.
Returns mate: dictionary
The matching is returned as a dictionary, mate, such that mate[v] $==\mathrm{w}$ if node v is matched to node w. Unmatched nodes do not occur as a key in mate.

Notes

If G has edges with 'weight' attribute the edge data are used as weight values else the weights are assumed to be 1 .

This function takes time O (number_of_nodes ** 3).
If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used, the algorithm could return a slightly suboptimal matching due to numeric precision errors.

This method is based on the "blossom" method for finding augmenting paths and the "primal-dual" method for finding a matching of maximum weight, both methods invented by Jack Edmonds [R242].

References

[R242]

4.26 Maximal independent set

Algorithm to find a maximal (not maximum) independent set.

4.26.1 maximal_independent_set

maximal_independent_set (G, nodes=None)

Return a random maximal independent set guaranteed to contain a given set of nodes.
An independent set is a set of nodes such that the subgraph of G induced by these nodes contains no edges. A maximal independent set is an independent set such that it is not possible to add a new node and still get an independent set.

Parameters G: NetworkX graph

nodes : list or iterable
Nodes that must be part of the independent set. This set of nodes must be independent.
Returns indep_nodes : list
List of nodes that are part of a maximal independent set.

Raises NetworkXUnfeasible :

If the nodes in the provided list are not part of the graph or do not form an independent set, an exception is raised.

Notes

This algorithm does not solve the maximum independent set problem.

Examples

>>> G = nx.path_graph (5)
>>> nx.maximal_independent_set (G)
[4, 0, 2]
>>> nx.maximal_independent_set (G, [1])
[1, 3]

4.27 Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.
minimum_spanning_tree(G[, weight]) Return a minimum spanning tree or forest of an undirected weighted graph.
minimum_spanning_edges(G[, weight, data]) Generate edges in a minimum spanning forest of an undirected weighted graph.

4.27.1 minimum_spanning_tree

minimum_spanning_tree (G, weight='weight')
Return a minimum spanning tree or forest of an undirected weighted graph.
A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights.

If the graph is not connected a spanning forest is constructed. A spanning forest is a union of the spanning trees for each connected component of the graph.

Parameters G:NetworkX Graph
weight : string
Edge data key to use for weight (default 'weight').

Returns G: NetworkX Graph

A minimum spanning tree or forest.

Notes

Uses Kruskal's algorithm.
If the graph edges do not have a weight attribute a default weight of 1 will be used.

Examples

```
>>> G=nx.cycle_graph(4)
>>> G.add_edge(0,3,weight=2) # assign weight 2 to edge 0-3
>>> T=nx.minimum_spanning_tree(G)
>>> print(sorted(T.edges(data=True)))
[(0, 1, {}), (1, 2, {}), (2, 3, {})]
```


4.27.2 minimum_spanning_edges

minimum_spanning_edges (G, weight='weight', data=True)
Generate edges in a minimum spanning forest of an undirected weighted graph.
A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights. A spanning forest is a union of the spanning trees for each connected component of the graph.

Parameters G : NetworkX Graph
weight : string
Edge data key to use for weight (default 'weight').
data : bool, optional
If True yield the edge data along with the edge.
Returns edges : iterator
A generator that produces edges in the minimum spanning tree. The edges are threetuples (u, v, w) where w is the weight.

Notes

Uses Kruskal's algorithm.
If the graph edges do not have a weight attribute a default weight of 1 will be used.
Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/

Examples

>>> G=nx.cycle_graph (4)
\ggg G.add_edge (0,3,weight=2) \# assign weight 2 to edge 0-3
\ggg mst=nx.minimum_spanning_edges(G,data=False) \# a generator of MST edges
>>> edgelist=list(mst) \# make a list of the edges
>>> print (sorted(edgelist))
$[(0,1),(1,2),(2,3)]$

4.28 Operators

Unary operations on graphs

complement(G[, name])	Return the graph complement of G.
reverse(G[, copy])	Return the reverse directed graph of G.

4.28.1 complement

complement (G, name $=$ None)
Return the graph complement of G.
Parameters G:graph
A NetworkX graph
name : string
Specify name for new graph
Returns GC: A new graph.

Notes

Note that complement() does not create self-loops and also does not produce parallel edges for MultiGraphs.
Graph, node, and edge data are not propagated to the new graph.

4.28.2 reverse

reverse (G, copy=True)
Return the reverse directed graph of G.
Parameters G: directed graph
A NetworkX directed graph
copy : bool
If True, then a new graph is returned. If False, then the graph is reversed in place.
Returns H: directed graph
The reversed G.
Operations on graphs including union, intersection, difference.

compose $(\mathrm{G}, \mathrm{H}[$, name $])$	Return a new graph of G composed with H.
union $(\mathrm{G}, \mathrm{H}[$, rename, name $)$	Return the union of graphs G and H.
disjoint_union(G, H)	Return the disjoint union of graphs G and H.
intersection (G, H)	Return a new graph that contains only the edges that exist in
difference(G, H)	Return a new graph that contains the edges that exist in G but not in H.
symmetric_difference(G, H)	Return new graph with edges that exist in either G or H but not both.

4.28.3 compose

compose (G, H, name=None)

Return a new graph of G composed with H .
Composition is the simple union of the node sets and edge sets. The node sets of G and H need not be disjoint.

Parameters G,H : graph

A NetworkX graph
name : string
Specify name for new graph

Returns C: A new graph with the same type as G :

Notes

It is recommended that G and H be either both directed or both undirected. Attributes from H take precedent over attributes from G.

4.28.4 union

union $(G, H$, rename $=($ None, None $)$, name $=$ None $)$
Return the union of graphs G and H .
Graphs G and H must be disjoint, otherwise an exception is raised.
Parameters G,H : graph
A NetworkX graph
create_using : NetworkX graph
Use specified graph for result. Otherwise
rename : bool, default=(None, None)
Node names of G and H can be changed by specifying the tuple rename=('G-‘,'H-') (for example). Node "u" in G is then renamed "G-u" and "v" in H is renamed "H-v".
name : string
Specify the name for the union graph
Returns \mathbf{U} : A union graph with the same type as G.

See also:

disjoint_union

Notes

To force a disjoint union with node relabeling, use disjoint_union (G, H) or convert_node_labels_to integers().
Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used.

4.28.5 disjoint_union

disjoint_union (G, H)

Return the disjoint union of graphs G and H .
This algorithm forces distinct integer node labels.
Parameters G,H : graph
A NetworkX graph
Returns \mathbf{U} : A union graph with the same type as G.

Notes

A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both undirected.

The nodes of G are relabeled 0 to len $(\mathrm{G})-1$, and the nodes of H are relabeled len (G) to len $(\mathrm{G})+\operatorname{len}(\mathrm{H})-1$.
Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present in both G and H the value from H is used.

4.28.6 intersection

intersection (G, H)

Return a new graph that contains only the edges that exist in both G and H .
The node sets of H and G must be the same.
Parameters G,H : graph
A NetworkX graph. G and H must have the same node sets.
Returns GH : A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the intersection of G and H with the attributes (including edge data) from G use remove_nodes_from() as follows

```
>>> G=nx.path_graph(3)
>>> H=nx.path_graph (5)
>>> R=G.copy()
>>> R.remove_nodes_from(n for n in G if n not in H)
```


4.28.7 difference

difference (G, H)

Return a new graph that contains the edges that exist in G but not in H .
The node sets of H and G must be the same.
Parameters G,H : graph
A NetworkX graph. G and H must have the same node sets.
Returns D: A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the difference of G and H with with the attributes (including edge data) from G use remove_nodes_from() as follows:
>>> G=nx.path_graph (3)
>>> H=nx.path_graph (5)
>>> R=G.copy ()
>>> R.remove_nodes_from(n for n in G if n in H)

4.28.8 symmetric_difference

symmetric_difference (G, H)

Return new graph with edges that exist in either G or H but not both.
The node sets of H and G must be the same.
Parameters G,H : graph
A NetworkX graph. G and H must have the same node sets.
Returns D: A new graph with the same type as G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.
Operations on many graphs.

compose_all(graphs[, name])	Return the composition of all graphs.
union_all(graphs[, rename, name])	Return the union of all graphs.
disjoint_union_all(graphs)	Return the disjoint union of all graphs.
intersection_all(graphs)	Return a new graph that contains only the edges that exist in all graphs.

4.28.9 compose_all

compose_all (graphs, name=None)
Return the composition of all graphs.
Composition is the simple union of the node sets and edge sets. The node sets of the supplied graphs need not be disjoint.

Parameters graphs: list
List of NetworkX graphs
name : string
Specify name for new graph
Returns C:A graph with the same type as the first graph in list

Notes

It is recommended that the supplied graphs be either all directed or all undirected.
Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.28.10 union_all

union_all (graphs, rename $=($ None, $)$, name $=$ None $)$
Return the union of all graphs.
The graphs must be disjoint, otherwise an exception is raised.
Parameters graphs: list of graphs
List of NetworkX graphs
rename : bool , default=(None, None)
Node names of G and H can be changed by specifying the tuple rename=('G-','H-') (for example). Node " u " in G is then renamed " $\mathrm{G}-\mathrm{u}$ " and " v " in H is renamed " $\mathrm{H}-\mathrm{v}$ ".
name : string
Specify the name for the union graph@not_implemnted_for('direct
Returns \mathbf{U} : a graph with the same type as the first graph in list

See also:

union, disjoint_union_all

Notes

To force a disjoint union with node relabeling, use disjoint_union_all(G,H) or convert_node_labels_to integers().
Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.28.11 disjoint_union_all

disjoint_union_all (graphs)
Return the disjoint union of all graphs.
This operation forces distinct integer node labels starting with 0 for the first graph in the list and numbering consecutively.

Parameters graphs: list

List of NetworkX graphs

Returns U : A graph with the same type as the first graph in list

Notes

It is recommended that the graphs be either all directed or all undirected.
Graph, edge, and node attributes are propagated to the union graph. If a graph attribute is present in multiple graphs, then the value from the last graph in the list with that attribute is used.

4.28.12 intersection_all

intersection_all (graphs)

Return a new graph that contains only the edges that exist in all graphs.
All supplied graphs must have the same node set.
Parameters graphs_list : list
List of NetworkX graphs
Returns \mathbf{R} : A new graph with the same type as the first graph in list

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.
Graph products.

cartesian_product (G, H)	Return the Cartesian product of G and H.
lexicographic_product (G, H)	Return the lexicographic product of G and H.
strong_product (G, H)	Return the strong product of G and H.
tensor_product (\mathbf{G}, H)	Return the tensor product of G and H.

4.28.13 cartesian_product

cartesian_product (G, H)
Return the Cartesian product of G and H .
The tensor product P of the graphs G and H has a node set that is the Cartesian product of the node sets, $\$ V(P)=V(G)$ imes $V(H) \$$. P has an edge $((u, v),(x, y))$ if and only if (u, v) is an edge in G and $x==y$ or and (x, y) is an edge in H and $\mathrm{u}==\mathrm{v}$. and (x, y) is an edge in H .

Parameters G, H: graphs :

Networkx graphs.

Returns P: NetworkX graph :

The Cartesian product of G and H . P will be a multi-graph if either G or H is a multigraph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError :

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.
For example >>> G $=$ nx.Graph() >>> H $=$ nx.Graph() >>> G.add_node($0, \mathrm{al}=$ True) >>> H.add_node('a',a2='Spam') >>> P = nx.cartesian_product(G,H) >>> P.nodes() [(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.28.14 lexicographic_product

lexicographic_product (G, H)

Return the lexicographic product of G and H .
The lexicographical product P of the graphs G and H has a node set that is the Cartesian product of the node sets, $\$ V(P)=V(G)$ imes $V(H) \$$. P has an edge $((u, v),(x, y))$ if and only if (u, v) is an edge in G or $u==v$ and (x, y) is an edge in H .

Parameters G, H: graphs :

Networkx graphs.

Returns P: NetworkX graph :

The Cartesian product of G and H . P will be a multi-graph if either G or H is a multigraph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError :

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.
 H.add_node('a',a2='Spam') >>> P = nx.lexicographic_product(G,H) >>> P.nodes() [(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.28.15 strong_product

strong_product (G, H)
Return the strong product of G and H .
The strong product P of the graphs G and H has a node set that is the Cartesian product of the node sets, $\$ \mathrm{~V}(\mathrm{P})=\mathrm{V}(\mathrm{G})$ imes $\mathrm{V}(\mathrm{H}) \$$. P has an edge $((\mathrm{u}, \mathrm{v}),(\mathrm{x}, \mathrm{y}))$ if and only if $\mathrm{u}==\mathrm{v}$ and (x, y) is an edge in H , or $\mathrm{x}==\mathrm{y}$ and (u, v) is an edge in G, or (u, v) is an edge in G and (x, y) is an edge in H.

Parameters G, H: graphs :

Networkx graphs.
Returns P: NetworkX graph :
The Cartesian product of G and H . P will be a multi-graph if either G or H is a multigraph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError :

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.
For example >>> G = nx.Graph() >>> H = nx.Graph() >>> G.add_node(0,a1=True) >>> H.add_node('a', a2='Spam') >>> P = nx.strong_product(G,H) >>> P.nodes() [(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.28.16 tensor_product

tensor_product (G, H)
Return the tensor product of G and H .
The tensor product P of the graphs G and H has a node set that is the Cartesian product of the node sets, $\$ \mathrm{~V}(\mathrm{P})=\mathrm{V}(\mathrm{G})$ times $\mathrm{V}(\mathrm{H}) \$$. P has an edge $((\mathrm{u}, \mathrm{v}),(\mathrm{x}, \mathrm{y}))$ if and only if (u, v) is an edge in G and (x, y) is an edge in H.

Sometimes referred to as the categorical product.

Parameters G, H: graphs :

Networkx graphs.

Returns P: NetworkX graph :

The tensor product of G and H . P will be a multi-graph if either G or H is a multi-graph. Will be a directed if G and H are directed, and undirected if G and H are undirected.

Raises NetworkXError :

If G and H are not both directed or both undirected.

Notes

Node attributes in P are two-tuple of the G and H node attributes. Missing attributes are assigned None.
For example >>> G $=$ nx.Graph() >>> H $=$ nx.Graph() >>> G.add_node($0, \mathrm{a}=$ True) >>> H.add_node('a', $\mathrm{a} 2=$ 'Spam') >>> P = nx.tensor_product(G,H) >>> P.nodes() [(0, 'a')]

Edge attributes and edge keys (for multigraphs) are also copied to the new product graph

4.29 Rich Club

rich_club_coefficient(G[, normalized, Q]) Return the rich-club coefficient of the graph G.

4.29.1 rich_club_coefficient

rich_club_coefficient (G, normalized=True, $Q=100$)
Return the rich-club coefficient of the graph G.

The rich-club coefficient is the ratio, for every degree k , of the number of actual to the number of potential edges for nodes with degree greater than k :

$$
\phi(k)=\frac{2 E k}{N k(N k-1)}
$$

where Nk is the number of nodes with degree larger than k , and Ek be the number of edges among those nodes.

Parameters G: NetworkX graph
 normalized : bool (optional)

Normalize using randomized network (see [R243])
Q : float (optional, default=100)
If normalized=True build a random network by performing $\mathrm{Q}^{*} \mathrm{M}$ double-edge swaps, where M is the number of edges in G , to use as a null-model for normalization.
Returns re: dictionary
A dictionary, keyed by degree, with rich club coefficient values.

Notes

The rich club definition and algorithm are found in [R243]. This algorithm ignores any edge weights and is not defined for directed graphs or graphs with parallel edges or self loops.
Estimates for appropriate values of Q are found in [R244].

References

[R243], [R244]

Examples

```
>>> G = nx.Graph([(0,1),(0,2),(1,2),(1,3),(1,4),(4,5)])
>>> rc = nx.rich_club_coefficient(G,normalized=False)
>>> rc[0]
0.4
```


4.30 Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.
These algorithms work with undirected and directed graphs.
For directed graphs the paths can be computed in the reverse order by first flipping the edge orientation using R=G.reverse(copy=False).

shortest_path(G[, source, target, weight $])$	Compute shortest paths in the graph.
all_shortest_paths(G, source, target[, weight])	Compute all shortest paths in the graph.
shortest_path_length(G[, source, target, weight $])$	Compute shortest path lengths in the graph.
average_shortest_path_length(G[, weight])	Return the average shortest path length.
has_path(G, source, target)	Return True if G has a path from source to target, False otherwise.

4.30.1 shortest_path

```
shortest_path (G, source=None, target=None, weight=None)
```

Compute shortest paths in the graph.
Parameters G: NetworkX graph
source : node, optional
Starting node for path. If not specified, compute shortest paths using all nodes as source nodes.
target : node, optional
Ending node for path. If not specified, compute shortest paths using all nodes as target nodes.
weight : None or string, optional $($ default $=$ None $)$
If None, every edge has weight/distance/cost 1 . If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1 .

Returns path: list or dictionary :

All returned paths include both the source and target in the path.
If the source and target are both specified, return a single list of nodes in a shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by targets with a list of nodes in a shortest path from the source to one of the targets.

If only the target is specified, return a dictionary keyed by sources with a list of nodes in a shortest path from one of the sources to the target.

If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=[list of nodes in path].

See also:

```
all_pairs_shortest_path,all_pairs_dijkstra_path,single_source_shortest_path,
```

single_source_dijkstra_path

Notes

There may be more than one shortest path between a source and target. This returns only one of them.
For digraphs this returns a shortest directed path. To find paths in the reverse direction first use G.reverse(copy=False) to flip the edge orientation.

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.shortest_path(G,source=0,target=4))
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,source=0) # target not specified
>>> p[4]
[0, 1, 2, 3, 4]
>>> p=nx.shortest_path(G,target=4) # source not specified
>>> p[0]
```

$[0,1,2,3,4]$
>>> p=nx.shortest_path(G) \# source, target not specified
>>> p[0][4]
$[0,1,2,3,4]$

4.30.2 all_shortest_paths

all_shortest_paths (G, source, target, weight=None)
Compute all shortest paths in the graph.
Parameters G:NetworkX graph
source : node
Starting node for path.
target : node
Ending node for path.
weight : None or string, optional $($ default $=$ None $)$
If None, every edge has weight/distance/cost 1 . If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1 .
Returns paths: generator of lists :
A generator of all paths between source and target.

See also:

```
shortest_path,single_source_shortest_path, all_pairs_shortest_path
```


Notes

There may be many shortest paths between the source and target.

Examples

```
>>> G=nx.Graph()
>>> G.add_path([0,1,2])
>>> G.add_path([0,10,2])
>>> print([p for p in nx.all_shortest_paths(G,source=0,target=2)])
[[0, 1, 2], [0, 10, 2]]
```


4.30.3 shortest_path_length

shortest_path_length $(G$, source $=$ None, target $=$ None, weight $=$ None $)$
Compute shortest path lengths in the graph.

Parameters G:NetworkX graph

source : node, optional
Starting node for path. If not specified, compute shortest path lengths using all nodes as source nodes.
target : node, optional
Ending node for path. If not specified, compute shortest path lengths using all nodes as target nodes.
weight : None or string, optional (default = None)
If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1 .

Returns length: int or dictionary :

If the source and target are both specified, return the length of the shortest path from the source to the target.

If only the source is specified, return a dictionary keyed by targets whose values are the lengths of the shortest path from the source to one of the targets.
If only the target is specified, return a dictionary keyed by sources whose values are the lengths of the shortest path from one of the sources to the target.
If neither the source nor target are specified return a dictionary of dictionaries with path[source][target]=L, where L is the length of the shortest path from source to target.

Raises NetworkXNoPath:

If no path exists between source and target.

See also:

```
all_pairs_shortest_path_length, all_pairs_dijkstra__path_length,
single_source_shortest_path_length, single_source_dijkstra_path_length
```


Notes

The length of the path is always 1 less than the number of nodes involved in the path since the length measures the number of edges followed.

For digraphs this returns the shortest directed path length. To find path lengths in the reverse direction use G.reverse(copy=False) first to flip the edge orientation.

Examples

```
>>> G=nx.path_graph(5)
>>> print(nx.shortest_path_length(G,source=0,target=4))
4
>>> p=nx.shortest_path_length(G,source=0) # target not specified
>>> p[4]
4
>>> p=nx.shortest_path_length(G,target=4) # source not specified
>>> p[0]
4
>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]
4
```


4.30.4 average_shortest_path_length

average_shortest_path_length (G, weight=None)
Return the average shortest path length.
The average shortest path length is

$$
a=\sum_{s, t \in V} \frac{d(s, t)}{n(n-1)}
$$

where V is the set of nodes in $G, d(s, t)$ is the shortest path from s to t, and n is the number of nodes in G.
Parameters G: NetworkX graph
weight : None or string, optional $($ default $=$ None $)$
If None, every edge has weight/distance/cost 1. If a string, use this edge attribute as the edge weight. Any edge attribute not present defaults to 1 .

Raises NetworkXError: :

if the graph is not connected.

Examples

>>> G=nx.path_graph (5)
>>> print(nx.average_shortest_path_length (G))
2.0

For disconnected graphs you can compute the average shortest path length for each component: >>> G=nx.Graph $([(1,2),(3,4)]) \quad \ggg$ for g in nx.connected_component_subgraphs $(\mathrm{G}): \quad .$. print(nx.average_shortest_path_length(g)) 1.01 .0

4.30.5 has_path

has_path (G, source, target)
Return True if G has a path from source to target, False otherwise.

Parameters G:NetworkX graph

source : node
Starting node for path
target : node
Ending node for path

4.30.6 Advanced Interface

Shortest path algorithms for unweighted graphs.

single_source_shortest_path(G, source[, cutoff])	Compute shortest path between source and all other nodes reachable
single_source_shortest_path_length(G, source)	Compute the shortest path lengths from source to all reachable nodes
all_pairs_shortest_path(G[, cutoff] $)$	Compute shortest paths between all nodes.
all_pairs_shortest_path_length(G[, cutoff])	Compute the shortest path lengths between all nodes in G.
predecessor(G, source[, target, cutoff, ...])	Returns dictionary of predecessors for the path from source to all no

```
single_source_shortest_path
```

single_source_shortest_path (G, source, cutoff=None)
Compute shortest path between source and all other nodes reachable from source.
Parameters G: NetworkX graph
source : node label
Starting node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns lengths: dictionary
Dictionary, keyed by target, of shortest paths.

See also:

```
    shortest_path
```


Notes

The shortest path is not necessarily unique. So there can be multiple paths between the source and each target node, all of which have the same 'shortest' length. For each target node, this function returns only one of those paths.

Examples

>>> G=nx.path_graph (5)
>>> path=nx.single_source_shortest_path (G,0)
>>> path[4]
$[0,1,2,3,4]$
single_source_shortest_path_length
single_source_shortest_path_length (G, source, cutoff=None)
Compute the shortest path lengths from source to all reachable nodes.
Parameters G: NetworkX graph
source : node
Starting node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns lengths: dictionary
Dictionary of shortest path lengths keyed by target.

See also:

```
    shortest_path_length
```


Examples

>>> G=nx.path_graph (5)
\ggg length=nx.single_source_shortest_path_length (G, 0)
>>> length[4]
4
>>> print (length)
$\{0: 0,1: 1,2: 2,3: 3,4: 4\}$
all_pairs_shortest_path
all_pairs_shortest_path (G, cutoff=None)
Compute shortest paths between all nodes.
Parameters G : NetworkX graph cutoff : integer, optional

Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns lengths: dictionary
Dictionary, keyed by source and target, of shortest paths.

See also:

floyd_warshall

Examples
>>> G=nx.path_graph (5)
>>> path=nx.all_pairs_shortest_path(G)
>>> print (path[0][4])
$[0,1,2,3,4]$

all_pairs_shortest_path_length

all_pairs_shortest_path_length (G, cutoff=None)
Compute the shortest path lengths between all nodes in G.
Parameters G: NetworkX graph
cutoff : integer, optional
depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns lengths: dictionary
Dictionary of shortest path lengths keyed by source and target.

Notes

The dictionary returned only has keys for reachable node pairs.

Examples

```
>>> G=nx.path_graph(5)
>>> length=nx.all_pairs_shortest_path_length(G)
>>> print(length[1][4])
3
>>> length[1]
{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}
```


predecessor

predecessor (G, source, target=None, cutoff=None, return_seen=None)
Returns dictionary of predecessors for the path from source to all nodes in G.

Parameters G: NetworkX graph

source : node label
Starting node for path
target : node label, optional
Ending node for path. If provided only predecessors between source and target are returned
cutoff : integer, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns pred : dictionary
Dictionary, keyed by node, of predecessors in the shortest path.

Examples

```
>>> G=nx.path_graph(4)
>>> print(G.nodes())
    [0, 1, 2, 3]
>>> nx.predecessor(G,0)
    {0: [], 1: [0], 2: [1], 3: [2]}
```

Shortest path algorithms for weighed graphs.

dijkstra_path(G, source, target[, weight])	Returns the shortest path from source to target in a weighted graph C
dijkstra_path_length(G, source, target[, weight])	Returns the shortest path length from source to target in a weighted g
single_source_dijkstra_path(G, source[, ...])	Compute shortest path between source and all other reachable nodes
single_source_dijkstra_path_length(G, source)	Compute the shortest path length between source and all other reach
all_pairs_dijkstra_path(G[, cutoff, weight $])$	Compute shortest paths between all nodes in a weighted graph.
all_pairs_dijkstra_path_length(G[, cutoff, ...])	Compute shortest path lengths between all nodes in a weighted grapl
single_source_dijkstra(G, source[, target, ...])	Compute shortest paths and lengths in a weighted graph G.
bidirectional_dijkstra(G, source, target[, ...])	Dijkstra's algorithm for shortest paths using bidirectional search.
dijkstra_predecessor_and_distance(G, source)	Compute shortest path length and predecessors on shortest paths in
bellman_ford(G, source[, weight $])$	Compute shortest path lengths and predecessors on shortest paths in
negative_edge_cycle(G[,weight $])$	Return True if there exists a negative edge cycle anywhere in G.

dijkstra_path

dijkstra_path (G, source, target, weight='weight')
Returns the shortest path from source to target in a weighted graph G.
Parameters G: NetworkX graph
source : node
Starting node
target : node
Ending node
weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight
Returns path: list
List of nodes in a shortest path.
Raises NetworkXNoPath :
If no path exists between source and target.
See also:
bidirectional_dijkstra

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

>>> G=nx.path_graph (5)
>>> print(nx.dijkstra_path (G, 0,4))
$[0,1,2,3,4]$
dijkstra_path_length
dijkstra_path_length (G, source, target, weight='weight')
Returns the shortest path length from source to target in a weighted graph.
Parameters G: NetworkX graph
source : node label
starting node for path
target : node label
ending node for path
weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight
Returns length : number

Shortest path length.

Raises NetworkXNoPath :

If no path exists between source and target.

See also:

bidirectional_dijkstra

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

>>> G=nx.path_graph (5)
>>> print(nx.dijkstra_path_length (G, 0, 4))
4

```
single_source_dijkstra_path
```

single_source_dijkstra_path (G, source, cutoff=None, weight='weight')

Compute shortest path between source and all other reachable nodes for a weighted graph.
Parameters G: NetworkX graph source : node

Starting node for path. weight: string, optional (default='weight') :

Edge data key corresponding to the edge weight cutoff : integer or float, optional

Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns paths: dictionary
Dictionary of shortest path lengths keyed by target.

See also:

```
single_source_dijkstra
```

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

```
>>> G=nx.path_graph(5)
>>> path=nx.single_source_dijkstra_path(G,0)
>>> path[4]
    [0, 1, 2, 3, 4]
```

single_source_dijkstra_path_length
single_source_dijkstra_path_length (G, source, cutoff=None, weight='weight')
Compute the shortest path length between source and all other reachable nodes for a weighted graph.
Parameters G: NetworkX graph
source : node label
Starting node for path
weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight.
cutoff : integer or float, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns length : dictionary
Dictionary of shortest lengths keyed by target.
See also:
single_source_dijkstra

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

>>> G=nx.path_graph (5)
>>> length=nx.single_source_dijkstra_path_length (G,0)
>>> length[4]
4
>>> print(length)
\{0: 0, 1: 1, 2: 2, 3: 3, 4: 4\}

all_pairs_dijkstra_path

all_pairs_dijkstra_path (G, cutoff=None, weight='weight')
Compute shortest paths between all nodes in a weighted graph.
Parameters G: NetworkX graph weight: string, optional (default='weight') :

Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns distance: dictionary
Dictionary, keyed by source and target, of shortest paths.

See also:

```
    floyd_warshall
```


Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.

Examples

>>> G=nx.path_graph (5)
>>> path=nx.all_pairs_dijkstra_path(G)
>>> print (path[0][4])
$[0,1,2,3,4]$
all_pairs_dijkstra_path_length
all_pairs_dijkstra_path_length (G, cutoff=None, weight='weight')
Compute shortest path lengths between all nodes in a weighted graph.

Parameters G:NetworkX graph

weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns distance : dictionary
Dictionary, keyed by source and target, of shortest path lengths.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
The dictionary returned only has keys for reachable node pairs.

Examples

>>> G=nx.path_graph (5)
>>> length=nx.all_pairs_dijkstra_path_length (G)
>>> print(length[1][4])
3
>>> length[1]
$\{0: 1,1: 0,2: 1,3: 2,4: 3\}$

```
single_source_dijkstra
single_source_dijkstra(G, source, target=None, cutoff=None, weight='weight')
    Compute shortest paths and lengths in a weighted graph G.
```

Uses Dijkstra's algorithm for shortest paths.
Parameters G:NetworkX graph source : node label

Starting node for path
target : node label, optional
Ending node for path
cutoff : integer or float, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.
Returns distance, path : dictionaries
Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance from the source. The second stores the path from the source to that node.

See also:

```
single_source_dijkstra_path, single_source_dijkstra_path_length
```


Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466
This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems).

Examples

```
>>> G=nx.path_graph(5)
>>> length,path=nx.single_source_dijkstra(G,0)
>>> print(length[4])
4
>>> print(length)
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4}
>>> path[4]
[0, 1, 2, 3, 4]
```


bidirectional_dijkstra

bidirectional_dijkstra (G, source, target, weight='weight')

Dijkstra's algorithm for shortest paths using bidirectional search.
Parameters G:NetworkX graph
source : node
Starting node.
target : node
Ending node.
weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight
Returns length : number
Shortest path length.

Returns a tuple of two dictionaries keyed by node. :

The first dictionary stores distance from the source. :
The second stores the path from the source to that node. :
Raises NetworkXNoPath :
If no path exists between source and target.

See also:

```
shortest_path,shortest_path_length
```


Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra.
Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will eventually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and the target, making two spheres of half this radius. Volume of the first sphere is $\mathrm{pi}^{2}{ }^{\mathrm{r}} \mathrm{F}_{\mathrm{r}}$ while the others are $2 * \mathrm{pi}{ }^{*} \mathrm{r} / 2 * \mathrm{r} / 2$, making up half the volume.

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows and roundoff errors can cause problems).

Examples

```
>>> G=nx.path_graph(5)
>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print(length)
4
>>> print (path)
[0, 1, 2, 3, 4]
```


dijkstra_predecessor_and_distance

dijkstra_predecessor_and_distance (G, source, cutoff=None, weight='weight')
Compute shortest path length and predecessors on shortest paths in weighted graphs.
Parameters G: NetworkX graph source : node label

Starting node for path weight: string, optional (default='weight') :

Edge data key corresponding to the edge weight
cutoff : integer or float, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns pred,distance : dictionaries
Returns two dictionaries representing a list of predecessors of a node and the distance to each node.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
The list of predecessors contains more than one element only when there are more than one shortest paths to the key node.

bellman_ford

bellman_ford (G, source, weight='weight')
Compute shortest path lengths and predecessors on shortest paths in weighted graphs.
The algorithm has a running time of $\mathrm{O}(\mathrm{mn})$ where n is the number of nodes and m is the number of edges. It is slower than Dijkstra but can handle negative edge weights.

Parameters G: NetworkX graph

The algorithm works for all types of graphs, including directed graphs and multigraphs.
source: node label :
Starting node for path

weight: string, optional (default='weight') :

Edge data key corresponding to the edge weight
Returns pred, dist : dictionaries
Returns two dictionaries keyed by node to predecessor in the path and to the distance from the source respectively.

Raises NetworkXUnbounded :

If the (di)graph contains a negative cost (di)cycle, the algorithm raises an exception to indicate the presence of the negative cost (di)cycle. Note: any negative weight edge in an undirected graph is a negative cost cycle.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
The dictionaries returned only have keys for nodes reachable from the source.
In the case where the (di)graph is not connected, if a component not containing the source contains a negative cost (di)cycle, it will not be detected.

Examples

>>> import networkx as nx
>>> G = nx.path_graph(5, create_using = nx.DiGraph())
>>> pred, dist = nx.bellman_ford(G, 0)
>>> pred
$\{0:$ None, 1: 0, 2: 1, 3: 2, 4: 3\}
>>> dist
$\{0: 0,1: 1,2: 2,3: 3,4: 4\}$

```
>>> from nose.tools import assert_raises
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> G[1][2]['weight'] = -7
>>> assert_raises(nx.NetworkXUnbounded, nx.bellman_ford, G, 0)
```

negative_edge_cycle
negative_edge_cycle (G, weight='weight')
Return True if there exists a negative edge cycle anywhere in G.
Parameters G:NetworkX graph
weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight
Returns negative_cycle : bool
True if a negative edge cycle exists, otherwise False.

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
This algorithm uses bellman_ford() but finds negative cycles on any component by first adding a new node connected to every node, and starting bellman_ford on that node. It then removes that extra node.

Examples

```
>>> import networkx as nx
>>> G = nx.cycle_graph(5, create_using = nx.DiGraph())
>>> print(nx.negative_edge_cycle(G))
False
>>> G[1][2]['weight'] = -7
>>> print(nx.negative_edge_cycle(G))
True
```


4.30.7 Dense Graphs

Floyd-Warshall algorithm for shortest paths.

floyd_warshall $(G[$, weight $])$	Find all-pairs shortest path lengths using Floyd's algorithm.
floyd_warshall_predecessor_and__distance $(G[, \ldots])$	Find all-pairs shortest path lengths using Floyd's algorithm.
floyd_warshall_numpy $(G[$, nodelist, weight $])$	Find all-pairs shortest path lengths using Floyd's algorithm.

floyd_warshall

floyd_warshall (G, weight='weight')

Find all-pairs shortest path lengths using Floyd's algorithm.
Parameters G:NetworkX graph
weight: string, optional (default= 'weight') :

Edge data key corresponding to the edge weight.
Returns distance : dict
A dictionary, keyed by source and target, of shortest paths distances between nodes.

See also:

```
floyd_warshall_predecessor_and_distance, floyd_warshall_numpy,
all_pairs_shortest_path, all_pairs_shortest_path_length
```


Notes

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ with running space of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$.
floyd_warshall_predecessor_and_distance
floyd_warshall_predecessor_and_distance (G, weight='weight')
Find all-pairs shortest path lengths using Floyd's algorithm.
Parameters G: NetworkX graph weight: string, optional (default= 'weight') :

Edge data key corresponding to the edge weight.
Returns predecessor,distance: dictionaries
Dictionaries, keyed by source and target, of predecessors and distances in the shortest path.

See also:

```
    floyd_warshall, floyd_warshall_numpy, all_pairs_shortest_path,
```

 all_pairs_shortest_path_length

Notes

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra’s algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ with running space of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$.

floyd_warshall_numpy

floyd_warshall_numpy (G, nodelist=None, weight='weight')

Find all-pairs shortest path lengths using Floyd's algorithm.
Parameters G: NetworkX graph
nodelist : list, optional
The rows and columns are ordered by the nodes in nodelist. If nodelist is None then the ordering is produced by G.nodes().
weight: string, optional (default= 'weight') :
Edge data key corresponding to the edge weight.

Returns distance : NumPy matrix

A matrix of shortest path distances between nodes. If there is no path between to nodes the corresponding matrix entry will be Inf.

Notes

Floyd's algorithm is appropriate for finding shortest paths in dense graphs or graphs with negative weights when Dijkstra's algorithm fails. This algorithm can still fail if there are negative cycles. It has running time $\mathrm{O}\left(\mathrm{n}^{\wedge} 3\right)$ with running space of $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$.

4.30.8 A* Algorithm

Shortest paths and path lengths using A* ("A star") algorithm.
astar_path(G, source, target[, heuristic, ...]) Return a list of nodes in a shortest path between source and target astar_path_length(G, source, target[, ...]) Return the length of the shortest path between source and target using

astar_path

astar_path (G, source, target, heuristic=None, weight='weight')
Return a list of nodes in a shortest path between source and target using the A* ("A-star") algorithm.
There may be more than one shortest path. This returns only one.
Parameters G:NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
heuristic : function
A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number.
weight: string, optional (default='weight') :
Edge data key corresponding to the edge weight.

Raises NetworkXNoPath :

If no path exists between source and target.

See also:

```
shortest_path, dijkstra_path
```


Examples

>>> G=nx.path_graph (5)
>>> print(nx.astar_path(G,0,4))
[0, 1, 2, 3, 4]
>>> G=nx.grid_graph(dim=[3,3]) \# nodes are two-tuples (x,y)
>>> def dist (a, b):
... $(x 1, y 1)=a$
$\ldots \quad(x 2, y 2)=b$
... return $((x 1-x 2)$ ** $2+(y 1-y 2)$ ** 2) ** 0.5
$\ggg \operatorname{print}\left(n x . a s t a r _p a t h(G,(0,0),(2,2)\right.$, dist))
$[(0,0),(0,1),(1,1),(1,2),(2,2)]$

```
astar_path_length
```

astar_path_length (G, source, target, heuristic=None, weight='weight')
Return the length of the shortest path between source and target using the A* ("A-star") algorithm.
Parameters G : NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
heuristic : function
A function to evaluate the estimate of the distance from the a node to the target. The function takes two nodes arguments and must return a number.

Raises NetworkXNoPath :

If no path exists between source and target.
See also:
astar_path

4.31 Simple Paths

all_simple_paths(G, source, target[, cutoff]) Generate all simple paths in the graph G from source to target.

4.31.1 all_simple_paths

all_simple_paths (G, source, target, cutoff=None)
Generate all simple paths in the graph G from source to target.
A simple path is a path with no repeated nodes.
Parameters G:NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length $<=$ cutoff are returned.

Returns path_generator: generator :

A generator that produces lists of simple paths. If there are no paths between the source and target within the given cutoff the generator produces no output.

See also:

all_shortest_paths, shortest_path

Notes

This algorithm uses a modified depth-first search to generate the paths [R245]. A single path can be found in $O(V+E)$ time but the number of simple paths in a graph can be very large, e.g. $O(n!)$ in the complete graph of order n.

References

[R245]

Examples

```
>>> G = nx.complete_graph(4)
>>> for path in nx.all_simple_paths(G, source=0, target=3):
... print(path)
...
[0, 1, 2, 3]
[0, 1, 3]
[0, 2, 1, 3]
[0, 2, 3]
[0, 3]
>>> paths = nx.all_simple_paths(G, source=0, target=3, cutoff=2)
>>> print(list(paths))
[[0, 1, 3], [0, 2, 3], [0, 3]]
```


4.32 Swap

Swap edges in a graph.
double_edge_swap(G[, nswap, max_tries]) Swap two edges in the graph while keeping the node degrees fixed. connected_double_edge_swap(G[, nswap]) Attempt nswap double-edge swaps in the graph G.

4.32.1 double_edge_swap

double_edge_swap (G, $n s w a p=1$, max_tries=100)
Swap two edges in the graph while keeping the node degrees fixed.
A double-edge swap removes two randomly chosen edges $u-v$ and $x-y$ and creates the new edges $u-x$ and $v-y$:

$u--v$		u	v
	becomes	I	।
$x--y$		x	y

If either the edge $u-x$ or $v-y$ already exist no swap is performed and another attempt is made to find a suitable edge pair.

Parameters G:graph

An undirected graph
nswap : integer (optional, default=1)
Number of double-edge swaps to perform
max_tries : integer (optional)
Maximum number of attempts to swap edges
Returns G: graph
The graph after double edge swaps.

Notes

Does not enforce any connectivity constraints.
The graph G is modified in place.

4.32.2 connected_double_edge_swap

connected_double_edge_swap (G, nswap $=1$)
Attempt nswap double-edge swaps in the graph G.
A double-edge swap removes two randomly chosen edges $u-v$ and $x-y$ and creates the new edges $u-x$ and $v-y$:

$u--v$		u	v
$x--y$	becomes	I	।
	x	y	

If either the edge $u-x$ or $v-y$ already exist no swap is performed so the actual count of swapped edges is always <= nswap

Parameters G:graph

An undirected graph
nswap : integer (optional, default=1)
Number of double-edge swaps to perform
Returns G:int
The number of successful swaps

Notes

The initial graph G must be connected, and the resulting graph is connected. The graph G is modified in place.

References

[R246]

4.33 Traversal

4.33.1 Depth First Search

Basic algorithms for depth-first searching.
Based on http://www.ics.uci.edu/~eppstein/PADS/DFS.py by D. Eppstein, July 2004.

dfs_edges(G[, source])	Produce edges in a depth-first-search starting at source.
dfs_tree(G, source)	Return directed tree of depth-first-search from source.
dfs_predecessors(G[, source] $)$	Return dictionary of predecessors in depth-first-search from source.
dfs_successors(G[, source])	Return dictionary of successors in depth-first-search from source.
dfs_preorder_nodes(G[, source])	Produce nodes in a depth-first-search pre-ordering starting at source.
dfs_postorder_nodes(G[, source])	Produce nodes in a depth-first-search post-ordering starting
dfs_labeled_edges(G[, source])	Produce edges in a depth-first-search starting at source and

```
dfs_edges
```

dfs_edges $(G$, source $=$ None $)$

Produce edges in a depth-first-search starting at source.
dfs_tree
dfs_tree (G, source)
Return directed tree of depth-first-search from source.

```
dfs_predecessors
```

dfs_predecessors (G, source=None)

Return dictionary of predecessors in depth-first-search from source.

dfs_successors

dfs_successors $(G$, source $=$ None $)$
Return dictionary of successors in depth-first-search from source.

```
dfs_preorder_nodes
```

dfs_preorder_nodes (G, source $=$ None)
Produce nodes in a depth-first-search pre-ordering starting at source.

dfs_postorder_nodes

dfs_postorder_nodes (G, source=None)
Produce nodes in a depth-first-search post-ordering starting from source.

```
dfs_labeled_edges
```

dfs_labeled_edges $(G$, source $=$ None $)$
Produce edges in a depth-first-search starting at source and labeled by direction type (forward, reverse, nontree).

4.33.2 Breadth First Search

Basic algorithms for breadth-first searching.
bfs_edges(G, source[, reverse]) Produce edges in a breadth-first-search starting at source.
bfs_tree(G, source[, reverse]) Return directed tree of breadth-first-search from source.
bes_predecessors(G, source) Return dictionary of predecessors in breadth-first-search from source.
bfs_successors(G, source) Return dictionary of successors in breadth-first-search from source.

```
bfs_edges
```

bfs_edges $(G$, source, reverse $=$ False $)$

Produce edges in a breadth-first-search starting at source.
bfs_tree
bfs_tree (G, source, reverse $=$ False)
Return directed tree of breadth-first-search from source.

```
bfs_predecessors
```

bfs_predecessors (G, source)
Return dictionary of predecessors in breadth-first-search from source.

bfs_successors

bfs_successors (G, source)
Return dictionary of successors in breadth-first-search from source.

4.34 Vitality

Vitality measures.

> closeness_vitality(G[, weight]) Compute closeness vitality for nodes.

4.34.1 closeness_vitality

closeness_vitality (G, weight=None)
Compute closeness vitality for nodes.
Closeness vitality of a node is the change in the sum of distances between all node pairs when excluding that node.

Parameters G: graph

weight : None or string (optional)
The name of the edge attribute used as weight. If None the edge weights are ignored.
Returns nodes: dictionary
Dictionary with nodes as keys and closeness vitality as the value.
See also:
closeness_centrality

References

[R247]

Examples

```
>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality(G)
{0: 4.0, 1: 4.0, 2: 4.0}
```


FUNCTIONS

Functional interface to graph methods and assorted utilities.

5.1 Graph

degree(G[, nbunch, weight])	Return degree of single node or of nbunch of nodes.
degree_histogram(G)	Return a list of the frequency of each degree value.
density (G)	Return the density of a graph.
info(G[, $n])$	Print short summary of information for the graph G or the node n.
create_empty_copy(G[, with_nodes])	Return a copy of the graph G with all of the edges removed.
is_directed(G)	Return True if graph is directed.

5.1.1 degree

degree (G, nbunch=None, weight=None)
Return degree of single node or of nbunch of nodes. If nbunch is ommitted, then return degrees of all nodes.

5.1.2 degree_histogram

degree_histogram (G)
Return a list of the frequency of each degree value.
Parameters G: Networkx graph
A graph
Returns hist : list
A list of frequencies of degrees. The degree values are the index in the list.

Notes

Note: the bins are width one, hence len(list) can be large (Order(number_of_edges))

5.1.3 density

density (G)
Return the density of a graph.

The density for undirected graphs is

$$
d=\frac{2 m}{n(n-1)}
$$

and for directed graphs is

$$
d=\frac{m}{n(n-1)},
$$

where n is the number of nodes and m is the number of edges in G.

Notes

The density is 0 for a graph without edges and 1 for a complete graph. The density of multigraphs can be higher than 1.

Self loops are counted in the total number of edges so graphs with self loops can have density higher than 1.

5.1.4 info

info ($G, n=$ None)
Print short summary of information for the graph G or the node n.
Parameters G:Networkx graph
A graph
\mathbf{n} : node (any hashable)
A node in the graph G

5.1.5 create_empty_copy

create_empty_copy (G, with_nodes=True)
Return a copy of the graph G with all of the edges removed.

Parameters G:graph

A NetworkX graph
with_nodes : bool (default=True)
Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

5.1.6 is_directed

is_directed (G)
Return True if graph is directed.

5.2 Nodes

nodes(G)	Return a copy of the graph nodes in a list.
number_of_nodes(G)	Return the number of nodes in the graph.
nodes_iter(G)	Return an iterator over the graph nodes.
all_neighbors(graph, node)	Returns all of the neighbors of a node in the graph.
non_neighbors(graph, node)	Returns the non-neighbors of the node in the graph.

5.2.1 nodes

nodes (G)
Return a copy of the graph nodes in a list.

5.2.2 number_of_nodes

number_of_nodes (G)
Return the number of nodes in the graph.

5.2.3 nodes_iter

nodes_iter (G)

Return an iterator over the graph nodes.

5.2.4 all_neighbors

all_neighbors (graph, node)
Returns all of the neighbors of a node in the graph.
If the graph is directed returns predecessors as well as successors.
Parameters graph : NetworkX graph
Graph to find neighbors.
node : node
The node whose neighbors will be returned.
Returns neighbors: iterator
Iterator of neighbors

5.2.5 non_neighbors

non_neighbors (graph, node)
Returns the non-neighbors of the node in the graph.
Parameters graph : NetworkX graph
Graph to find neighbors.
node : node
The node whose neighbors will be returned.
Returns non_neighbors: iterator

Iterator of nodes in the graph that are not neighbors of the node.

5.3 Edges

edges(G[, nbunch])	Return list of edges adjacent to nodes in nbunch.
number_of_edges(G)	Return the number of edges in the graph.
edges_iter(G[, nbunch])	Return iterator over edges adjacent to nodes in nbunch.

5.3.1 edges

edges $(G$, nbunch $=$ None $)$
Return list of edges adjacent to nodes in nbunch.
Return all edges if nbunch is unspecified or nbunch=None.
For digraphs, edges=out_edges

5.3.2 number_of_edges

number_of_edges (G)

Return the number of edges in the graph.

5.3.3 edges_iter

edges_iter (G, nbunch=None)

Return iterator over edges adjacent to nodes in nbunch.
Return all edges if nbunch is unspecified or nbunch=None.
For digraphs, edges=out_edges

5.4 Attributes

set_node_attributes(G, name, attributes)	Set node attributes from dictionary of nodes and values
get_node_attributes(G, name)	Get node attributes from graph
set_edge_attributes(G, name, attributes)	Set edge attributes from dictionary of edge tuples and values
get_edge_attributes(G, name)	Get edge attributes from graph

5.4.1 set_node_attributes

set_node_attributes (G, name, attributes)
Set node attributes from dictionary of nodes and values
Parameters G: NetworkX Graph
name : string
Attribute name
attributes: dict :

Dictionary of attributes keyed by node.

```
Examples
>>> G=nx.path_graph(3)
>>> bb=nx.betweenness_centrality(G)
>>> nx.set_node_attributes(G,'betweenness',bb)
>>> G.node[1]['betweenness']
1.0
```


5.4.2 get_node_attributes

get_node_attributes (G, name)
Get node attributes from graph
Parameters G: NetworkX Graph
name : string
Attribute name
Returns Dictionary of attributes keyed by node. :

Examples

```
>>> G=nx.Graph()
>>> G.add_nodes_from([1,2,3],color='red')
>>> color=nx.get_node_attributes(G,'color')
>>> color[1]
'red'
```


5.4.3 set_edge_attributes

set_edge_attributes (G, name, attributes)
Set edge attributes from dictionary of edge tuples and values
Parameters G : NetworkX Graph
name : string
Attribute name
attributes: dict :
Dictionary of attributes keyed by edge (tuple).

Examples

>>> G=nx.path_graph (3)
>>> bb=nx.edge_betweenness_centrality(G, normalized=False)
>>> nx.set_edge_attributes(G,'betweenness', bb)
>>> G[1][2]['betweenness']
2.0

5.4.4 get_edge_attributes

get_edge_attributes (G, name)
Get edge attributes from graph
Parameters G: NetworkX Graph
name : string
Attribute name

Returns Dictionary of attributes keyed by node. :

Examples

$\ggg G=n x \cdot G r a p h()$
\ggg G.add_path $\left([1,2,3]\right.$, color $={ }^{\prime}$ red')
\ggg color=nx.get_edge_attributes (G,'color')
$\ggg \operatorname{color}[(1,2)]$
'red'

5.5 Freezing graph structure

freeze(G)	Modify graph to prevent further change by adding or removing nodes or edges.
is_frozen(G)	Return True if graph is frozen.

5.5.1 freeze

freeze (G)

Modify graph to prevent further change by adding or removing nodes or edges.
Node and edge data can still be modified.
Parameters G: graph
A NetworkX graph

See also:

is_frozen

Notes

To "unfreeze" a graph you must make a copy by creating a new graph object:
>>> graph $=$ nx.path_graph (4)
>>> frozen_graph = nx.freeze(graph)
>>> unfrozen_graph $=$ nx.Graph(frozen_graph)
>>> nx.is_frozen(unfrozen_graph)
False

```
Examples
>>> G=nx.Graph()
>>> G.add_path([0,1,2,3])
>>> G=nx.freeze(G)
>>> try:
... G.add_edge (4,5)
... except nx.NetworkXError as e:
... print(str(e))
Frozen graph can't be modified
```


5.5.2 is_frozen

is_frozen (G)
Return True if graph is frozen.
Parameters G:graph
A NetworkX graph
See also:
freeze

GRAPH GENERATORS

6.1 Atlas

Generators for the small graph atlas.
See "An Atlas of Graphs" by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.
Because of its size, this module is not imported by default.
graph_atlas_g() Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas.

6.1.1 graph_atlas_g

graph_atlas_g()
Return the list [G0,G1, ..,G1252] of graphs as named in the Graph Atlas. G0,G1, ..,G1252 are all graphs with up to 7 nodes.

The graphs are listed:

1. in increasing order of number of nodes;
2. for a fixed number of nodes, in increasing order of the number of edges;
3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223 <112222;
4. for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for GAG=graph_atlas_g(), then G123=GAG[123] and G[0]=empty_graph(0)

6.2 Classic

Generators for some classic graphs.
The typical graph generator is called as follows:
>>> G=nx.complete_graph (100)
returning the complete graph on n nodes labeled $0, . ., 99$ as a simple graph. Except for empty_graph, all the generators in this module return a Graph class (i.e. a simple, undirected graph).
balanced_tree(r, h[, create_using])
Return the perfectly balanced r-tree of height h .

Table 6.2 - continued from previous page

barbell_graph(m1, m2[, create_using])	Return the Barbell Graph: two complete graphs connected by a path.
complete_graph(n[, create_using])	Return the complete graph K_n with n nodes.
complete_bipartite_graph(n1, n2[, create_using])	Return the complete bipartite graph K_\{n1_n2\}.
circular_ladder_graph(n[, create_using])	Return the circular ladder graph CL_n of length n.
cycle_graph(n[, create_using])	Return the cycle graph C_n over n nodes.
dorogovtsev_goltsev_mendes_graph(n[, ...])	Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes gra
empty_graph([n, create_using])	Return the empty graph with n nodes and zero edges.
grid_2d_graph(m, n[, periodic, create_using])	Return the 2d grid graph of mxn nodes, each connected to its nearest ne
grid_graph(dim[, periodic])	Return the n-dimensional grid graph.
hypercube_graph(n)	Return the n-dimensional hypercube.
ladder_graph(n[, create_using])	Return the Ladder graph of length n.
lollipop_graph(m, n[, create_using])	Return the Lollipop Graph; K_m connected to P_n.
null_graph([create_using])	Return the Null graph with no nodes or edges.
path_graph(n[, create_using])	Return the Path graph P_n of n nodes linearly connected by n-1 edges.
star_graph(n[, create_using])	Return the Star graph with n+1 nodes: one center node, connected to n
trivial_graph([create_using])	Return the Trivial graph with one node (with integer label 0) and no ed
wheel_graph(n[, create_using])	Return the wheel graph: a single hub node connected to each node of th

6.2.1 balanced_tree

balanced_tree (r, h, create_using=None)
Return the perfectly balanced r-tree of height h.
Parameters \mathbf{r} : int
Branching factor of the tree
h : int
Height of the tree
create_using : NetworkX graph type, optional
Use specified type to construct graph (default = networkx.Graph)
Returns G: networkx Graph
A tree with n nodes

Notes

This is the rooted tree where all leaves are at distance h from the root. The root has degree r and all other internal nodes have degree $\mathrm{r}+1$.

Node labels are the integers 0 (the root) up to number_of_nodes - 1 .
Also refered to as a complete r-ary tree.

6.2.2 barbell_graph

barbell_graph ($m 1, m 2$, create_using=None)
Return the Barbell Graph: two complete graphs connected by a path.
For $\mathrm{m} 1>1$ and $\mathrm{m} 2>=0$.
Two identical complete graphs $K_{-}\{\mathrm{m} 1\}$ form the left and right bells, and are connected by a path $P_{-}\{\mathrm{m} 2\}$.

The $2 * \mathbf{m} 1+\mathrm{m} 2$ nodes are numbered $0, \ldots, \mathrm{~m} 1-1$ for the left barbell, $\mathrm{m} 1, \ldots, \mathrm{~m} 1+\mathrm{m} 2-1$ for the path, and $\mathrm{m} 1+\mathrm{m} 2, \ldots, 2 * \mathrm{~m} 1+\mathrm{m} 2-1$ for the right barbell.
The 3 subgraphs are joined via the edges $(\mathrm{m} 1-1, \mathrm{~m} 1)$ and $(\mathrm{m} 1+\mathrm{m} 2-1, \mathrm{~m} 1+\mathrm{m} 2)$. If $\mathrm{m} 2=0$, this is merely two complete graphs joined together.

This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs.

6.2.3 complete_graph

```
complete_graph (n,create_using=None)
```

Return the complete graph $K _n$ with n nodes.
Node labels are the integers 0 to $\mathrm{n}-1$.

6.2.4 complete_bipartite_graph

complete_bipartite_graph (n1, n2, create_using=None)
Return the complete bipartite graph K_\{n1_n2\}.
Composed of two partitions with n 1 nodes in the first and n 2 nodes in the second. Each node in the first is connected to each node in the second.

Node labels are the integers 0 to $\mathrm{n} 1+\mathrm{n} 2-1$

6.2.5 circular_ladder_graph

circular_ladder_graph (n, create_using=None)
Return the circular ladder graph CL_n of length n.
CL_n consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge.
Node labels are the integers 0 to $n-1$

6.2.6 cycle_graph

cycle_graph (n, create_using=None)
Return the cycle graph C_n over n nodes.
C_n is the n -path with two end-nodes connected.
Node labels are the integers 0 to $\mathrm{n}-1$ If create_using is a DiGraph, the direction is in increasing order.

6.2.7 dorogovtsev_goltsev_mendes_graph

dorogovtsev_goltsev_mendes_graph (n, create_using=None)
Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.
n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

6.2.8 empty_graph

empty_graph ($n=0$, create_using=None)
Return the empty graph with n nodes and zero edges.
Node labels are the integers 0 to $n-1$
For example: >>> G=nx.empty_graph(10) >>> G.number_of_nodes() $10 \ggg$ G.number_of_edges() 0
The variable create_using should point to a "graph"-like object that will be cleaned (nodes and edges will be removed) and refitted as an empty "graph" with n nodes with integer labels. This capability is useful for specifying the class-nature of the resulting empty "graph" (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty digraph, network,etc. For example,
>>> $n=10$
>>> G=nx.empty_graph(n, create_using=nx.DiGraph())
will create an empty digraph on n nodes.
Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via create_using. For example, if G is an existing graph (resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G) will empty G (i.e. delete all nodes and edges using G.clear() in base) and then add n nodes and zero edges, and return the modified graph (resp. digraph, pseudograph, etc.).
See also create_empty_copy(G).

6.2.9 grid_2d_graph

grid_2d_graph (m, n, periodic=False, create_using=None)
Return the 2 d grid graph of mxn nodes, each connected to its nearest neighbors. Optional argument periodic=True will connect boundary nodes via periodic boundary conditions.

6.2.10 grid_graph

grid_graph (dim, periodic=False)
Return the n -dimensional grid graph.
The dimension is the length of the list 'dim' and the size in each dimension is the value of the list element.
E.g. $G=$ grid_graph $(\operatorname{dim}=[2,3])$ produces a 2×3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

6.2.11 hypercube_graph

hypercube_graph (n)
Return the n-dimensional hypercube.
Node labels are the integers 0 to $2 * * \mathrm{n}-1$.

6.2.12 ladder_graph

ladder_graph (n, create_using=None)
Return the Ladder graph of length n.
This is two rows of n nodes, with each pair connected by a single edge.
Node labels are the integers 0 to $2 * \mathrm{n}-1$.

6.2.13 lollipop_graph

lollipop_graph (m, n, create_using=None)
Return the Lollipop Graph; K_m connected to P_n.
This is the Barbell Graph without the right barbell.
For $m>1$ and $n>=0$, the complete graph $K _m$ is connected to the path $P _n$. The resulting $m+n$ nodes are labelled $0, \ldots, m-1$ for the complete graph and $m, \ldots, m+n-1$ for the path. The 2 subgraphs are joined via the edge ($\mathrm{m}-1, \mathrm{~m}$). If $\mathrm{n}=0$, this is merely a complete graph.

Node labels are the integers 0 to number_of_nodes - 1 .
(This graph is an extremal example in David Aldous and Jim Fill's etext on Random Walks on Graphs.)

6.2.14 null_graph

null_graph (create_using=None)
Return the Null graph with no nodes or edges.
See empty_graph for the use of create_using.

6.2.15 path_graph

path_graph (n, create_using=None)
Return the Path graph $\mathrm{P}_{-} \mathrm{n}$ of n nodes linearly connected by $\mathrm{n}-1$ edges.
Node labels are the integers 0 to n - 1 . If create_using is a DiGraph then the edges are directed in increasing order.

6.2.16 star_graph

star_graph (n, create_using=None)
Return the Star graph with $\mathrm{n}+1$ nodes: one center node, connected to n outer nodes.
Node labels are the integers 0 to n .

6.2.17 trivial_graph

trivial_graph (create_using=None)
Return the Trivial graph with one node (with integer label 0) and no edges.

6.2.18 wheel_graph

wheel_graph (n, create_using=None)
Return the wheel graph: a single hub node connected to each node of the ($\mathrm{n}-1$)-node cycle graph.
Node labels are the integers 0 to $\mathrm{n}-1$.

6.3 Small

Various small and named graphs, together with some compact generators.

make_small_graph(graph_description[, ..])	Return the small graph described by graph_description.
LCF_graph(n, shift_list, repeats[, create_using])	Return the cubic graph specified in LCF notation.
bull_graph([create_using])	Return the Bull graph.
chvatal_graph([create_using])	Return the Chvátal graph.
cubical_graph([create_using])	Return the 3-regular Platonic Cubical graph.
desargues_graph([create_using])	Return the Desargues graph.
diamond_graph([create_using])	Return the Diamond graph.
dodecahedral_graph([create_using])	Return the Platonic Dodecahedral graph.
frucht_graph([create_using])	Return the Frucht Graph.
heawood_graph([create_using])	Return the Heawood graph, a (3,6) cage.
house_graph([create_using])	Return the House graph (square with triangle on top).
house_x_graph([create_using])	Return the House graph with a cross inside the house square.
icosahedral_graph([create_using])	Return the Platonic Icosahedral graph.
krackhardt_kite_graph([create_using])	Return the Krackhardt Kite Social Network.
moebius_kantor_graph([create_using])	Return the Moebius-Kantor graph.
octahedral_graph([create_using])	Return the Platonic Octahedral graph.
pappus_graph()	Return the Pappus graph.
petersen_graph([create_using])	Return the Petersen graph.
sedgewick_maze_graph([create_using])	Return a small maze with a cycle.
tetrahedral_graph([create_using])	Return the 3-regular Platonic Tetrahedral graph.
truncated_cube_graph([create_using])	Return the skeleton of the truncated cube.
truncated_tetrahedron_graph([create_using])	Return the skeleton of the truncated Platonic tetrahedron.
tutte_graph([create_using])	Return the Tutte graph.

6.3.1 make_small_graph

make_small_graph (graph_description, create_using=None)
Return the small graph described by graph_description.
graph_description is a list of the form [ltype, name, n,xlist]
Here ltype is one of "adjacencylist" or "edgelist", name is the name of the graph and n the number of nodes. This constructs a graph of n nodes with integer labels $0, . ., \mathrm{n}-1$.

If ltype="adjacencylist" then xlist is an adjacency list with exactly n entries, in with the j 'th entry (which can be empty) specifies the nodes connected to vertex j. e.g. the "square" graph C_4 can be obtained by

```
>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,4],[1,3],[2,4],[1,3]]])
```

or, since we do not need to add edges twice,
>>> G=nx.make_small_graph(["adjacencylist", "C_4", 4, [[2, 4], [3], [4], []]])
If ltype="edgelist" then xlist is an edge list written as [[v1,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in the range $1, . ., \mathrm{n}$ e.g. the "square" graph $\mathrm{C} _4$ can be obtained by

```
>>> G=nx.make_small_graph(["edgelist", "C_4",4,[[1, 2],[3,4],[2,3],[4,1]]])
```

Use the create_using argument to choose the graph class/type.

6.3.2 LCF_graph

LCF_graph (n, shift_list, repeats, create_using=None)
Return the cubic graph specified in LCF notation.
LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, heawood_graph and pappus_graph below.
\mathbf{n} (number of nodes) The starting graph is the n -cycle with nodes $0, \ldots, \mathrm{n}-1$. (The null graph is returned if $\mathrm{n}<$ 0.$)$
shift_list $=[\mathrm{s} 1, \mathrm{~s} 2, . ., \mathrm{sk}]$, a list of integer shifts mod n ,
repeats integer specifying the number of times that shifts in shift_list are successively applied to each v_current in the n -cycle to generate an edge between v _current and v _current+shift mod n .

For v 1 cycling through the n -cycle a total of k *repeats with shift cycling through shiftlist repeats times connect v 1 with $\mathrm{v} 1+$ shift $\bmod \mathrm{n}$

The utility graph K_\{3,3\}
$\ggg G=n x \cdot L C F _g r a p h(6,[3,-3], 3)$
The Heawood graph

```
>>> G=nx.LCF_graph(14,[5,-5], 7)
```

See http://mathworld.wolfram.com/LCFNotation.html for a description and references.

6.3.3 bull_graph

bull_graph (create_using=None)
Return the Bull graph.

6.3.4 chvatal_graph

```
chvatal_graph(create_using=None)
```

Return the Chvátal graph.

6.3.5 cubical_graph

cubical_graph (create_using=None)
Return the 3-regular Platonic Cubical graph.

6.3.6 desargues_graph

desargues_graph (create_using=None)
Return the Desargues graph.

6.3.7 diamond_graph

diamond_graph (create_using=None)
Return the Diamond graph.

6.3.8 dodecahedral_graph

dodecahedral_graph (create_using=None)
Return the Platonic Dodecahedral graph.

6.3.9 frucht_graph

frucht_graph (create_using=None)
Return the Frucht Graph.
The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element.

6.3.10 heawood_graph

heawood_graph (create_using=None)
Return the Heawood graph, a $(3,6)$ cage .

6.3.11 house_graph

```
house_graph (create_using=None)
```

Return the House graph (square with triangle on top).

6.3.12 house_x_graph

house_x_graph (create_using=None)
Return the House graph with a cross inside the house square.

6.3.13 icosahedral_graph

icosahedral_graph (create_using=None)
Return the Platonic Icosahedral graph.

6.3.14 krackhardt_kite_graph

krackhardt_kite_graph (create_using=None)
Return the Krackhardt Kite Social Network.
A 10 actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, closeness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7, Heather=8, Ike=9, Jane=10.

6.3.15 moebius_kantor_graph

moebius_kantor_graph (create_using=None)
Return the Moebius-Kantor graph.

6.3.16 octahedral_graph

```
octahedral_graph (create_using=None)
```

Return the Platonic Octahedral graph.

6.3.17 pappus_graph

```
pappus_graph()
```

Return the Pappus graph.

6.3.18 petersen_graph

petersen_graph (create_using=None)
Return the Petersen graph.

6.3.19 sedgewick_maze_graph

sedgewick_maze_graph (create_using=None)
Return a small maze with a cycle.
This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and following. Nodes are numbered $0, . ., 7$

6.3.20 tetrahedral_graph

tetrahedral_graph (create_using=None)
Return the 3-regular Platonic Tetrahedral graph.

6.3.21 truncated_cube_graph

truncated_cube_graph (create_using=None)
Return the skeleton of the truncated cube.

6.3.22 truncated_tetrahedron_graph

truncated_tetrahedron_graph (create_using=None)
Return the skeleton of the truncated Platonic tetrahedron.

6.3.23 tutte_graph

tutte_graph (create_using=None)
Return the Tutte graph.

6.4 Random Graphs

Generators for random graphs.

fast_gnp_random_graph(n, p[, seed, directed])	Return a random graph G_\{n,p\} (Erdős-Rényi graph, binomial graph).
gnp_random_graph(n, p[, seed, directed])	Return a random graph G_\{n,p\} (Erdős-Rényi graph, binomial graph).
dense_gnm_random_graph(n, m[, seed])	Return the random graph G_\{n,m\}.
gnm_random_graph(n, m[, seed, directed])	Return the random graph G_\{n,m\}.
erdos_renyi_graph(n, p[, seed, directed])	Return a random graph G_\{n,p\} (Erdős-Rényi graph, binomial graph).
binomial_graph(n, p[, seed, directed])	Return a random graph G_\{n,p\} (Erdős-Rényi graph, binomial graph).
newman_watts_strogatz_graph(n, k, p[, seed])	Return a Newman-Watts-Strogatz small world graph.
watts_strogatz_graph(n, k, p[, seed])	Return a Watts-Strogatz small-world graph.
connected_watts_strogatz_graph(n, k, p[, ...])	Return a connected Watts-Strogatz small-world graph.
random_regular_graph(d, n[, seed])	Return a random regular graph of n nodes each with degree d.
barabasi_albert_graph(n, m[, seed])	Return random graph using Barabási-Albert preferential attachment mo
powerlaw_cluster_graph(n, m, p[, seed])	Holme and Kim algorithm for growing graphs with powerlaw
random_lobster(n, pl, p2[, seed])	Return a random lobster.
random_shell_graph(constructor[, seed])	Return a random shell graph for the constructor given.
random_powerlaw_tree(n[, gamma, seed, tries])	Return a tree with a powerlaw degree distribution.
random_powerlaw_tree_sequence(n[, gamma, ...])	Return a degree sequence for a tree with a powerlaw distribution.

6.4.1 fast_gnp_random_graph

```
fast_gnp_random_graph ( }n,p,\mathrm{ seed=None, directed=False)
```

 Return a random graph \(\mathrm{G}_{-}\{\mathrm{n}, \mathrm{p}\}\) (Erdős-Rényi graph, binomial graph).
 Parameters \mathbf{n} : int
The number of nodes.
p: float
Probability for edge creation.
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

See also:

```
gnp_random_graph
```


Notes

The $G_{-}\{n, p\}$ graph algorithm chooses each of the $[n(n-1)] / 2$ (undirected) or $n(n-1)$ (directed) possible edges with probability p .

This algorithm is $\mathrm{O}(\mathrm{n}+\mathrm{m})$ where m is the expected number of edges $\mathrm{m}=\mathrm{p} * \mathrm{n}^{*}(\mathrm{n}-1) / 2$.
It should be faster than gnp_random_graph when p is small and the expected number of edges is small (sparse graph).

References

[R280]

6.4.2 gnp_random_graph

gnp_random_graph $(n, p$, seed $=$ None, directed $=$ False $)$
Return a random graph $\mathrm{G}_{-}\{\mathrm{n}, \mathrm{p}\}$ (Erdős-Rényi graph, binomial graph).
Chooses each of the possible edges with probability p.
This is also called binomial_graph and erdos_renyi_graph.
Parameters \mathbf{n} : int
The number of nodes.
p: float
Probability for edge creation.
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

See also:

fast_gnp_random_graph

Notes

This is an $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ algorithm. For sparse graphs (small p) see fast_gnp_random_graph for a faster algorithm.

References

[R281], [R282]

6.4.3 dense_gnm_random_graph

dense_gnm_random_graph (n, m, seed=None)
Return the random graph $\mathrm{G}_{-}\{\mathrm{n}, \mathrm{m}\}$.
Gives a graph picked randomly out of the set of all graphs with n nodes and m edges. This algorithm should be faster than gnm_random_graph for dense graphs.

Parameters \mathbf{n} : int
The number of nodes.
m : int
The number of edges.
seed : int, optional
Seed for random number generator (default=None).

See also:

gnm_random_graph

Notes

Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth's Algorithm S (Selection sampling technique), in section 3.4.2 of [R277].

References

[R277]

6.4.4 gnm_random_graph

gnm_random_graph (n, m, seed=None, directed=False) Return the random graph G_\{n,m\}.

Produces a graph picked randomly out of the set of all graphs with n nodes and m edges.

Parameters \mathbf{n} : int

The number of nodes.
m : int
The number of edges.
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

6.4.5 erdos_renyi_graph

```
erdos_renyi_graph ( \(n, p\), seed=None, directed=False)
```

Return a random graph $\mathrm{G}_{-}\{\mathrm{n}, \mathrm{p}\}$ (Erdős-Rényi graph, binomial graph).
Chooses each of the possible edges with probability p.
This is also called binomial_graph and erdos_renyi_graph.
Parameters \mathbf{n} : int
The number of nodes.
p: float
Probability for edge creation.
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

See also:

fast_gnp_random_graph

Notes

This is an $O\left(n^{\wedge} 2\right)$ algorithm. For sparse graphs (small p) see fast_gnp_random_graph for a faster algorithm.

References

[R278], [R279]

6.4.6 binomial_graph

binomial_graph (n, p, seed $=$ None, directed $=$ False)
Return a random graph $\mathrm{G}_{-}\{\mathrm{n}, \mathrm{p}\}$ (Erdős-Rényi graph, binomial graph).
Chooses each of the possible edges with probability p.
This is also called binomial_graph and erdos_renyi_graph.
Parameters \mathbf{n} : int
The number of nodes.
p: float
Probability for edge creation.
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

See also:

```
fast_gnp_random_graph
```


Notes

This is an $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ algorithm. For sparse graphs (small p) see fast_gnp_random_graph for a faster algorithm.

References

[R275], [R276]

6.4.7 newman_watts_strogatz_graph

newman_watts_strogatz_graph $(n, k, p$, seed=None)
Return a Newman-Watts-Strogatz small world graph.
Parameters \mathbf{n} : int
The number of nodes
\mathbf{k} : int
Each node is connected to k nearest neighbors in ring topology
p: float
The probability of adding a new edge for each edge
seed : int, optional
seed for random number generator (default=None)
See also:
watts_strogatz_graph

Notes

First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors ($\mathrm{k}-1$ neighbors if k is odd). Then shortcuts are created by adding new edges as follows: for each edge $\mathrm{u}-\mathrm{v}$ in the underlying " n-ring with k nearest neighbors" with probability p add a new edge $u-w$ with randomly-chosen existing node w. In contrast with watts_strogatz_graph(), no edges are removed.

References

[R283]

6.4.8 watts_strogatz_graph

watts_strogatz_graph $(n, k, p$, seed=None)
Return a Watts-Strogatz small-world graph.
Parameters \mathbf{n} : int

The number of nodes
k : int
Each node is connected to k nearest neighbors in ring topology
p: float
The probability of rewiring each edge
seed : int, optional
Seed for random number generator (default=None)

See also:

```
newman_watts_strogatz_graph, connected_watts_strogatz_graph
```

Notes

First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors ($\mathrm{k}-1$ neighbors if k is odd). Then shortcuts are created by replacing some edges as follows: for each edge u-v in the underlying " n-ring with k nearest neighbors" with probability p replace it with a new edge $\mathrm{u}-\mathrm{w}$ with uniformly random choice of existing node w .

In contrast with newman_watts_strogatz_graph(), the random rewiring does not increase the number of edges. The rewired graph is not guaranteed to be connected as in connected_watts_strogatz_graph().

References

[R287]

6.4.9 connected_watts_strogatz_graph

connected_watts_strogatz_graph (n, k, p, tries $=100$, seed=None)

Return a connected Watts-Strogatz small-world graph.
Attempt to generate a connected realization by repeated generation of Watts-Strogatz small-world graphs. An exception is raised if the maximum number of tries is exceeded.

Parameters \mathbf{n} : int
The number of nodes
k: int
Each node is connected to k nearest neighbors in ring topology
p : float
The probability of rewiring each edge
tries: int
Number of attempts to generate a connected graph.
seed : int, optional
The seed for random number generator

See also:

```
newman_watts_strogatz_graph,watts_strogatz_graph
```


6.4.10 random_regular_graph

random_regular_graph (d, n, seed=None)
Return a random regular graph of n nodes each with degree d .
The resulting graph G has no self-loops or parallel edges.

Parameters d:int

Degree
n : integer
Number of nodes. The value of $\mathrm{n}^{*} \mathrm{~d}$ must be even.
seed : hashable object
The seed for random number generator.

Notes

The nodes are numbered form 0 to $\mathrm{n}-1$.
Kim and Vu's paper [R286] shows that this algorithm samples in an asymptotically uniform way from the space of random graphs when $\mathrm{d}=\mathrm{O}\left(\mathrm{n}^{* *}(1 / 3-\mathrm{epsilon})\right)$.

References

[R285], [R286]

6.4.11 barabasi_albert_graph

barabasi_albert_graph (n, m, seed=None)
Return random graph using Barabási-Albert preferential attachment model.
A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to existing nodes with high degree.

Parameters \mathbf{n} : int
Number of nodes
m : int
Number of edges to attach from a new node to existing nodes
seed : int, optional
Seed for random number generator (default=None).
Returns G: Graph

Notes

The initialization is a graph with with m nodes and no edges.

References

[R274]

6.4.12 powerlaw_cluster_graph

powerlaw_cluster_graph (n, m, p, seed=None)
Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average clustering.

Parameters \mathbf{n} : int

the number of nodes
m : int
the number of random edges to add for each new node
p : float,
Probability of adding a triangle after adding a random edge
seed : int, optional
Seed for random number generator (default=None).

Notes

The average clustering has a hard time getting above a certain cutoff that depends on m . This cutoff is often quite low. Note that the transitivity (fraction of triangles to possible triangles) seems to go down with network size.

It is essentially the Barabási-Albert (B-A) growth model with an extra step that each random edge is followed by a chance of making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on B-A in the sense that it enables a higher average clustering to be attained if desired.
It seems possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked to a new node on the first iteration like the B-A model.

References

[R284]

6.4.13 random_lobster

random_lobster ($n, p 1, p 2$, seed=None)
Return a random lobster.
A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes.
A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes $(\mathrm{p} 2=0)$.

Parameters \mathbf{n} : int
The expected number of nodes in the backbone
p1 : float
Probability of adding an edge to the backbone
p2 : float
Probability of adding an edge one level beyond backbone seed : int, optional

Seed for random number generator (default=None).

6.4.14 random_shell_graph

random_shell_graph (constructor, seed=None)
Return a random shell graph for the constructor given.
Parameters constructor: a list of three-tuples:
($\mathrm{n}, \mathrm{m}, \mathrm{d}$) for each shell starting at the center shell.
\mathbf{n} : int
The number of nodes in the shell
m : int
The number or edges in the shell
d : float
The ratio of inter-shell (next) edges to intra-shell edges. $\mathrm{d}=0$ means no intra shell edges, $\mathrm{d}=1$ for the last shell
seed : int, optional
Seed for random number generator (default=None).

Examples

>>> constructor=[(10,20,0.8),(20,40,0.8)]
>>> G=nx.random_shell_graph (constructor)

6.4.15 random_powerlaw_tree

random_powerlaw_tree (n, gamma $=3$, seed=None, tries=100)
Return a tree with a powerlaw degree distribution.
Parameters n:int,
The number of nodes
gamma: float
Exponent of the power-law
seed : int, optional

Seed for random number generator (default=None).
tries: int
Number of attempts to adjust sequence to make a tree

Notes

A trial powerlaw degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (\#edges=\#nodes-1).

6.4.16 random_powerlaw_tree_sequence

random_powerlaw_tree_sequence (n, gamma $=3$, seed $=$ None, tries $=100$)
Return a degree sequence for a tree with a powerlaw distribution.
Parameters \mathbf{n} : int,
The number of nodes
gamma : float
Exponent of the power-law
seed : int, optional
Seed for random number generator (default=None).
tries : int
Number of attempts to adjust sequence to make a tree

Notes

A trial powerlaw degree sequence is chosen and then elements are swapped with new elements from a powerlaw distribution until the sequence makes a tree (\#edges=\#nodes-1).

6.5 Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.

configuration_model(deg_sequence[, ...])	Return a random graph with the given degree sequence.
directed_configuration_model(..., ...])	Return a directed_random graph with the given degree sequences.
expected_degree_graph(w[, seed, selfloops])	Return a random graph with given expected degrees.
havel_hakimi_graph(deg_sequence[, create_using])	Return a simple graph with given degree sequence constructed
directed_havel_hakimi_graph(in_deg_sequence, ...)	Return a directed graph with the given degree sequences.
degree_sequence_tree(deg_sequence[, ...])	Make a tree for the given degree sequence.
random_degree_sequence_graph(sequence[, ...])	Return a simple random graph with the given degree sequence.

6.5.1 configuration_model

configuration_model (deg_sequence, create_using=None, seed=None)
Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequence.

Parameters deg_sequence : list of integers

Each list entry corresponds to the degree of a node.
create_using : graph, optional (default MultiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
Seed for random number generator.

Returns G:MultiGraph

A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Raises NetworkXError :

If the degree sequence does not have an even sum.

See also:

```
is_valid_degree_sequence
```


Notes

As described by Newman [R251].
A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases.

References

[R251]

Examples

>>> from networkx.utils import powerlaw_sequence

>>> G=nx.configuration_model(z)
To remove parallel edges:
>>> G=nx.Graph (G)
To remove self loops:
>>> G.remove_edges_from(G.selfloop_edges())

6.5.2 directed_configuration_model

directed_configuration_model(in_degree_sequence, out_degree_sequence, create_using=None, seed $=$ None)
Return a directed_random graph with the given degree sequences.
The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given degree sequences.

Parameters in_degree_sequence : list of integers
Each list entry corresponds to the in-degree of a node.
out_degree_sequence : list of integers
Each list entry corresponds to the out-degree of a node.
create_using : graph, optional (default MultiDiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
Seed for random number generator.
Returns G: MultiDiGraph
A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Raises NetworkXError :

If the degree sequences do not have the same sum.

See also:

```
configuration_model
```


Notes

Algorithm as described by Newman [R252].
A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases.

References

[R252]

Examples

```
>>> D=nx.DiGraph([(0,1),(1,2),(2,3)]) # directed path graph
>>> din=list(D.in_degree().values())
>>> dout=list(D.out_degree().values())
>>> din.append(1)
```

>>> dout [0]=2
>>> D=nx.directed_configuration_model(din,dout)
To remove parallel edges:
>>> D=nx.DiGraph(D)
To remove self loops:
>>> D.remove_edges_from(D.selfloop_edges())

6.5.3 expected_degree_graph

expected_degree_graph $(w$, seed $=$ None, selfloops $=$ True $)$
Return a random graph with given expected degrees.
Given a sequence of expected degrees $W=\left(w_{0}, w_{1}, \ldots, w_{n-1}\right)$ of length n this algorithm assigns an edge between node u and node v with probability

$$
p_{u v}=\frac{w_{u} w_{v}}{\sum_{k} w_{k}}
$$

Parameters w: list

The list of expected degrees.
selfloops: bool (default=True) :
Set to False to remove the possibility of self-loop edges.
seed : hashable object, optional
The seed for the random number generator.

Returns Graph :

Notes

The nodes have integer labels corresponding to index of expected degrees input sequence.
The complexity of this algorithm is $\mathcal{O}(n+m)$ where n is the number of nodes and m is the expected number of edges.
The model in [R254] includes the possibility of self-loop edges. Set selfloops=False to produce a graph without self loops.

For finite graphs this model doesn't produce exactly the given expected degree sequence. Instead the expected degrees are as follows.

For the case without self loops (selfloops=False),

$$
E[\operatorname{deg}(u)]=\sum_{v \neq u} p_{u v}=w_{u}\left(1-\frac{w_{u}}{\sum_{k} w_{k}}\right)
$$

NetworkX uses the standard convention that a self-loop edge counts 2 in the degree of a node, so with self loops (selfloops=True),

$$
E[\operatorname{deg}(u)]=\sum_{v \neq u} p_{u v}+2 p_{u u}=w_{u}\left(1+\frac{w_{u}}{\sum_{k} w_{k}}\right)
$$

References

[R254], [R255]

Examples

```
>>> z=[10 for i in range(100)]
```

>>> G=nx.expected_degree_graph (z)

6.5.4 havel_hakimi_graph

havel_hakimi_graph (deg_sequence, create_using=None)
Return a simple graph with given degree sequence constructed using the Havel-Hakimi algorithm.

Parameters deg_sequence: list of integers :

Each integer corresponds to the degree of a node (need not be sorted).
create_using : graph, optional (default Graph)
Return graph of this type. The instance will be cleared. Directed graphs are not allowed.

Raises NetworkXException :

For a non-graphical degree sequence (i.e. one not realizable by some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting graph has a high degree-associativity. Nodes are labeled $1, .$. , len(deg_sequence), corresponding to their position in deg_sequence.

The basic algorithm is from Hakimi [R256] and was generalized by Kleitman and Wang [R257].

References

[R256], [R257]

6.5.5 directed_havel_hakimi_graph

directed_havel_hakimi_graph (in_deg_sequence, out_deg_sequence, create_using=None)
Return a directed graph with the given degree sequences.
Parameters in_deg_sequence : list of integers
Each list entry corresponds to the in-degree of a node.
out_deg_sequence : list of integers
Each list entry corresponds to the out-degree of a node.
create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.

Returns G: DiGraph
A graph with the specified degree sequences. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence
Raises NetworkXError:
If the degree sequences are not digraphical.

See also:

```
configuration_model
```


Notes

Algorithm as described by Kleitman and Wang [R253].

References

[R253]

6.5.6 degree_sequence_tree

degree_sequence_tree (deg_sequence, create_using=None)
Make a tree for the given degree sequence.
A tree has \#nodes-\#edges=1 so the degree sequence must have len(deg_sequence)-sum(deg_sequence) $/ 2=1$

6.5.7 random_degree_sequence_graph

random_degree_sequence_graph (sequence, seed=None, tries=10)
Return a simple random graph with the given degree sequence.
If the maximum degree d_{m} in the sequence is $O\left(m^{1 / 4}\right)$ then the algorithm produces almost uniform random graphs in $O\left(m d_{m}\right)$ time where m is the number of edges.

Parameters sequence : list of integers
Sequence of degrees
seed : hashable object, optional
Seed for random number generator
tries : int, optional
Maximum number of tries to create a graph
Returns G: Graph
A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in the sequence.

Raises NetworkXUnfeasible :

If the degree sequence is not graphical.

NetworkXError :

If a graph is not produced in specified number of tries

See also:

```
is__valid__degree__sequence, configuration_model
```

Notes

The generator algorithm [R258] is not guaranteed to produce a graph.

References

[R258]

Examples

```
>>> sequence = [1, 2, 2, 3]
>>> G = nx.random_degree_sequence_graph(sequence)
>>> sorted(G.degree().values())
[1, 2, 2, 3]
```


6.6 Random Clustered

Generate graphs with given degree and triangle sequence.
random_clustered_graph(joint_degree_sequence) Generate a random graph with the given joint degree and triangle degree s

6.6.1 random_clustered_graph

random_clustered_graph (joint_degree_sequence, create_using=None, seed=None) Generate a random graph with the given joint degree and triangle degree sequence.

This uses a configuration model-like approach to generate a random pseudograph (graph with parallel edges and self loops) by randomly assigning edges to match the given indepdenent edge and triangle degree sequence.

Parameters joint_degree_sequence : list of integer pairs

Each list entry corresponds to the independent edge degree and triangle degree of a node.
create_using : graph, optional (default MultiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
The seed for the random number generator.
Returns G: MultiGraph
A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence.

Raises NetworkXError :

If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3 .

Notes

As described by Miller [R272] (see also Newman [R273] for an equivalent description).
A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3 .

This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases.

References

[R272], [R273]

Examples

```
>>> deg_tri=[[1,0],[1,0],[1,0],[2,0],[1,0],[2,1],[0,1],[0,1]]
>>> G = nx.random_clustered_graph(deg_tri)
```

To remove parallel edges:
>>> G=nx.Graph (G)
To remove self loops:
>>> G.remove_edges_from(G.selfloop_edges())

6.7 Directed

Generators for some directed graphs.
gn_graph: growing network gnc_graph: growing network with copying gnr_graph: growing network with redirection scale_free_graph: scale free directed graph

gn_graph(n[, kernel, create_using, seed])	Return the GN digraph with n nodes.
gnr_graph(n, p[, create_using, seed])	Return the GNR digraph with n nodes and redirection probability p.
gnc_graph $(\mathrm{n}[$, create_using, seed] $)$	Return the GNC digraph with n nodes.
scale_free_graph(n[, alpha, beta, gamma, ...])	Return a scale free directed graph.

6.7.1 gn_graph

gn_graph (n, kernel=None, create_using=None, seed=None)
Return the GN digraph with n nodes.
The GN (growing network) graph is built by adding nodes one at a time with a link to one previously added node. The target node for the link is chosen with probability based on degree. The default attachment kernel is
a linear function of degree.
The graph is always a (directed) tree.
Parameters \mathbf{n} : int
The number of nodes for the generated graph.
kernel : function
The attachment kernel.
create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
The seed for the random number generator.

References

[R259]

Examples

```
>>> D=nx.gn_graph(10) # the GN graph
>>> G=D.to_undirected() # the undirected version
```

To specify an attachment kernel use the kernel keyword

```
>>> D=nx.gn_graph(10,kernel=lambda x:x**1.5) # A_k=k^1.5
```


6.7.2 gnr_graph

gnr_graph (n, p, create_using=None, seed=None)
Return the GNR digraph with n nodes and redirection probability p .
The GNR (growing network with redirection) graph is built by adding nodes one at a time with a link to one previously added node. The previous target node is chosen uniformly at random. With probabiliy p the link is instead "redirected" to the successor node of the target. The graph is always a (directed) tree.

Parameters \mathbf{n} : int
The number of nodes for the generated graph.
p: float
The redirection probability.
create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
The seed for the random number generator.

References

[R261]

Examples

>>> D=nx.gnr_graph (10,0.5) \# the GNR graph
\ggg G=D.to_undirected() \# the undirected version

6.7.3 gnc_graph

gnc_graph (n, create_using=None, seed=None)
Return the GNC digraph with n nodes.
The GNC (growing network with copying) graph is built by adding nodes one at a time with a links to one previously added node (chosen uniformly at random) and to all of that node's successors.

Parameters \mathbf{n} : int
The number of nodes for the generated graph.
create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
The seed for the random number generator.

References

[R260]

6.7.4 scale_free_graph

scale_free_graph $(n, \quad a l p h a=0.41$, beta $=0.54$, gamma $=0.05$, delta_in=0.2, delta_out=0, create_using=None, seed=None)
Return a scale free directed graph.
Parameters \mathbf{n} : integer
Number of nodes in graph
alpha: float
Probability for adding a new node connected to an existing node chosen randomly according to the in-degree distribution.
beta : float
Probability for adding an edge between two existing nodes. One existing node is chosen randomly according the in-degree distribution and the other chosen randomly according to the out-degree distribution.
gamma : float

Probability for adding a new node conecgted to an existing node chosen randomly according to the out-degree distribution.
delta_in : float
Bias for choosing ndoes from in-degree distribution.
delta_out : float
Bias for choosing ndoes from out-degree distribution.
create_using : graph, optional (default MultiDiGraph)
Use this graph instance to start the process (default=3-cycle).
seed : integer, optional
Seed for random number generator

Notes

The sum of alpha, beta, and gamma must be 1 .

References

[R262]

Examples

>>> G=nx.scale_free_graph(100)

6.8 Geometric

Generators for geometric graphs.

random_geometric_graph(n, radius[, dim, pos])	Return the random geometric graph in the unit cube.
geographical_threshold_graph(n, theta[, ..])	Return a geographical threshold graph.
waxman_graph(n[, alpha, beta, L, domain])	Return a Waxman random graph.
navigable_small_world_graph(n[, p, q, r, ...])	Return a navigable small-world graph.

6.8.1 random_geometric_graph

```
random_geometric_graph ( }n\mathrm{ , radius, dim=2, pos=None)
```

Return the random geometric graph in the unit cube.
The random geometric graph model places n nodes uniformly at random in the unit cube Two nodes u, v are connected with an edge if $d(u, v)<=r$ where d is the Euclidean distance and r is a radius threshold.

Parameters \mathbf{n} : int

Number of nodes
radius: float :

Distance threshold value
dim : int, optional
Dimension of graph
pos : dict, optional
A dictionary keyed by node with node positions as values.

Returns Graph :

Notes

This uses an n^{2} algorithm to build the graph. A faster algorithm is possible using k-d trees.
The pos keyword can be used to specify node positions so you can create an arbitrary distribution and domain for positions. If you need a distance function other than Euclidean you'll have to hack the algorithm.
E.g to use a 2 d Gaussian distribution of node positions with mean $(0,0)$ and std. dev. 2

```
>>> import random
>>> n=20
>>> p=dict((i,(random.gauss(0,2),random.gauss(0,2))) for i in range(n))
>>> G = nx.random_geometric_graph(n,0.2,pos=p)
```


References

[R266]

Examples

```
>>> G = nx.random_geometric_graph(20,0.1)
```


6.8.2 geographical_threshold_graph

geographical_threshold_graph (n, theta, alpha=2, dim=2, pos=None, weight=None)
Return a geographical threshold graph.
The geographical threshold graph model places n nodes uniformly at random in a rectangular domain. Each node u is assigned a weight w_{u}. Two nodes u, v are connected with an edge if

$$
w_{u}+w_{v} \geq \theta r^{\alpha}
$$

where r is the Euclidean distance between u and v, and θ, α are parameters.

Parameters \mathbf{n} : int

Number of nodes

theta: float :

Threshold value
alpha: float, optional :
Exponent of distance function
dim : int, optional
Dimension of graph
pos: dict
Node positions as a dictionary of tuples keyed by node.
weight : dict
Node weights as a dictionary of numbers keyed by node.

Returns Graph :

Notes

If weights are not specified they are assigned to nodes by drawing randomly from an the exponential distribution with rate parameter $\lambda=1$. To specify a weights from a different distribution assign them to a dictionary and pass it as the weight= keyword

```
>>> import random
>>> n = 20
>>> w=dict((i,random.expovariate(5.0)) for i in range(n))
>>> G = nx.geographical_threshold_graph(20,50,weight=w)
```

If node positions are not specified they are randomly assigned from the uniform distribution.

References

[R263], [R264]

Examples

```
>>> G = nx.geographical_threshold_graph(20,50)
```


6.8.3 waxman_graph

waxman_graph $(n$, alpha $=0.4$, beta $=0.1, L=$ None, domain $=(0,0,1,1))$
Return a Waxman random graph.
The Waxman random graph models place n nodes uniformly at random in a rectangular domain. Two nodes u, v are connected with an edge with probability

$$
p=\alpha * \exp (-d /(\beta * L))
$$

This function implements both Waxman models.
Waxman-1: L not specified The distance d is the Euclidean distance between the nodes u and $v . L$ is the maximum distance between all nodes in the graph.

Waxman-2: L specified The distance d is chosen randomly in $[0, L]$.
Parameters \mathbf{n} : int
Number of nodes

alpha: float :

Model parameter

beta: float :

Model parameter
\mathbf{L} : float, optional
Maximum distance between nodes. If not specified the actual distance is calculated.
domain : tuple of numbers, optional
Domain size (xmin, ymin, xmax, ymax)

Returns G: Graph :

References

[R267]

6.8.4 navigable_small_world_graph

navigable_small_world_graph ($n, p=1, q=1, r=2, \operatorname{dim}=2$, seed $=$ None)
Return a navigable small-world graph.
A navigable small-world graph is a directed grid with additional long-range connections that are chosen randomly. From [R265]:

Begin with a set of nodes that are identified with the set of lattice points in an $n \times n$ square, $(i, j): i \in 1,2, \ldots, n, j \in 1,2, \ldots, n$ and define the lattice distance between two nodes (i, j) and (k, l) to be the number of "lattice steps" separating them: $d((i, j),(k, l))=|k-i|+|l-j|$.

For a universal constant p, the node u has a directed edge to every other node within lattice distance p (local contacts).
For universal constants $q \geq 0$ and $r \geq 0$ construct directed edges from u to q other nodes (long-range contacts) using independent random trials; the i'th directed edge from u has endpoint v with probability proportional to $d(u, v)^{-r}$.

Parameters \mathbf{n} : int
The number of nodes.
\mathbf{p} : int
The diameter of short range connections. Each node is connected to every other node within lattice distance p.
\mathbf{q} : int
The number of long-range connections for each node.
\mathbf{r} : float
Exponent for decaying probability of connections. The probability of connecting to a node at lattice distance d is $1 / d^{\wedge}$ r.
dim : int
Dimension of grid
seed : int, optional

Seed for random number generator (default=None).

References

[R265]

6.9 Hybrid

Hybrid

kl_connected_subgraph(G, k, l[, low_memory, ...])	Returns the maximum locally (k,l) connected subgraph of G.
is_kl_connected(G, k, l[, low_memory $])$	Returns True if G is kl connected.

6.9.1 kl_connected_subgraph

kl_connected_subgraph (G, k, l, low_memory=False, same_as_graph=False)
Returns the maximum locally (k, l) connected subgraph of G.
(k,l)-connected subgraphs are presented by Fan Chung and Li in "The Small World Phenomenon in hybrid power law graphs" to appear in "Complex Networks" (Ed. E. Ben-Naim) Lecture Notes in Physics, Springer (2004)
low_memory=True then use a slightly slower, but lower memory version same_as_graph=True then return a tuple with subgraph and pflag for if G is kl-connected

6.9.2 is_kl_connected

is_kl_connected (G, k, l, low_memory=False)
Returns True if G is kl connected.

6.10 Bipartite

Generators and functions for bipartite graphs.

bipartite_configuration_model(aseq, bseq[, ...])	Return a random bipartite graph from two given degree sequenc
bipartite_havel_hakimi_graph(aseq, bseq[, ...])	Return a bipartite graph from two given degree sequences using
bipartite_reverse_havel_hakimi_graph(aseq, bseq)	Return a bipartite graph from two given degree sequences using
bipartite_alternating_havel_hakimi_graph(...)	Return a bipartite graph from two given degree sequences using
bipartite_preferential_attachment_graph(aseq, p)	Create a bipartite graph with a preferential attachment model fro
bipartite_random_graph(n, m, p[, seed, directed])	Return a bipartite random graph.
bipartite_gnmk_random_graph(n, $\mathrm{m}, \mathrm{k}[$, seed, ...])	Return a random bipartite graph $\mathrm{G} _\{\mathrm{n}, \mathrm{m}, \mathrm{k}\}$.

6.10.1 bipartite_configuration_model

bipartite_configuration_model (aseq, bseq, create_using=None, seed=None)
Return a random bipartite graph from two given degree sequences.
Parameters aseq : list or iterator

Degree sequence for node set A .
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional
Return graph of this type.
seed : integer, optional
Seed for random number generator.

Nodes from the set A are connected to nodes in the set B by :

choosing randomly from the possible free stubs, one in \mathbf{A} and :
one in B. :

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

6.10.2 bipartite_havel_hakimi_graph

bipartite_havel_hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the highest degree nodes in set B until all stubs are connected.

Parameters aseq : list or iterator
Degree sequence for node set A .
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional
Return graph of this type.

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

6.10.3 bipartite_reverse_havel_hakimi_graph

bipartite_reverse_havel_hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
Nodes from set A are connected to nodes in the set B by connecting the highest degree nodes in set A to the lowest degree nodes in set B until all stubs are connected.

Parameters aseq : list or iterator
Degree sequence for node set A.
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional
Return graph of this type.

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

6.10.4 bipartite_alternating_havel_hakimi_graph

bipartite_alternating_havel_hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using an alternating Havel-Hakimi style construction.
Nodes from the set A are connected to nodes in the set B by connecting the highest degree nodes in set A to alternatively the highest and the lowest degree nodes in set B until all stubs are connected.

Parameters aseq : list or iterator
Degree sequence for node set A .
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional
Return graph of this type.

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting degree sequences might not be exact.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

6.10.5 bipartite_preferential_attachment_graph

bipartite_preferential_attachment_graph (aseq, p, create_using=None, seed=None)
Create a bipartite graph with a preferential attachment model from a given single degree sequence.
Parameters aseq : list or iterator
Degree sequence for node set A.

$$
\mathbf{p} \text { : float }
$$

Probability that a new bottom node is added.
create_using : NetworkX graph instance, optional
Return graph of this type.
seed : integer, optional
Seed for random number generator.

References

[R249]

6.10.6 bipartite_random_graph

bipartite_random_graph (n, m, p, seed=None, directed=False)
Return a bipartite random graph.
This is a bipartite version of the binomial (Erdős-Rényi) graph.
Parameters \mathbf{n} : int
The number of nodes in the first bipartite set.
m : int
The number of nodes in the second bipartite set.
p: float
Probability for edge creation.
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

See also:

```
gnp_random_graph, bipartite_configuration_model
```

Notes

The bipartite random graph algorithm chooses each of the $n * m$ (undirected) or $2 * n m$ (directed) possible edges with probability p .

This algorithm is $\mathrm{O}(\mathrm{n}+\mathrm{m})$ where m is the expected number of edges.

The nodes are assigned the attribute 'bipartite' with the value 0 or 1 to indicate which bipartite set the node belongs to.

References

[R250]

6.10.7 bipartite_gnmk_random_graph

bipartite_gnmk_random_graph (n, m, k, seed $=$ None, directed $=$ False $)$
Return a random bipartite graph $G_{-}\{n, m, k\}$.
Produces a bipartite graph chosen randomly out of the set of all graphs with n top nodes, m bottom nodes, and k edges.

Parameters \mathbf{n} : int

The number of nodes in the first bipartite set.
m : int
The number of nodes in the second bipartite set.
k: int
The number of edges
seed : int, optional
Seed for random number generator (default=None).
directed : bool, optional (default=False)
If True return a directed graph

See also:

gnm_random_graph

Notes

If $\mathrm{k}>\mathrm{m} * \mathrm{n}$ then a complete bipartite graph is returned.
This graph is a bipartite version of the $G_{n m}$ random graph model.

Examples
$\mathrm{G}=\mathrm{nx}$. bipartite_gnmk_random_graph$(10,20,50)$

6.11 Line Graph

Line graphs.

6.11.1 line_graph

line_graph (G)

Return the line graph of the graph or digraph G.
The line graph of a graph G has a node for each edge in G and an edge between those nodes if the two edges in G share a common node.
For DiGraphs an edge an edge represents a directed path of length 2.
The original node labels are kept as two-tuple node labels in the line graph.
Parameters G: graph
A NetworkX Graph or DiGraph

Notes

Not implemented for MultiGraph or MultiDiGraph classes.
Graph, node, and edge data are not propagated to the new graph.

Examples

>>> G=nx.star_graph (3)
>>> L=nx.line_graph (G)
>>> print(sorted(L.edges())) \# makes a clique, K3
$[((0,1),(0,2)),((0,1),(0,3)),((0,3),(0,2))]$

6.12 Ego Graph

Ego graph.
ego_graph(G, n[, radius, center, ...]) Returns induced subgraph of neighbors centered at node n within a given radius.

6.12.1 ego_graph

ego_graph $(G, n$, radius $=1$, center $=$ True, undirected $=$ False, distance $=$ None)
Returns induced subgraph of neighbors centered at node n within a given radius.
Parameters G:graph
A NetworkX Graph or DiGraph
\mathbf{n} : node
A single node
radius : number, optional
Include all neighbors of distance<=radius from n.
center : bool, optional
If False, do not include center node in graph
undirected : bool, optional
If True use both in- and out-neighbors of directed graphs.
distance : key, optional
Use specified edge data key as distance. For example, setting distance='weight' will use the edge weight to measure the distance from the node n.

Notes

For directed graphs D this produces the "out" neighborhood or successors. If you want the neighborhood of predecessors first reverse the graph with D.reverse(). If you want both directions use the keyword argument undirected=True.

Node, edge, and graph attributes are copied to the returned subgraph.

6.13 Stochastic

Stocastic graph.

$$
\text { stochastic_graph(G[, copy, weight]) } \quad \text { Return a right-stochastic representation of G. }
$$

6.13.1 stochastic_graph

stochastic_graph (G, copy=True, weight='weight')

Return a right-stochastic representation of G.
A right-stochastic graph is a weighted digraph in which all of the node (out) neighbors edge weights sum to 1 .
Parameters G:graph
A NetworkX graph
copy : boolean, optional
If True make a copy of the graph, otherwise modify the original graph
weight : edge attribute key (optional, default='weight')
Edge data key used for weight. If no attribute is found for an edge the edge weight is set to 1 .

6.14 Intersection

Generators for random intersection graphs.

uniform_random_intersection_graph(n, $\mathrm{m}, \mathrm{p}[, \ldots])$	Return a uniform random intersection graph.
k_random_intersection_graph $(\mathrm{n}, \mathrm{m}, \mathrm{k})$	Return a intersection graph with randomly chosen attribute sets for
general_random_intersection_graph $(\mathrm{n}, \mathrm{m}, \mathrm{p})$	Return a random intersection graph with independent probabilities f

6.14.1 uniform_random_intersection_graph

uniform_random_intersection_graph (n, m, p, seed=None)
Return a uniform random intersection graph.
Parameters \mathbf{n} : int
The number of nodes in the first bipartite set (nodes)
\mathbf{m} : int
The number of nodes in the second bipartite set (attributes)
p: float
Probability of connecting nodes between bipartite sets
seed : int, optional
Seed for random number generator (default=None).
See also:
gnp_random_graph

References
[R270], [R271]

6.14.2 k_random_intersection_graph

\mathbf{k} _random_intersection_graph (n, m, k)
Return a intersection graph with randomly chosen attribute sets for each node that are of equal size (k).
Parameters \mathbf{n} : int
The number of nodes in the first bipartite set (nodes)
m : int
The number of nodes in the second bipartite set (attributes)
\mathbf{k} : float
Size of attribute set to assign to each node.
seed : int, optional
Seed for random number generator (default=None).
See also:
gnp_random_graph, uniform_random_intersection_graph

References
[R269]

6.14.3 general_random_intersection_graph

general_random_intersection_graph (n, m, p)
Return a random intersection graph with independent probabilities for connections between node and attribute sets.

Parameters \mathbf{n} : int
The number of nodes in the first bipartite set (nodes)
m : int
The number of nodes in the second bipartite set (attributes)
\mathbf{p} : list of floats of length m
Probabilities for connecting nodes to each attribute
seed : int, optional
Seed for random number generator (default=None).

See also:

gnp_random_graph, uniform_random_intersection_graph

References
[R268]

6.15 Social Networks

Famous social networks.

karate_club_graph()	Return Zachary's Karate club graph.
davis_southern_women_graph()	Return Davis Southern women social network.
florentine_families_graph()	Return Florentine families graph.

6.15.1 karate_club_graph

karate_club_graph()
Return Zachary's Karate club graph.

References

[R290], [R291]

6.15.2 davis_southern_women_graph

davis_southern_women_graph ()

Return Davis Southern women social network.
This is a bipartite graph.

References
[R288]

6.15.3 florentine_families_graph

florentine_families_graph()
Return Florentine families graph.

References
[R289]

LINEAR ALGEBRA

7.1 Graph Matrix

Adjacency matrix and incidence matrix of graphs.

adjacency_matrix(G[, nodelist, weight])	Return adjacency matrix of G.
incidence_matrix(G[, nodelist, edgelist, ...])	Return incidence matrix of G.

7.1.1 adjacency_matrix

adjacency_matrix (G, nodelist=None, weight='weight')
Return adjacency matrix of G.
Parameters G:graph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to provide each value in the matrix. If None, then each edge has weight 1 .
Returns A: numpy matrix
Adjacency matrix representation of G.

See also:

to_numpy_matrix, to_dict_of_dicts

Notes

If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will return a dictionary-of-dictionaries format that can be addressed as a sparse matrix.

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

7.1.2 incidence_matrix

incidence_matrix (G, nodelist=None, edgelist=None, oriented=False, weight=None)

Return incidence matrix of G.
The incidence matrix assigns each row to a node and each column to an edge. For a standard incidence matrix a 1 appears wherever a row's node is incident on the column's edge. For an oriented incidence matrix each edge is assigned an orientation (arbitrarily for undirected and aligning to direction for directed). A -1 appears for the tail of an edge and 1 for the head of the edge. The elements are zero otherwise.

Parameters G:graph
A NetworkX graph
nodelist : list, optional (default= all nodes in G)
The rows are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
edgelist : list, optional (default= all edges in G)
The columns are ordered according to the edges in edgelist. If edgelist is None, then the ordering is produced by G.edges().
oriented: bool, optional (default=False) :
If True, matrix elements are +1 or -1 for the head or tail node respectively of each edge. If False, +1 occurs at both nodes.
weight : string or None, optional (default=None)
The edge data key used to provide each value in the matrix. If None, then each edge has weight 1 . Edge weights, if used, should be positive so that the orientation can provide the sign.
Returns A: NumPy matrix
The incidence matrix of G.

Notes

For MultiGraph/MultiDiGraph, the edges in edgelist should be (u,v,key) 3-tuples.
"Networks are the best discrete model for so many problems in applied mathematics" [R292].

References

[R292]

7.2 Laplacian Matrix

Laplacian matrix of graphs.

laplacian_matrix(G[, nodelist, weight $])$	Return the Laplacian matrix of G.
normalized_laplacian_matrix(G[, nodelist, ...])	Return the normalized Laplacian matrix of G.
directed_laplacian_matrix(G[, nodelist, ...])	Return the directed Laplacian matrix of G.

7.2.1 laplacian_matrix

laplacian_matrix (G, nodelist=None, weight='weight')

Return the Laplacian matrix of G.
The graph Laplacian is the matrix $\mathrm{L}=\mathrm{D}-\mathrm{A}$, where A is the adjacency matrix and D is the diagonal matrix of node degrees.

Parameters G:graph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns L: NumPy matrix
The Laplacian matrix of G.

See also:

to_numpy_matrix, normalized_laplacian_matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

7.2.2 normalized_laplacian_matrix

normalized_laplacian_matrix(G, nodelist=None, weight='weight')
Return the normalized Laplacian matrix of G.
The normalized graph Laplacian is the matrix

$$
N L=D^{-1 / 2} L D^{-1 / 2}
$$

where L is the graph Laplacian and D is the diagonal matrix of node degrees.
Parameters G:graph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns L: NumPy matrix
The normalized Laplacian matrix of G.

See also:

```
laplacian_matrix
```


Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.
If the Graph contains selfloops, D is defined as diag(sum(A,1)), where A is the adjencency matrix [R295].

References

[R294], [R295]

7.2.3 directed_laplacian_matrix

directed_laplacian_matrix (G, nodelist=None, weight='weight', walk_type=None, alpha=0.95)
Return the directed Laplacian matrix of G.
The graph directed Laplacian is the matrix

$$
L=I-\left(\Phi^{1 / 2} P \Phi^{-1 / 2}+\Phi^{-1 / 2} P^{T} \Phi^{1 / 2}\right) / 2
$$

where I is the identity matrix, P is the transition matrix of the graph, and Φ a matrix with the Perron vector of P in the diagonal and zeros elsewhere.

Depending on the value of walk_type, P can be the transition matrix induced by a random walk, a lazy random walk, or a random walk with teleportation (PageRank).

Parameters G: DiGraph
A NetworkX graph
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.
walk_type : string or None, optional (default=None)
If None, P is selected depending on the properties of the graph. Otherwise is one of 'random', 'lazy', or 'pagerank'
alpha : real
($1-$ alpha) is the teleportation probability used with pagerank
Returns L: NumPy array
Normalized Laplacian of G.

Raises NetworkXError :

If NumPy cannot be imported

NetworkXNotImplemnted :

If G is not a DiGraph

See also:

```
laplacian_matrix
```


Notes

Only implemented for DiGraphs

References

[R293]

7.3 Spectrum

Eigenvalue spectrum of graphs.

laplacian_spectrum(G[, weight $])$	Return eigenvalues of the Laplacian of G
adjacency_spectrum(G[, weight $])$	Return eigenvalues of the adjacency matrix of G.

7.3.1 laplacian_spectrum

laplacian_spectrum (G, weight='weight')
Return eigenvalues of the Laplacian of G
Parameters G:graph
A NetworkX graph
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.

Returns evals : NumPy array
Eigenvalues
See also:
laplacian_matrix

Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

7.3.2 adjacency_spectrum

adjacency_spectrum (G, weight='weight')
Return eigenvalues of the adjacency matrix of G.
Parameters G: graph

A NetworkX graph
weight : string or None, optional (default='weight')
The edge data key used to compute each value in the matrix. If None, then each edge has weight 1.
Returns evals: NumPy array
Eigenvalues

See also:

```
adjacency_matrix
```


Notes

For MultiGraph/MultiDiGraph, the edges weights are summed. See to_numpy_matrix for other options.

7.4 Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

attr_matrix(G[, edge_attr, node_attr, ...])	Returns a NumPy matrix using attributes from G.
attr_sparse_matrix(G[, edge_attr, ...])	Returns a SciPy sparse matrix using attributes from G.

7.4.1 attr_matrix

attr_matrix (G, edge_attr=None, node_attr=None, normalized $=$ False, rc_order=None, dtype=None, order=None)
Returns a NumPy matrix using attributes from G.
If only G is passed in, then the adjacency matrix is constructed.
Let A be a discrete set of values for the node attribute $n o d e_{a} t t r$. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ in G and consider the value of the edge attribute $e d g e_{a} t t r$. If ua and va are the values of the node attribute node ${ }_{a} t t r$ for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters G: graph
The NetworkX graph used to construct the NumPy matrix.
edge_attr : str, optional
Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matirx. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element.
node_attr : str, optional
Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph.

normalized : bool, optional

If True, then each row is normalized by the summation of its values.
rc_order : list, optional
A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value).

Returns M : NumPy matrix

The attribute matrix.
ordering : list
If $r c_{o} r d e r$ was specified, then only the matrix is returned. However, if $r c_{o} r d e r$ was None, then the ordering used to construct the matrix is returned as well.

Other Parameters dtype : NumPy data-type, optional
A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.
order : \{ 'C', 'F' \}, optional
Whether to store multidimensional data in C- or Fortran-contiguous (row- or columnwise) order in memory. This parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Examples

Construct an adjacency matrix:

```
>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> nx.attr_matrix(G, rc_order=[0,1,2])
matrix([[ 0., 1., 1.],
    [ 1., 0., 1.],
    [ 1., 1., 0.]])
```

Alternatively, we can obtain the matrix describing edge thickness.

```
>>> nx.attr_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
matrix([[ 0., 1., 2.],
    [ 1., 0., 3.],
    [2., 3., 0.]])
```

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:
$\operatorname{Pr}(\mathrm{v}$ has color $\mathrm{Y} \mid \mathrm{u}$ has color X$)$

```
>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> nx.attr_matrix(G, node_attr='color', normalized=True, rc_order=rc)
matrix([[ 0.33333333, 0.66666667],
    [ 1. , 0. ]])
```

For example, the above tells us that for all edges (u, v):
$\operatorname{Pr}(\mathrm{v}$ is red l u is red $)=1 / 3 \operatorname{Pr}(\mathrm{v}$ is blue $\mid \mathrm{u}$ is red $)=2 / 3$
$\operatorname{Pr}(\mathrm{v}$ is red l u is blue $)=1 \operatorname{Pr}(\mathrm{v}$ is blue l u is blue $)=0$
Finally, we can obtain the total weights listed by the node colors.

```
>>> nx.attr_matrix(G, edge_attr='weight', node_attr='color', rc_order=rc)
matrix([[ 3., 2.],
    [ 2., 0.]])
```

Thus, the total weight over all edges (u, v) with u and v having colors:
(red, red) is 3 \# the sole contribution is from edge (0,1) (red, blue) is 2 \# contributions from edges $(0,2)$ and $(1,2)$ (blue, red) is 2 \# same as (red, blue) since graph is undirected (blue, blue) is 0 \# there are no edges with blue endpoints

7.4.2 attr_sparse_matrix

attr_sparse_matrix $\left(G, \quad e d g e _a t t r=N o n e, \quad n o d e _a t t r=N o n e, \quad n o r m a l i z e d=F a l s e, \quad r c _o r d e r=N o n e\right.$, dtype $=$ None)
Returns a SciPy sparse matrix using attributes from G.
If only G is passed in, then the adjacency matrix is constructed.
Let A be a discrete set of values for the node attribute node ${ }_{a} t t r$. Then the elements of A represent the rows and columns of the constructed matrix. Now, iterate through every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ in G and consider the value of the edge attribute $e d g e_{a} t t r$. If ua and va are the values of the node attribute node ${ }_{a} t t r$ for u and v, respectively, then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters G:graph
The NetworkX graph used to construct the NumPy matrix.
edge_attr : str, optional
Each element of the matrix represents a running total of the specified edge attribute for edges whose node attributes correspond to the rows/cols of the matirx. The attribute must be present for all edges in the graph. If no attribute is specified, then we just count the number of edges whose node attributes correspond to the matrix element.
node_attr : str, optional
Each row and column in the matrix represents a particular value of the node attribute. The attribute must be present for all nodes in the graph. Note, the values of this attribute should be reliably hashable. So, float values are not recommended. If no attribute is specified, then the rows and columns will be the nodes of the graph.
normalized : bool, optional
If True, then each row is normalized by the summation of its values.
rc_order : list, optional
A list of the node attribute values. This list specifies the ordering of rows and columns of the array. If no ordering is provided, then the ordering will be random (and also, a return value).
Returns M : SciPy sparse matrix
The attribute matrix.
ordering : list

If $r c_{o} r d e r$ was specified, then only the matrix is returned. However, if $r c_{o} r d e r$ was None, then the ordering used to construct the matrix is returned as well.
Other Parameters dtype : NumPy data-type, optional
A valid NumPy dtype used to initialize the array. Keep in mind certain dtypes can yield unexpected results if the array is to be normalized. The parameter is passed to numpy.zeros(). If unspecified, the NumPy default is used.

Examples

Construct an adjacency matrix:

```
>>> G = nx.Graph()
>>> G.add_edge(0,1,thickness=1,weight=3)
>>> G.add_edge(0,2,thickness=2)
>>> G.add_edge(1,2,thickness=3)
>>> M = nx.attr_sparse_matrix(G, rc_order=[0,1,2])
>>> M.todense()
matrix([[ 0., 1., 1.],
    [ 1., 0., 1.],
    [ 1., 1., 0.]])
```

Alternatively, we can obtain the matrix describing edge thickness.

```
>>> M = nx.attr_sparse_matrix(G, edge_attr='thickness', rc_order=[0,1,2])
>>> M.todense()
matrix([[ 0., 1., 2.],
    [ 1., 0., 3.],
    [ 2., 3., 0.]])
```

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:
$\operatorname{Pr}(\mathrm{v}$ has color $\mathrm{Y} \mathrm{I} u$ has color X$)$

```
>>> G.node[0]['color'] = 'red'
>>> G.node[1]['color'] = 'red'
>>> G.node[2]['color'] = 'blue'
>>> rc = ['red', 'blue']
>>> M = nx.attr_sparse_matrix(G, node_attr='color',
>>> M.todense()
matrix([[ 0.33333333, 0.66666667],
    [ 1. , 0. ]])
```

For example, the above tells us that for all edges (u,v):
$\operatorname{Pr}(\mathrm{v}$ is red l u is red $)=1 / 3 \operatorname{Pr}(\mathrm{v}$ is blue l u is red $)=2 / 3$
$\operatorname{Pr}(\mathrm{v}$ is red l u is blue $)=1 \operatorname{Pr}(\mathrm{v}$ is blue l u is blue $)=0$
Finally, we can obtain the total weights listed by the node colors.

```
>>> M = nx.attr_sparse_matrix(G, edge_attr='weight',
>>> M.todense()
matrix([[ 3., 2.],
    [2., 0.]])
```

Thus, the total weight over all edges (u, v) with u and v having colors:
(red, red) is 3 \# the sole contribution is from edge $(0,1)$ (red, blue) is 2 \# contributions from edges $(0,2)$ and $(1,2)$ (blue, red) is 2 \# same as (red, blue) since graph is undirected (blue, blue) is 0 \# there are no edges with blue endpoints

CONVERTING TO AND FROM OTHER DATA FORMATS

8.1 To NetworkX Graph

This module provides functions to convert NetworkX graphs to and from other formats.
The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the to_networkx_graph() function which attempts to guess the input type and convert it automatically.

8.1.1 Examples

Create a 10 node random graph from a numpy matrix

```
>>> import numpy
>>> a=numpy.reshape(numpy.random.random_integers(0,1,size=100),(10,10))
>>> D=nx.DiGraph(a)
```

or equivalently

```
>>> D=nx.to_networkx_graph(a,create_using=nx.DiGraph())
```

Create a graph with a single edge from a dictionary of dictionaries

```
>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph(d)
```


8.1.2 See Also

nx_pygraphviz, nx_pydot
to_networkx_graph(data[, create_using, ...]) Make a NetworkX graph from a known data structure.

8.1.3 to_networkx_graph

to_networkx_graph (data, create_using=None, multigraph_input=False)
Make a NetworkX graph from a known data structure.
The preferred way to call this is automatically from the class constructor

```
    >>> d={0: {1: {'weight':l}}} # dict-of-dicts single edge (0,1)
    >>> G=nx.Graph(d)
```

instead of the equivalent
>>> G=nx.from_dict_of_dicts(d)

Parameters data : a object to be converted
Current known types are: any NetworkX graph dict-of-dicts dist-of-lists list of edges numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.
multigraph_input : bool (default False)
If True and data is a dict_of_dicts, try to create a multigraph assuming dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multigraph from a multigraph.

8.2 Dictionaries

to_dict_of_dicts $(G[$, nodelist, edge_data] $)$	Return adjacency representation of graph as a dictionary of dictionaries.
from_dict_of_dicts $(\mathrm{d}[$, create_using, ...] $)$	Return a graph from a dictionary of dictionaries.

8.2.1 to_dict_of_dicts

to_dict_of_dicts (G, nodelist=None, edge_data=None)
Return adjacency representation of graph as a dictionary of dictionaries.
Parameters G:graph
A NetworkX graph
nodelist : list
Use only nodes specified in nodelist
edge_data : list, optional
If provided, the value of the dictionary will be set to edge_data for all edges. This is useful to make an adjacency matrix type representation with 1 as the edge data. If edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the edgedata is a dict for each pair (u, v).

8.2.2 from_dict_of_dicts

from_dict_of_dicts (d, create_using=None, multigraph_input=False)
Return a graph from a dictionary of dictionaries.
Parameters d: dictionary of dictionaries
A dictionary of dictionaries adjacency representation.
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.
multigraph_input : bool (default False)

When True, the values of the inner dict are assumed to be containers of edge data for multiple edges. Otherwise this routine assumes the edge data are singletons.

Examples

>>> dod= \{0: \{1:\{'weight':1\}\}\} \# single edge (0,1)
>>> G=nx.from_dict_of_dicts(dod)
or $\ggg \mathrm{G}=\mathrm{nx}$.Graph(dod) \# use Graph constructor

8.3 Lists

to_dict_of_lists(G[, nodelist])	Return adjacency representation of graph as a dictionary of lists.
from_dict_of_lists(d[, create_using])	Return a graph from a dictionary of lists.
to_edgelist(G[, nodelist])	Return a list of edges in the graph.
from_edgelist(edgelist[, create_using])	Return a graph from a list of edges.

8.3.1 to_dict_of_lists

to_dict_of_lists (G, nodelist=None)
Return adjacency representation of graph as a dictionary of lists.
Parameters G:graph
A NetworkX graph
nodelist : list
Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

8.3.2 from_dict_of_lists

from_dict_of_lists (d, create_using=None)
Return a graph from a dictionary of lists.
Parameters d : dictionary of lists
A dictionary of lists adjacency representation.
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.

Examples

```
>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)
```

or >>> G=nx.Graph(dol) \# use Graph constructor

8.3.3 to_edgelist

to_edgelist (G, nodelist=None)
Return a list of edges in the graph.
Parameters G:graph
A NetworkX graph
nodelist : list
Use only nodes specified in nodelist

8.3.4 from_edgelist

from_edgelist (edgelist, create_using=None)
Return a graph from a list of edges.
Parameters edgelist : list or iterator
Edge tuples
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.

Examples

>>> edgelist $=[(0,1)]$ \# single edge $(0,1)$
>>> G=nx.from_edgelist(edgelist)
or >>> G=nx.Graph(edgelist) \# use Graph constructor

8.4 Numpy

to_numpy_matrix $(\mathrm{G}[$, nodelist, dtype, order, ...])	Return the graph adjacency matrix as a NumPy matrix.
to_numpy_recarray(G[, nodelist, dtype, order] $)$	Return the graph adjacency matrix as a NumPy recarray.
from_numpy_matrix(A[, create_using])	Return a graph from numpy matrix.

8.4.1 to_numpy_matrix

to_numpy_matrix (G, nodelist $=$ None, dtype $=$ None, order $=$ None, multigraph_weight $=<$ built-in function sum>, weight='weight')
Return the graph adjacency matrix as a NumPy matrix.
Parameters G:graph
The NetworkX graph used to construct the NumPy matrix.
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is

None, then the ordering is produced by G.nodes().
dtype : NumPy data type, optional
A valid single NumPy data type used to initialize the array. This must be a simple type such as int or numpy.float64 and not a compound data type (see to_numpy_recarray) If None, then the NumPy default is used.
order : \{ 'C', 'F' \}, optional
Whether to store multidimensional data in C- or Fortran-contiguous (row- or columnwise) order in memory. If None, then the NumPy default is used.
multigraph_weight : \{sum, min, max \}, optional
An operator that determines how weights in multigraphs are handled. The default is to sum the weights of the multiple edges.
weight : string or None optional (default='weight')
The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1.

Returns M:NumPy matrix

Graph adjacency matrix.

See also:

```
to_numpy_recarray,from_numpy_matrix
```


Notes

The matrix entries are assigned with weight edge attribute. When an edge does not have the weight attribute, the value of the entry is 1 . For multiple edges, the values of the entries are the sums of the edge attributes for each edge.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge(2,2)
>>> nx.to_numpy_matrix(G, nodelist=[0,1,2])
matrix([[ 0., 2., 0.],
    [ 1., 0., 0.],
    [ 0., 0., 4.]])
```


8.4.2 to_numpy_recarray

```
to_numpy_recarray (G, nodelist=None,dtype=[('weight', <type 'float'>)], order=None)
```

 Return the graph adjacency matrix as a NumPy recarray.
 Parameters G: graph

The NetworkX graph used to construct the NumPy matrix.
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
dtype : NumPy data-type, optional
A valid NumPy named dtype used to initialize the NumPy recarray. The data type names are assumed to be keys in the graph edge attribute dictionary.
order : \{ 'C', 'F' $\}$, optional
Whether to store multidimensional data in C- or Fortran-contiguous (row- or columnwise) order in memory. If None, then the NumPy default is used.
Returns M : NumPy recarray
The graph with specified edge data as a Numpy recarray

Notes

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Examples

```
>>> G = nx.Graph()
>>> G.add_edge(1,2,weight=7.0,cost=5)
>>> A=nx.to_numpy_recarray(G,dtype=[('weight',float),('cost',int)])
>>> print(A.weight)
[[ 0. 7.]
    [ 7. 0.]]
>>> print(A.cost)
[[l0 5]
    [5 0]]
```


8.4.3 from_numpy_matrix

from_numpy_matrix (A, create_using=None)
Return a graph from numpy matrix.
The numpy matrix is interpreted as an adjacency matrix for the graph.
Parameters A : numpy matrix
An adjacency matrix representation of a graph
create_using : NetworkX graph
Use specified graph for result. The default is Graph()

See also:

```
to_numpy_matrix,to_numpy_recarray
```


Notes

If the numpy matrix has a single data type for each matrix entry it will be converted to an appropriate Python data type.

If the numpy matrix has a user-specified compound data type the names of the data fields will be used as attribute keys in the resulting NetworkX graph.

Examples

Simple integer weights on edges:

```
>>> import numpy
>>> A=numpy.matrix([[1,1],[2,1]])
>>> G=nx.from_numpy_matrix(A)
```

User defined compound data type on edges:

```
>>> import numpy
>>> dt=[('weight',float),('cost',int)]
>>> A=numpy.matrix([[(1.0,2)]],dtype=dt)
>>> G=nx.from_numpy_matrix(A)
>>> G.edges(data=True)
[(0, 0, {'cost': 2, 'weight': 1.0})]
```


8.5 Scipy

to_scipy_sparse_matrix(G[, nodelist, dtype, ...])	Return the graph adjacency matrix as a SciPy sparse matrix.
from_scipy_sparse_matrix(A[, create_using])	Return a graph from scipy sparse matrix adjacency list.

8.5.1 to_scipy_sparse_matrix

to_scipy_sparse_matrix (G, nodelist=None, dtype=None, weight='weight',format='csr') Return the graph adjacency matrix as a SciPy sparse matrix.

Parameters G:graph
The NetworkX graph used to construct the NumPy matrix.
nodelist : list, optional
The rows and columns are ordered according to the nodes in nodelist. If nodelist is None, then the ordering is produced by G.nodes().
dtype : NumPy data-type, optional
A valid NumPy dtype used to initialize the array. If None, then the NumPy default is used.
weight : string or None optional (default='weight')
The edge attribute that holds the numerical value used for the edge weight. If None then all edge weights are 1 .
format : str in \{ 'bsr', ‘csr', 'csc', 'coo', 'lil', ‘dia', 'dok'\}

The type of the matrix to be returned (default 'csr'). For some algorithms different implementations of sparse matrices can perform better. See [R248] for details.
Returns M: SciPy sparse matrix
Graph adjacency matrix.

Notes

The matrix entries are populated using the edge attribute held in parameter weight. When an edge does not have that attribute, the value of the entry is 1 .

For multiple edges the matrix values are the sums of the edge weights.
When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by the nodes in nodelist.

Uses coo_matrix format. To convert to other formats specify the format= keyword.

References

[R248]

Examples

```
>>> G = nx.MultiDiGraph()
>>> G.add_edge(0,1,weight=2)
>>> G.add_edge(1,0)
>>> G.add_edge(2,2,weight=3)
>>> G.add_edge (2,2)
>>> S = nx.to_scipy_sparse_matrix(G, nodelist=[0,1,2])
>>> print(S.todense())
[[lllll
    [1 0 0]
    [0 0 4]]
```


8.5.2 from_scipy_sparse_matrix

from_scipy_sparse_matrix (A, create_using=None)
Return a graph from scipy sparse matrix adjacency list.
Parameters A: scipy sparse matrix
An adjacency matrix representation of a graph
create_using : NetworkX graph
Use specified graph for result. The default is Graph()

Examples

>>> import scipy.sparse
>>> A=scipy.sparse.eye $(2,2,1)$
>>> G=nx.from_scipy_sparse_matrix(A)

READING AND WRITING GRAPHS

9.1 Adjacency List

Read and write NetworkX graphs as adjacency lists.
Adjacency list format is useful for graphs without data associated with nodes or edges and for nodes that can be meaningfully represented as strings.

9.1.1 Format

The adjacency list format consists of lines with node labels. The first label in a line is the source node. Further labels in the line are considered target nodes and are added to the graph along with an edge between the source node and target node.

The graph with edges a-b, a-c, d-e can be represented as the following adjacency list (anything following the \# in a line is a comment):

```
a b c # source target target
d e
\begin{tabular}{ll}
\hline read_adjlist(path[, comments, delimiter, ...]) & Read graph in adjacency list format from path. \\
\hline write_adjlist(G, path[, comments, ...]) & Write graph G in single-line adjacency-list format to path. \\
\hline parse_adjlist(lines[, comments, delimiter, ...]) & Parse lines of a graph adjacency list representation. \\
\hline generate_adjlist(G[, delimiter]) & Generate a single line of the graph G in adjacency list format. \\
\hline
\end{tabular}
```


9.1.2 read_adjlist

read_adjlist (path, comments='\#', delimiter=None, create_using $=$ None, nodetype $=$ None, encoding='utf8')
Read graph in adjacency list format from path.
Parameters path : string or file
Filename or file handle to read. Filenames ending in .gz or .bz2 will be uncompressed.
create_using: NetworkX graph container :
Use given NetworkX graph for holding nodes or edges.
nodetype : Python type, optional
Convert nodes to this type.
comments : string, optional

Marker for comment lines
delimiter : string, optional
Separator for node labels. The default is whitespace.

create_using: NetworkX graph container :

Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph :

The graph corresponding to the lines in adjacency list format.

See also:

```
write_adjlist
```


Notes

This format does not store graph or node data.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G, "test.adjlist")
>>> G=nx.read_adjlist("test.adjlist")
```

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'rb' mode.

```
>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_adjlist(fh)
```

Filenames ending in .gz or .bz2 will be compressed.

```
>>> nx.write_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_adjlist("test.adjlist.gz")
```

The optional nodetype is a function to convert node strings to nodetype.
For example

```
>>> G=nx.read_adjlist("test.adjlist", nodetype=int)
```

will attempt to convert all nodes to integer type.
Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset or tuples of those, etc.)

The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use

```
>>> G=nx.read_adjlist("test.adjlist", create_using=nx.DiGraph())
```


9.1.3 write_adjlist

write_adjlist (G, path, comments='\#', delimiter=' ', encoding='utf-8')
Write graph G in single-line adjacency-list format to path.

Parameters G : NetworkX graph
path : string or file
Filename or file handle for data output. Filenames ending in .gz or .bz2 will be compressed.
comments : string, optional
Marker for comment lines
delimiter : string, optional Separator for node labels
encoding : string, optional Text encoding.

See also:

```
read_adjlist,generate_adjlist
```


Notes

This format does not store graph, node, or edge data.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_adjlist(G,"test.adjlist")
```

The path can be a filehandle or a string with the name of the file. If a filehandle is provided, it has to be opened in 'wb' mode.

```
>>> fh=open("test.adjlist",'wb')
>>> nx.write_adjlist(G, fh)
```


9.1.4 parse_adjlist

parse_adjlist (lines, comments='\#', delimiter=None, create_using=None, nodetype $=$ None)
Parse lines of a graph adjacency list representation.
Parameters lines : list or iterator of strings
Input data in adjlist format
create_using: NetworkX graph container
Use given NetworkX graph for holding nodes or edges.
nodetype : Python type, optional
Convert nodes to this type.
comments : string, optional
Marker for comment lines
delimiter : string, optional
Separator for node labels. The default is whitespace.

create_using: NetworkX graph container :

Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph :

The graph corresponding to the lines in adjacency list format.

See also:

```
read_adjlist
```


Examples

```
>>> lines = [ll 2 5',
... '2 3 4',
... '3 5',
... '4',
\cdots.. '5']
>>> G = nx.parse_adjlist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4, 5]
>>> G.edges()
[(1, 2), (1, 5), (2, 3), (2, 4), (3, 5)]
```


9.1.5 generate_adjlist

generate_adjlist (G, delimiter=' ')
Generate a single line of the graph G in adjacency list format.
Parameters G: NetworkX graph delimiter : string, optional

Separator for node labels
Returns lines : string
Lines of data in adjlist format.
See also:
write_adjlist, read_adjlist

Examples

```
>>> G = nx.lollipop_graph(4, 3)
    >>> for line in nx.generate_adjlist(G):
    ... print(line)
    0 1 2 3
    1 2 3
    2 3
    34
    4 5
    56
    6
```


9.2 Multiline Adjacency List

Read and write NetworkX graphs as multi-line adjacency lists.
The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With this format simple edge data can be stored but node or graph data is not.

9.2.1 Format

The first label in a line is the source node label followed by the node degree d . The next d lines are target node labels and optional edge data. That pattern repeats for all nodes in the graph.

The graph with edges $a-b, a-c$, $d-e$ can be represented as the following adjacency list (anything following the \# in a line is a comment):

```
example.multiline-adjlist
a 2
d 1
```

b
c
e

read_multiline_adjlist(path[, comments, ...])	Read graph in multi-line adjacency list format from path.
write_multiline_adjlist(G, path[, ...])	Write the graph G in multiline adjacency list format to path
parse_multiline_adjlist(lines[, comments, ...])	Parse lines of a multiline adjacency list representation of a graph.
generate_multiline_adjlist(G[, delimiter])	Generate a single line of the graph G in multiline adjacency list format.

9.2.2 read_multiline_adjlist

read_multiline_adjlist (path, comments='\#', delimiter=None, create_using=None, nodetype=None, edgetype $=$ None, encoding $=$ 'utf-8')
Read graph in multi-line adjacency list format from path.
Parameters path : string or file
Filename or file handle to read. Filenames ending in .gz or. bz 2 will be uncompressed.
create_using: NetworkX graph container :
Use given NetworkX graph for holding nodes or edges.
nodetype : Python type, optional
Convert nodes to this type.
edgetype : Python type, optional
Convert edge data to this type.
comments : string, optional
Marker for comment lines
delimiter : string, optional
Separator for node labels. The default is whitespace.
create_using: NetworkX graph container :
Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph :

See also:

```
write_multiline_adjlist
```


Notes

This format does not store graph, node, or edge data.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
>>> G=nx.read_multiline_adjlist("test.adjlist")
```

The path can be a file or a string with the name of the file. If a file s provided, it has to be opened in 'rb' mode.

```
>>> fh=open("test.adjlist", 'rb')
>>> G=nx.read_multiline_adjlist(fh)
```

Filenames ending in .gz or .bz2 will be compressed.

```
>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")
>>> G=nx.read_multiline_adjlist("test.adjlist.gz")
```

The optional nodetype is a function to convert node strings to nodetype.
For example

```
>>> G=nx.read_multiline_adjlist("test.adjlist", nodetype=int)
```

will attempt to convert all nodes to integer type.
The optional edgetype is a function to convert edge data strings to edgetype.
>>> G=nx.read_multiline_adjlist("test.adjlist")
The optional create_using parameter is a NetworkX graph container. The default is Graph(), an undirected graph. To read the data as a directed graph use

```
>>> G=nx.read_multiline_adjlist("test.adjlist", create_using=nx.DiGraph())
```


9.2.3 write_multiline_adjlist

write_multiline_adjlist (G, path, delimiter=' ', comments='\#', encoding='utf-8')
Write the graph G in multiline adjacency list format to path
Parameters G : NetworkX graph
comments : string, optional
Marker for comment lines
delimiter : string, optional
Separator for node labels
encoding : string, optional

Text encoding.
See also:

```
read_multiline_adjlist
```


Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_multiline_adjlist(G,"test.adjlist")
```

The path can be a file handle or a string with the name of the file. If a file handle is provided, it has to be opened in 'wb' mode.

```
>>> fh=open("test.adjlist",'wb')
>>> nx.write_multiline_adjlist(G,fh)
```

Filenames ending in .gz or .bz2 will be compressed.
>>> nx.write_multiline_adjlist(G,"test.adjlist.gz")

9.2.4 parse_multiline_adjlist

parse_multiline_adjlist(lines, comments='\#', delimiter=None, create_using=None, nodetype $=$ None, edgetype=None)
Parse lines of a multiline adjacency list representation of a graph
Parameters lines: list or iterator of strings
Input data in multiline adjlist format create_using: NetworkX graph container :

Use given NetworkX graph for holding nodes or edges.
nodetype : Python type, optional
Convert nodes to this type.
comments : string, optional
Marker for comment lines
delimiter : string, optional
Separator for node labels. The default is whitespace
create_using: NetworkX graph container :
Use given NetworkX graph for holding nodes or edges.

Returns G: NetworkX graph :

The graph corresponding to the lines in multiline adjacency list format.

Examples

```
>>> lines = ['1 2',
... "2 {'weight':3, 'name': 'Frodo'}",
... "3 {}",
... "2 1",
... "5 {'weight':6, 'name': 'Saruman'}"]
>>> G = nx.parse_multiline_adjlist(iter(lines), nodetype = int)
>>> G.nodes()
[1, 2, 3, 5]
```


9.2.5 generate_multiline_adjlist

generate_multiline_adjlist (G, delimiter=' ')
Generate a single line of the graph G in multiline adjacency list format.
Parameters G:NetworkX graph
delimiter : string, optional
Separator for node labels
Returns lines: string
Lines of data in multiline adjlist format.
See also:

```
    write_multiline_adjlist, read_multiline_adjlist
```


Examples

```
    >>> G = nx.lollipop_graph(4, 3)
    >>> for line in nx.generate_multiline_adjlist(G):
        print(line)
    0
    {}
    {}
    {}
    12
    2 {}
        {}
    2 1
    3 {}
    31
        {}
    4 1
    5 {}
    51
    6 {}
    6
```


9.3 Edge List

Read and write NetworkX graphs as edge lists.

The multi-line adjacency list format is useful for graphs with nodes that can be meaningfully represented as strings. With the edgelist format simple edge data can be stored but node or graph data is not. There is no way of representing isolated nodes unless the node has a self-loop edge.

9.3.1 Format

You can read or write three formats of edge lists with these functions.
Node pairs with no data:
12
Python dictionary as data:

```
1 2 {'weight':7, 'color':'green'}
```

Arbitrary data:

```
127 green
```

 read_edgelist(path[, comments, delimiter, ...]) Read a graph from a list of edges.
 write_edgelist(G, path[, comments, ...]) Write graph as a list of edges.
read_weighted_edgelist(path[, comments, ...]) Read a graph as list of edges with numeric weights.
write_weighted_edgelist(G, path[, comments, ...]) Write graph G as a list of edges with numeric weights.
generate_edgelist(G[, delimiter, data]) Generate a single line of the graph G in edge list format.
parse_edgelist(lines[, comments, delimiter, ...]) Parse lines of an edge list representation of a graph.

9.3.2 read_edgelist

read_edgelist (path, comments='\#', delimiter=None, create_using=None, nodetype $=$ None, data $=$ True, edgetype=None, encoding = 'utf-8')
Read a graph from a list of edges.
Parameters path : file or string
File or filename to write. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed.
comments : string, optional
The character used to indicate the start of a comment.
delimiter : string, optional
The string used to separate values. The default is whitespace.
create_using : Graph container, optional,
Use specified container to build graph. The default is networkx.Graph, an undirected graph.
nodetype : int, float, str, Python type, optional
Convert node data from strings to specified type
data : bool or list of (label,type) tuples
Tuples specifying dictionary key names and types for edge data
edgetype : int, float, str, Python type, optional OBSOLETE

Convert edge data from strings to specified type and use as 'weight'

encoding: string, optional :

Specify which encoding to use when reading file.
Returns G: graph
A networkx Graph or other type specified with create_using

See also:

```
parse_edgelist
```


Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset or tuples of those, etc.)

Examples

```
>>> nx.write_edgelist(nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist("test.edgelist")
>>> fh=open("test.edgelist", 'rb')
>>> G=nx.read_edgelist(fh)
>>> fh.close()
>>> G=nx.read_edgelist("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist("test.edgelist",create_using=nx.DiGraph())
```

Edgelist with data in a list:

```
>>> textline = '1 2 3'
>>> fh = open('test.edgelist',' w')
>>> d = fh.write(textline)
>>> fh.close()
>>> G = nx.read_edgelist('test.edgelist', nodetype=int, data=(('weight',float),))
>>> G.nodes()
[1, 2]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0})]
```

See parse_edgelist() for more examples of formatting.

9.3.3 write_edgelist

write_edgelist (G, path, comments='\#', delimiter=' ', data=True, encoding='utf-8')
Write graph as a list of edges.
Parameters G:graph
A NetworkX graph
path : file or string
File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.
comments : string, optional
The character used to indicate the start of a comment
delimiter : string, optional
The string used to separate values. The default is whitespace.
data : bool or list, optional
If False write no edge data. If True write a string representation of the edge data dictionary.. If a list (or other iterable) is provided, write the keys specified in the list.

encoding: string, optional :

Specify which encoding to use when writing file.

See also:

```
write_edgelist,write__weighted__edgelist
```


Examples

```
>>> G=nx.path_graph(4)
```

>>> nx.write_edgelist(G, "test.edgelist")
>>> G=nx.path_graph (4)
\ggg fh=open("test.edgelist",'wb')
>>> nx.write_edgelist(G, fh)
>>> nx.write_edgelist(G, "test.edgelist.gz")
>>> nx.write_edgelist(G, "test.edgelist.gz", data=False)
>>> G=nx.Graph()
>>> G.add_edge (1,2,weight=7, color='red')
>>> nx.write_edgelist(G,'test.edgelist',data=False)
>>> nx.write_edgelist(G,'test.edgelist', data=['color'])
\ggg nx.write_edgelist(G,'test.edgelist', data=['color','weight'])

9.3.4 read_weighted_edgelist

read_weighted_edgelist (path, comments='\#', delimiter=None, create_using=None, nodetype=None, encoding = 'utf-8')
Read a graph as list of edges with numeric weights.
Parameters path : file or string
File or filename to write. If a file is provided, it must be opened in 'rb' mode. Filenames ending in .gz or .bz2 will be uncompressed.
comments : string, optional
The character used to indicate the start of a comment.
delimiter : string, optional
The string used to separate values. The default is whitespace.
create_using : Graph container, optional,
Use specified container to build graph. The default is networkx.Graph, an undirected graph.
nodetype : int, float, str, Python type, optional

Convert node data from strings to specified type

encoding: string, optional :

Specify which encoding to use when reading file.
Returns G: graph
A networkx Graph or other type specified with create_using

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset or tuples of those, etc.)
Example edgelist file format.
With numeric edge data:

```
# read with
# >>> G=nx.read_weighted_edgelist(fh)
# source target data
a b 1
a c 3.14159
d e 42
```


9.3.5 write_weighted_edgelist

write_weighted_edgelist (G, path, comments='\#', delimiter=' ', encoding='utf-8')
Write graph G as a list of edges with numeric weights.
Parameters G:graph
A NetworkX graph
path : file or string
File or filename to write. If a file is provided, it must be opened in 'wb' mode. Filenames ending in .gz or .bz2 will be compressed.
comments : string, optional
The character used to indicate the start of a comment
delimiter : string, optional
The string used to separate values. The default is whitespace.
encoding: string, optional :
Specify which encoding to use when writing file.

See also:

read_edgelist,write_edgelist, write_weighted_edgelist

Examples

>>> G=nx.Graph()
>>> G.add_edge (1,2,weight=7)
>>> nx.write_weighted_edgelist(G, 'test.weighted.edgelist')

9.3.6 generate_edgelist

generate_edgelist (G, delimiter=’ ', data=True)
Generate a single line of the graph G in edge list format.
Parameters G : NetworkX graph
delimiter : string, optional
Separator for node labels
data : bool or list of keys
If False generate no edge data. If True use a dictionary representation of edge data. If a list of keys use a list of data values corresponding to the keys.

Returns lines: string
Lines of data in adjlist format.

See also:

```
write_adjlist,read_adjlist
```


Examples

>>> G = nx.lollipop_graph (4, 3)
>>> G[1][2]['weight'] = 3
>>> G[3][4]['capacity'] = 12
>>> for line in $n x . g e n e r a t e _e d g e l i s t(G, ~ d a t a=F a l s e): ~$
... print(line)
01
02
03
12
13
23
34
45
56
>>> for line in nx.generate_edgelist(G):
... print(line)
01 \{\}
02 \{\}
03 \{\}
12 \{'weight': 3\}
13 \{\}
23 \{\}
34 \{'capacity': 12\}
45 \{\}
56 \{\}
>>> for line in $n x . g e n e r a t e _e d g e l i s t(G, d a t a=[' w e i g h t ']):$
... print(line)
01
02
03
123
13

23
34
45
56

9.3.7 parse_edgelist

parse_edgelist (lines, comments='\#', delimiter=None, create_using=None, nodetype=None, data=True)
Parse lines of an edge list representation of a graph.

Returns G: NetworkX Graph :

The graph corresponding to lines
data : bool or list of (label,type) tuples
If False generate no edge data or if True use a dictionary representation of edge data or a list tuples specifying dictionary key names and types for edge data.
create_using: NetworkX graph container, optional :
Use given NetworkX graph for holding nodes or edges.
nodetype : Python type, optional
Convert nodes to this type.
comments : string, optional
Marker for comment lines
delimiter : string, optional
Separator for node labels
create_using: NetworkX graph container :
Use given NetworkX graph for holding nodes or edges.
See also:

```
read_weighted_edgelist
```


Examples

Edgelist with no data:

```
>>> lines = ["1 2",
... "2 3",
... "3 4"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges()
[(1, 2), (2, 3), (3, 4)]
```

Edgelist with data in Python dictionary representation:

```
>>> lines = ["1 2 {'weight':3}",
... "2 3 {'weight':27}",
... "3 4 {'weight':3.0}"]
>>> G = nx.parse_edgelist(lines, nodetype = int)
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3}), (2, 3, {'weight': 27}), (3, 4, {'weight': 3.0})]
```

Edgelist with data in a list:

```
>>> lines = ["1 2 3",
... "2 3 27",
... "3 4 3.0"]
>>> G = nx.parse_edgelist(lines, nodetype = int, data=(('weight',float),))
>>> G.nodes()
[1, 2, 3, 4]
>>> G.edges(data = True)
[(1, 2, {'weight': 3.0}), (2, 3, {'weight': 27.0}), (3, 4, {'weight': 3.0})]
```


9.4 GEXF

Read and write graphs in GEXF format.
GEXF (Graph Exchange XML Format) is a language for describing complex network structures, their associated data and dynamics.

This implementation does not support mixed graphs (directed and undirected edges together).

9.4.1 Format

GEXF is an XML format. See http://gexf.net/format/schema.html for the specification and http://gexf.net/format/basic.html for examples.

read_gexf(path[, node_type, relabel, version])	Read graph in GEXF format from path.
write_gexf(G, path[, encoding, prettyprint, ...])	Write G in GEXF format to path.
relabel_gexf_graph (G)	Relabel graph using "label" node keyword for node label.

9.4.2 read_gexf

read_gexf (path, node_type=None, relabel=False, version='1.1draft')
Read graph in GEXF format from path.
"GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" [R296].

Parameters path : file or string
File or file name to write. File names ending in .gz or .bz2 will be compressed.
node_type: Python type (default: None) :
Convert node ids to this type if not None.
relabel : bool (default: False)

If True relabel the nodes to use the GEXF node "label" attribute instead of the node "id" attribute as the NetworkX node label.

Returns graph: NetworkX graph :

If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned.

Notes

This implementation does not support mixed graphs (directed and undirected edges together).

References

[R296]

9.4.3 write_gexf

write_gexf (G, path, encoding='utf-8', prettyprint=True, version='1.1draft')
Write G in GEXF format to path.
"GEXF (Graph Exchange XML Format) is a language for describing complex networks structures, their associated data and dynamics" [R297].

Parameters G: graph

A NetworkX graph
path : file or string
File or file name to write. File names ending in .gz or .bz2 will be compressed.
encoding : string (optional)
Encoding for text data.
prettyprint : bool (optional)
If True use line breaks and indenting in output XML.

Notes

This implementation does not support mixed graphs (directed and undirected edges together).
The node id attribute is set to be the string of the node label. If you want to specify an id use set it as node data, e.g. node['a']['id']=1 to set the id of node ' a ' to 1 .

References

[R297]

Examples

```
>>> G=nx.path_graph(4)
```

>>> nx.write_gexf(G, "test.gexf")

9.4.4 relabel_gexf_graph

relabel_gexf_graph (G)
Relabel graph using "label" node keyword for node label.

Parameters G:graph

A NetworkX graph read from GEXF data
Returns H: graph
A NetworkX graph with relabed nodes

Notes

This function relabels the nodes in a NetworkX graph with the "label" attribute. It also handles relabeling the specific GEXF node attributes "parents", and "pid".

9.5 GML

Read graphs in GML format
"GML, the G>raph Modelling Language, is our proposal for a portable file format for graphs. GML's key features are portability, simple syntax, extensibility and flexibility. A GML file consists of a hierarchical key-value lists. Graphs can be annotated with arbitrary data structures. The idea for a common file format was born at the GD` 95 ; this proposal is the outcome of many discussions. GML is the standard file format in the Graphlet graph editor system. It has been overtaken and adapted by several other systems for drawing graphs."

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
Requires pyparsing: http://pyparsing.wikispaces.com/

9.5.1 Format

See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format specification.
Example graphs in GML format: http://www-personal.umich.edu/~mejn/netdata/

read_gml(path[, encoding, relabel])	Read graph in GML format from path.
write_gml(G, path)	Write the graph G in GML format to the file or file handle path.
parse_gml(lines[, relabel])	Parse GML graph from a string or iterable.
generate_gml (G)	Generate a single entry of the graph G in GML format.

9.5.2 read_gml

read_gml (path, encoding='UTF-8', relabel=False)
Read graph in GML format from path

Parameters path : filename or filehandle
The filename or filehandle to read from.
encoding : string, optional
Text encoding.
relabel : bool, optional
If True use the GML node label attribute for node names otherwise use the node id.
Returns G: MultiGraph or MultiDiGraph

Raises ImportError:

If the pyparsing module is not available.

See also:

```
write_gml, parse_gml
```


Notes

Requires pyparsing: http://pyparsing.wikispaces.com/

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_gml(G,'test.gml')
>>> H=nx.read_gml('test.gml')
```


9.5.3 write_gml

write_gml (G, path)
Write the graph G in GML format to the file or file handle path.
Parameters path : filename or filehandle
The filename or filehandle to write. Filenames ending in .gz or .gz2 will be compressed.

See also:

```
read_gml, parse_gml
```


Notes

GML specifications indicate that the file should only use 7bit ASCII text encoding.iso8859-1 (latin-1).
This implementation does not support all Python data types as GML data. Nodes, node attributes, edge attributes, and graph attributes must be either dictionaries or single stings or numbers. If they are not an attempt is made to represent them as strings. For example, a list as edge data $G[1][2][$ 'somedata']=[1,2,3], will be represented in the GML file as:

```
edge [
    source 1
    target 2
    somedata "[1, 2, 3]"
]
```


Examples

```
>>> G=nx.path_graph (4)
>>> nx.write_gml(G,"test.gml")
```

Filenames ending in .gz or .bz2 will be compressed.
>>> nx.write_gml(G,"test.gml.gz")

9.5.4 parse_gml

parse_gml (lines, relabel=True)
Parse GML graph from a string or iterable.
Parameters lines : string or iterable
Data in GML format.
relabel : bool, optional
If True use the GML node label attribute for node names otherwise use the node id.
Returns G: MultiGraph or MultiDiGraph
Raises ImportError:
If the pyparsing module is not available.

See also:

```
write_gml, read_gml
```


Notes

This stores nested GML attributes as dictionaries in the NetworkX graph, node, and edge attribute structures.
Requires pyparsing: http://pyparsing.wikispaces.com/

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

9.5.5 generate_gml

generate_gml (G)
Generate a single entry of the graph G in GML format.
Parameters G : NetworkX graph

Returns lines: string :

Lines in GML format.

Notes

This implementation does not support all Python data types as GML data. Nodes, node attributes, edge attributes, and graph attributes must be either dictionaries or single stings or numbers. If they are not an attempt is made to represent them as strings. For example, a list as edge data $G[1][2][$ 'somedata'] $=[1,2,3]$, will be represented in the GML file as:

```
edge [
    source 1
    target 2
    somedata "[1, 2, 3]"
]
```


9.6 Pickle

Read and write NetworkX graphs as Python pickles.
"The pickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python object structure. "Pickling" is the process whereby a Python object hierarchy is converted into a byte stream, and "unpickling" is the inverse operation, whereby a byte stream is converted back into an object hierarchy."

Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). For arbitrary data types it may be difficult to represent the data as text. In that case using Python pickles to store the graph data can be used.

9.6.1 Format

See http://docs.python.org/library/pickle.html

read_gpickle(path)	Read graph object in Python pickle format.
write_gpickle $(G$, path $)$	Write graph in Python pickle format.

9.6.2 read_gpickle

read_gpickle (path)
Read graph object in Python pickle format.
Pickles are a serialized byte stream of a Python object [R298]. This format will preserve Python objects used as nodes or edges.

Parameters path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.
Returns G: graph
A NetworkX graph

References

[R298]

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_gpickle(G,"test.gpickle")
>>> G=nx.read_gpickle("test.gpickle")
```


9.6.3 write_gpickle

write_gpickle (G, path)

Write graph in Python pickle format.
Pickles are a serialized byte stream of a Python object [R299]. This format will preserve Python objects used as nodes or edges.

Parameters G:graph
A NetworkX graph
path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

References

[R299]

Examples

>>> G=nx.path_graph(4)
>>> nx.write_gpickle(G,"test.gpickle")

9.7 GraphML

Read and write graphs in GraphML format.
This implementation does not support mixed graphs (directed and unidirected edges together), hyperedges, nested graphs, or ports.
"GraphML is a comprehensive and easy-to-use file format for graphs. It consists of a language core to describe the structural properties of a graph and a flexible extension mechanism to add application-specific data. Its main features include support of

- directed, undirected, and mixed graphs,
- hypergraphs,
- hierarchical graphs,
- graphical representations,
- references to external data,
- application-specific attribute data, and
- light-weight parsers.

Unlike many other file formats for graphs, GraphML does not use a custom syntax. Instead, it is based on XML and hence ideally suited as a common denominator for all kinds of services generating, archiving, or processing graphs."
http://graphml.graphdrawing.org/

9.7.1 Format

GraphML is an XML format. See http://graphml.graphdrawing.org/specification.html for the specification and http://graphml.graphdrawing.org/primer/graphml-primer.html for examples.

read_graphml(path[, node_type])	Read graph in GraphML format from path.
write_graphml(G, path[, encoding, prettyprint])	Write G in GraphML XML format to path

9.7.2 read_graphml

read_graphml (path, node_type=<type 'str'>)
Read graph in GraphML format from path.
Parameters path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
node_type: Python type (default: str) :
Convert node ids to this type

Returns graph: NetworkX graph :

If no parallel edges are found a Graph or DiGraph is returned. Otherwise a MultiGraph or MultiDiGraph is returned.

Notes

This implementation does not support mixed graphs (directed and unidirected edges together), hypergraphs, nested graphs, or ports.
For multigraphs the GraphML edge "id" will be used as the edge key. If not specified then they "key" attribute will be used. If there is no "key" attribute a default NetworkX multigraph edge key will be provided.

Files with the yEd "yfiles" extension will can be read but the graphics information is discarded.
yEd compressed files ("file.graphmlz" extension) can be read by renaming the file to "file.graphml.gz".

9.7.3 write_graphml

write_graphml (G, path, encoding='utf-8', prettyprint=True)
Write G in GraphML XML format to path
Parameters G:graph
A networkx graph
path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
encoding : string (optional)
Encoding for text data.
prettyprint : bool (optional)
If True use line breaks and indenting in output XML.

Notes

This implementation does not support mixed graphs (directed and unidirected edges together) hyperedges, nested graphs, or ports.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_graphml(G, "test.graphml")
```


9.8 JSON

Generate and parse JSON serializable data for NetworkX graphs.

node_link_data(G)	Return data in node-link format that is suitable for JSON serialization
node_link_graph(data[, directed, multigraph])	Return graph from node-link data format.
adjacency_data(G)	Return data in adjacency format that is suitable for JSON serialization
adjacency_graph(data[, directed, multigraph])	Return graph from adjacency data format.
tree_data(G, root)	Return data in tree format that is suitable for JSON serialization
tree_graph(data)	Return graph from tree data format.
dumps	Serialize obj to a JSON formatted str.
loads	Deserialize s (a str or unicode instance containing a JSON
dump	Serialize obj as a JSON formatted stream to fp (a
load	Deserialize $f p(a \operatorname{read}()$-supporting file-like object containing

9.8.1 node_link_data

node_link_data (G)
Return data in node-link format that is suitable for JSON serialization and use in Javascript documents.
Parameters G:NetworkX graph
Returns data : dict
A dictionary with node-link formatted data.

See also:

```
node_link_graph, adjacency_data,tree_data
```


Notes

Graph, node, and link attributes are stored in this format but keys for attributes must be strings if you want to serialize with JSON.

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.Graph([(1,2)])
>>> data = json_graph.node_link_data(G)
```

To serialize with json

```
>>> import json
>>> s = json.dumps(data)
```


9.8.2 node_link_graph

node_link_graph (data, directed=False, multigraph=True)
Return graph from node-link data format.
Parameters data: dict
node-link formatted graph data
directed : bool
If True, and direction not specified in data, return a directed graph.
multigraph : bool
If True, and multigraph not specified in data, return a multigraph.
Returns G: NetworkX graph
A NetworkX graph object
See also:
node_link_data, adjacency_data, tree_data

Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph ([(1,2)])
>>> data = json_graph.node_link_data(G)
>>> H = json_graph.node_link_graph(data)

9.8.3 adjacency_data

adjacency_data (G)

Return data in adjacency format that is suitable for JSON serialization and use in Javascript documents.
Parameters G: NetworkX graph
Returns data : dict

A dictionary with node-link formatted data.
See also:

```
adjacency_graph, node_link_data,tree_data
```


Notes

Graph, node, and link attributes will be written when using this format but attribute keys must be strings if you want to serialize the resulting data with JSON.

Examples

```
>>> from networkx.readwrite import json_graph
```

$\ggg G=n x \cdot \operatorname{Graph}([(1,2)])$
>>> data $=$ json_graph.adjacency_data(G)

To serialize with json

```
>>> import json
>>> s = json.dumps(data)
```


9.8.4 adjacency_graph

adjacency_graph (data, directed=False, multigraph=True)
Return graph from adjacency data format.
Parameters data: dict
Adjacency list formatted graph data
Returns G:NetworkX graph
A NetworkX graph object
directed : bool
If True, and direction not specified in data, return a directed graph.
multigraph : bool
If True, and multigraph not specified in data, return a multigraph.

See also:

```
adjacency_graph, node_link_data,tree_data
```


Examples

>>> from networkx.readwrite import json_graph
>>> G = nx.Graph ([(1,2)])
>>> data = json_graph.adjacency_data(G)
>>> H = json_graph.adjacency_graph(data)

9.8.5 tree_data

tree_data (G, root)
Return data in tree format that is suitable for JSON serialization and use in Javascript documents.
Parameters G: NetworkX graph
G must be an oriented tree
root : node
The root of the tree
Returns data: dict
A dictionary with node-link formatted data.
See also:
tree_graph, node_link_data, node_link_data

Notes

Node attributes are stored in this format but keys for attributes must be strings if you want to serialize with JSON.

Graph and edge attributes are not stored.
Examples
>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1,2)])
>>> data = json_graph.tree_data(G,root=1)
To serialize with json
>>> import json
>>> s = json.dumps(data)

9.8.6 tree_graph

tree_graph (data)
Return graph from tree data format.
Parameters data: dict
Tree formatted graph data
Returns G: NetworkX DiGraph
See also:
tree_graph, node_link_data, adjacency_data

Examples

```
>>> from networkx.readwrite import json_graph
>>> G = nx.DiGraph([(1, 2)])
>>> data = json_graph.tree_data(G,root=1)
>>> H = json_graph.tree_graph(data)
```


9.8.7 dumps

dumps $=$ <functools.partial object at 0x23a54c8>

Serialize obj to a JSON formatted str.
If skipkeys is false then dict keys that are not basic types (str, unicode, int, long, float, bool, None) will be skipped instead of raising a TypeError.

If ensure_ascii is false, then the return value will be a unicode instance subject to normal Python str to unicode coercion rules instead of being escaped to an ASCII str.

If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).

If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.
If separators is an (item_separator, dict_separator) tuple then it will be used instead of the default (', ', ': ') separators. (', ', ' ${ }^{\prime}$) is the most compact JSON representation.
encoding is the character encoding for str instances, default is UTF-8.
default (obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.

To use a custom JSONEncoder subclass (e.g. one that overrides the . default () method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

9.8.8 loads

loads $=$ <functools.partial object at 0x23a5520>

Deserialize s (a str or unicode instance containing a JSON document) to a Python object.
If s is a str instance and is encoded with an ASCII based encoding other than utf-8 (e.g. latin-1) then an appropriate encoding name must be specified. Encodings that are not ASCII based (such as UCS-2) are not allowed and should be decoded to unicode first.
object_hook is an optional function that will be called with the result of any object literal decode (a dict). The return value of object_hook will be used instead of the dict. This feature can be used to implement custom decoders (e.g. JSON-RPC class hinting).
object_pairs_hook is an optional function that will be called with the result of any object literal decoded with an ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be used to implement custom decoders that rely on the order that the key and value pairs are decoded (for example, collections.OrderedDict will remember the order of insertion). If object_hook is also defined, the object_pairs_hook takes priority.
parse_float, if specified, will be called with the string of every JSON float to be decoded. By default this is equivalent to float(num_str). This can be used to use another datatype or parser for JSON floats (e.g. decimal.Decimal).
parse_int, if specified, will be called with the string of every JSON int to be decoded. By default this is equivalent to int(num_str). This can be used to use another datatype or parser for JSON integers (e.g. float).
parse_constant, if specified, will be called with one of the following strings: -Infinity, Infinity, NaN, null, true, false. This can be used to raise an exception if invalid JSON numbers are encountered.

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise JSONDecoder is used.

9.8.9 dump

dump $=$ <functools.partial object at 0x23a5680>

Serialize obj as a JSON formatted stream to fp (a .write () -supporting file-like object).
If skipkeys is true then dict keys that are not basic types (str, unicode, int, long, float, bool, None) will be skipped instead of raising a TypeError.

If ensure_ascii is false, then the some chunks written to fp may be unicode instances, subject to normal Python str to unicode coercion rules. Unless fp.write () explicitly understands unicode (as in codecs.getwriter()) this is likely to cause an error.

If check_circular is false, then the circular reference check for container types will be skipped and a circular reference will result in an OverflowError (or worse).
If allow_nan is false, then it will be a ValueError to serialize out of range float values (nan, inf, -inf) in strict compliance of the JSON specification, instead of using the JavaScript equivalents (NaN, Infinity, -Infinity).
If indent is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.

If separators is an (item_separator, dict_separator) tuple then it will be used instead of the default (', ', ': ') separators. (', ', ' ${ }^{\prime}$) is the most compact JSON representation.
encoding is the character encoding for str instances, default is UTF-8.
default (obj) is a function that should return a serializable version of obj or raise TypeError. The default simply raises TypeError.
To use a custom JSONEncoder subclass (e.g. one that overrides the . default () method to serialize additional types), specify it with the cls kwarg; otherwise JSONEncoder is used.

9.8.10 load

load = <functools.partial object at 0x23a56d8>

Deserialize fp (a . read () -supporting file-like object containing a JSON document) to a Python object.
If the contents of fp is encoded with an ASCII based encoding other than utf-8 (e.g. latin-1), then an appropriate encoding name must be specified. Encodings that are not ASCII based (such as UCS-2) are not allowed, and should be wrapped with codecs.getreader (fp) (encoding), or simply decoded to a unicode object and passed to loads ()
object_hook is an optional function that will be called with the result of any object literal decode (a dict). The return value of object_hook will be used instead of the dict. This feature can be used to implement custom decoders (e.g. JSON-RPC class hinting).
object_pairs_hook is an optional function that will be called with the result of any object literal decoded with an ordered list of pairs. The return value of object_pairs_hook will be used instead of the dict. This feature can be used to implement custom decoders that rely on the order that the key and value pairs are decoded (for example, collections.OrderedDict will remember the order of insertion). If object_hook is also defined, the object_pairs_hook takes priority.

To use a custom JSONDecoder subclass, specify it with the cls kwarg; otherwise JSONDecoder is used.

9.9 LEDA

Read graphs in LEDA format.
LEDA is a C++ class library for efficient data types and algorithms.

9.9.1 Format

See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

read_leda(path[, encoding])	Read graph in LEDA format from path.
parse_leda(lines)	Read graph in LEDA format from string or iterable.

9.9.2 read_leda

read_leda (path, encoding='UTF-8')
Read graph in LEDA format from path.
Parameters path : file or string
File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed.
Returns G: NetworkX graph

References

[R301]

Examples
$\mathrm{G}=\mathrm{nx} . r e a d _l e d a($ 'file.leda')

9.9.3 parse_leda

parse_leda (lines)
Read graph in LEDA format from string or iterable.
Parameters lines: string or iterable
Data in LEDA format.
Returns G: NetworkX graph

References

[R300]

Examples

G=nx.parse_leda(string)

9.10 YAML

Read and write NetworkX graphs in YAML format.
"YAML is a data serialization format designed for human readability and interaction with scripting languages." See http://www.yaml.org for documentation.

9.10.1 Format

http://pyyaml.org/wiki/Py YAML

read_yaml(path)	Read graph in YAML format from path.
write_yaml(G, path[, encoding])	Write graph G in YAML format to path.

9.10.2 read_yaml

read_yaml (path)
Read graph in YAML format from path.
YAML is a data serialization format designed for human readability and interaction with scripting languages [R304].

Parameters path : file or string
File or filename to read. Filenames ending in .gz or .bz2 will be uncompressed.
Returns G: NetworkX graph

References

[R304]

Examples

>>> G=nx.path_graph (4)
>>> nx.write_yaml(G,'test.yaml')
>>> G=nx.read_yaml('test.yaml')

9.10.3 write_yaml

write_yaml (G, path, encoding='UTF-8', **kwds)
Write graph G in YAML format to path.
YAML is a data serialization format designed for human readability and interaction with scripting languages [R305].

Parameters G: graph
A NetworkX graph
path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
encoding: string, optional :
Specify which encoding to use when writing file.

References

[R305]

Examples

>>> G=nx.path_graph (4)
>>> nx.write_yaml(G,'test.yaml')

9.11 SparseGraph6

Read graphs in graph6 and sparse6 format.

9.11.1 Format

"graph6 and sparse6 are formats for storing undirected graphs in a compact manner, using only printable ASCII characters. Files in these formats have text type and contain one line per graph." http://cs.anu.edu.au/~bdm/data/formats.html

See http://cs.anu.edu.au/~bdm/data/formats.txt for details.

read_graph6(path)	Read simple undirected graphs in graph6 format from path.
parse_graph6(str)	Read a simple undirected graph in graph6 format from string.
read_graph6_list(path)	Read simple undirected graphs in graph6 format from path.
read_sparse6(path)	Read simple undirected graphs in sparse6 format from path.
parse_sparse6(string)	Read undirected graph in sparse6 format from string.
read_sparse6_list(path)	Read undirected graphs in sparse6 format from path.

9.11.2 read_graph6

read_graph6 (path)
Read simple undirected graphs in graph6 format from path.

Returns a single Graph.

9.11.3 parse_graph6

parse_graph6 (str)
Read a simple undirected graph in graph6 format from string.
Returns a single Graph.

9.11.4 read_graph6_list

read_graph6_list (path)
Read simple undirected graphs in graph6 format from path.
Returns a list of Graphs, one for each line in file.

9.11.5 read_sparse6

read_sparse6 (path)
Read simple undirected graphs in sparse6 format from path.
Returns a single MultiGraph.

9.11.6 parse_sparse6

parse_sparse6 (string)

Read undirected graph in sparse6 format from string.
Returns a MultiGraph.

9.11.7 read_sparse6_list

read_sparse6_list (path)
Read undirected graphs in sparse6 format from path.
Returns a list of MultiGraphs, one for each line in file.

9.12 Pajek

Read graphs in Pajek format.
This implementation handles directed and undirected graphs including those with self loops and parallel edges.

9.12.1 Format

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

read_pajek(path[, encoding])	Read graph in Pajek format from path.
write_pajek(G, path[, encoding])	Write graph in Pajek format to path.

Table 9.12 - continued from previous page
parse_pajek(lines) Parse Pajek format graph from string or iterable.

9.12.2 read_pajek

read_pajek (path, encoding='UTF-8')
Read graph in Pajek format from path.
Parameters path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.
Returns G: NetworkX MultiGraph or MultiDiGraph.

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

Examples

```
>>> G=nx.path_graph(4)
>>> nx.write_pajek(G, "test.net")
>>> G=nx.read_pajek("test.net")
```

To create a Graph instead of a MultiGraph use

```
>>> G1=nx.Graph(G)
```


9.12.3 write_pajek

write_pajek (G, path, encoding='UTF-8')
Write graph in Pajek format to path.
Parameters G:graph
A Networkx graph
path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.

References

See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

Examples

>>> G=nx.path_graph (4)
>>> nx.write_pajek(G, "test.net")

9.12.4 parse_pajek

parse_pajek (lines)
Parse Pajek format graph from string or iterable.
Parameters lines: string or iterable
Data in Pajek format.
Returns G: NetworkX graph
See also:

```
read_pajek
```


9.13 GIS Shapefile

Generates a networkx.DiGraph from point and line shapefiles.
"The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software. It is developed and regulated by Esri as a (mostly) open specification for data interoperability among Esri and other software products." See http://en.wikipedia.org/wiki/Shapefile for additional information.

$$
\begin{array}{ll}
\hline \text { read_shp(path) } & \text { Generates a networkx.DiGraph from shapefiles. Point geometries are } \\
\hline \text { write_shp(G, outdir) } & \text { Writes a networkx.DiGraph to two shapefiles, edges and nodes. } \\
\hline
\end{array}
$$

9.13.1 read_shp

```
read_shp (path)
```

Generates a networkx.DiGraph from shapefiles. Point geometries are translated into nodes, lines into edges. Coordinate tuples are used as keys. Attributes are preserved, line geometries are simplified into start and end coordinates. Accepts a single shapefile or directory of many shapefiles.
"The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software [R302]."

Parameters path : file or string
File, directory, or filename to read.
Returns G: NetworkX graph

References

[R302]

Examples
>>> G=nx.read_shp('test.shp')

9.13.2 write_shp

write_shp (G, outdir)
Writes a networkx.DiGraph to two shapefiles, edges and nodes. Nodes and edges are expected to have a Well Known Binary (Wkb) or Well Known Text (Wkt) key in order to generate geometries. Also acceptable are nodes with a numeric tuple key (x, y).
"The Esri Shapefile or simply a shapefile is a popular geospatial vector data format for geographic information systems software [R303]."

Parameters outdir : directory path

Output directory for the two shapefiles.

Returns None:

References

[R303]

Examples

nx.write_shp(digraph, ‘/shapefiles’) \# doctest +SKIP

DRAWING

10.1 Matplotlib

Draw networks with matplotlib.

10.1.1 See Also

matplotlib: http://matplotlib.sourceforge.net/
pygraphviz: http://networkx.lanl.gov/pygraphviz/

draw(G[, pos, ax, hold])	Draw the graph G with Matplotlib.
draw_networkx(G[, pos, with_labels])	Draw the graph G using Matplotlib.
draw_networkx_nodes(G, pos[, nodelist, ...])	Draw the nodes of the graph G.
draw_networkx_edges(G, pos[, edgelist, ...])	Draw the edges of the graph G.
draw_networkx_labels(G, pos[, labels, ...])	Draw node labels on the graph G.
draw_networkx_edge_labels(G, pos[, ...])	Draw edge labels.
draw_circular(G, **kwargs)	Draw the graph G with a circular layout.
draw_random(G, **kwargs)	Draw the graph G with a random layout.
draw_spectral(G, **kwargs)	Draw the graph G with a spectral layout.
draw_spring $\left(G\right.$, G* * kwargs)	Draw the graph G with a spring layout.
draw_shell(G, **kwargs)	Draw networkx graph with shell layout.
draw_graphviz(G[, prog])	Draw networkx graph with graphviz layout.

10.1.2 draw

draw (G, pos=None, ax=None, hold=None, **kwds)
Draw the graph G with Matplotlib.
Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis labels etc.

Parameters G: graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
ax : Matplotlib Axes object, optional
Draw the graph in specified Matplotlib axes.
hold : bool, optional
Set the Matplotlib hold state. If True subsequent draw commands will be added to the current axes.
**kwds : optional keywords
See networkx.draw_networkx() for a description of optional keywords.

See also:

```
draw_networkx, draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels,
draw__networkx_edge_labels
```


Notes

This function has the same name as pylab.draw and pyplot.draw so beware when using

```
>>> from networkx import *
```

since you might overwrite the pylab.draw function.
With pyplot use

```
>>> import matplotlib.pyplot as plt
>>> import networkx as nx
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G) # networkx draw()
>>> plt.draw() # pyplot draw()
```

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

Examples

```
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout
```


10.1.3 draw_networkx

```
draw_networkx (G, pos=None, with_labels=True, **kwds)
```

Draw the graph G using Matplotlib.
Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing features. See draw() for simple drawing without labels or axes.

Parameters G:graph
A networkx graph
pos: dictionary, optional
A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
with_labels : bool, optional (default=True)
Set to True to draw labels on the nodes
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list, optional (default G.nodes())
Draw only specified nodes
edgelist : list, optional (default=G.edges())
Draw only specified edges
node_size : scalar or array, optional (default=300)
Size of nodes. If an array is specified it must be the same length as nodelist.
node_color : color string, or array of floats, (default='r')
Node color. Can be a single color format string, or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin, vmax parameters. See matplotlib.scatter for more details.
node_shape : string, optional (default='o')
The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8'.
alpha : float, optional (default=1.0)
The node transparency
cmap : Matplotlib colormap, optional (default=None)
Colormap for mapping intensities of nodes
vmin,vmax : float, optional (default=None)
Minimum and maximum for node colormap scaling
linewidths : [None | scalar | sequence]
Line width of symbol border $($ default $=1.0)$
width : float, optional (default=1.0)
Line width of edges
edge_color : color string, or array of floats (default='r')
Edge color. Can be a single color format string, or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
edge_cmap : Matplotlib colormap, optional (default=None)
Colormap for mapping intensities of edges
edge_vmin,edge_vmax : floats, optional (default=None)
Minimum and maximum for edge colormap scaling
style : string, optional (default='solid')
Edge line style (solidldashedldotted,dashdot)
labels : dictionary, optional (default=None)

Node labels in a dictionary keyed by node of text labels
font_size : int, optional (default=12)
Font size for text labels
font_color : string, optional (default='k' black)
Font color string
font_weight : string, optional (default='normal')
Font weight
font_family : string, optional (default='sans-serif')
Font family
label : string, optional
Label for graph legend

See also:

```
draw, draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels,
draw__networkx_edge_labels
Examples
>>> G=nx.dodecahedral_graph()
>>> nx.draw(G)
>>> nx.draw(G,pos=nx.spring_layout(G)) # use spring layout
>>> import matplotlib.pyplot as plt
>>> limits=plt.axis('off') # turn of axis
```

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.4 draw_networkx_nodes

draw_networkx_nodes (G, pos, nodelist=None, node_size $=300$, node_color='r', node_shape='o', alpha=1.0, cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, label=None, **kwds)
Draw the nodes of the graph G.
This draws only the nodes of the graph G.
Parameters G:graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
nodelist : list, optional

Draw only specified nodes (default G.nodes())
node_size : scalar or array
Size of nodes (default=300). If an array is specified it must be the same length as nodelist.
node_color : color string, or array of floats
Node color. Can be a single color format string (default='r'), or a sequence of colors with the same length as nodelist. If numeric values are specified they will be mapped to colors using the cmap and vmin, vmax parameters. See matplotlib.scatter for more details.
node_shape : string
The shape of the node. Specification is as matplotlib.scatter marker, one of 'so^>v<dph8' (default='o').
alpha: float
The node transparency (default=1.0)
cmap : Matplotlib colormap
Colormap for mapping intensities of nodes (default=None)
vmin,vmax : floats
Minimum and maximum for node colormap scaling (default=None)
linewidths : [None I scalar I sequence]
Line width of symbol border $($ default $=1.0)$
label : [Nonel string]
Label for legend

See also:

```
draw, draw_networkx, draw_networkx_edges, draw_networkx_labels,
draw__networkx_edge_labels
```


Examples

$\ggg G=n x . d o d e c a h e d r a l _g r a p h()$
>>> nodes=nx.draw_networkx_nodes (G,pos=nx.spring_layout (G))
Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.5 draw_networkx_edges

draw_networkx_edges (G, pos, edgelist=None, width=1.0, edge_color='k', style='solid', alpha=None, edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True, label $=$ None, ${ }^{* *}$ kwds)
Draw the edges of the graph G.
This draws only the edges of the graph G.
Parameters G:graph
A networkx graph
pos : dictionary
A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
edgelist : collection of edge tuples
Draw only specified edges(default=G.edges())
width : float
Line width of edges (default $=1.0$)
edge_color : color string, or array of floats
Edge color. Can be a single color format string (default='r'), or a sequence of colors with the same length as edgelist. If numeric values are specified they will be mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters.
style : string
Edge line style (default='solid') (solidldashedldotted,dashdot)
alpha: float
The edge transparency (default=1.0)
edge_cmap : Matplotlib colormap
Colormap for mapping intensities of edges (default=None)
edge_vmin,edge_vmax : floats
Minimum and maximum for edge colormap scaling (default=None)
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
arrows : bool, optional (default=True)
For directed graphs, if True draw arrowheads.
label : [Nonel string]
Label for legend

See also:

```
draw, draw_networkx, draw_networkx_nodes, draw_networkx_labels,
draw_networkx_edge_labels
```


Notes

For directed graphs, "arrows" (actually just thicker stubs) are drawn at the head end. Arrows can be turned off with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

```
>>> G=nx.dodecahedral_graph()
>>> edges=nx.draw_networkx_edges(G,pos=nx.spring_layout(G))
```

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.6 draw_networkx_labels

draw_networkx_labels (G, pos, labels=None, font_size=12, font_color='k', font_family='sans-serif', font_weight='normal', alpha=1.0, ax=None, **kwds)
Draw node labels on the graph G .
Parameters G:graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
labels : dictionary, optional (default=None)
Node labels in a dictionary keyed by node of text labels
font_size : int
Font size for text labels (default=12)
font_color : string
Font color string (default='k' black)
font_family : string
Font family (default='sans-serif')
font_weight : string
Font weight (default='normal')
alpha : float
The text transparency (default=1.0)
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.

See also:

```
draw, draw_networkx, draw_networkx_nodes, draw_networkx_edges,
draw__networkx_edge_labels
```


Examples

```
>>> G=nx.dodecahedral_graph()
```

>>> G=nx.dodecahedral_graph()
>>> labels=nx.draw_networkx_labels(G,pos=nx.spring_layout (G))

```

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

\subsection*{10.1.7 draw_networkx_edge_labels}
draw_networkx_edge_labels \((G, \quad\) pos, edge_labels=None, label_pos=0.5, font_size \(=10\), font_color=' \(k\) ', font_family='sans-serif', font_weight='normal', alpha=1.0, bbox=None, ax=None, rotate=True, \(* * k w d s\) )
Draw edge labels.

Parameters G: graph
A networkx graph
pos : dictionary, optional
A dictionary with nodes as keys and positions as values. If not specified a spring layout positioning will be computed. See networkx.layout for functions that compute node positions.
ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
alpha: float
The text transparency (default=1.0)
edge_labels : dictionary
Edge labels in a dictionary keyed by edge two-tuple of text labels (default=None). Only labels for the keys in the dictionary are drawn.
label_pos: float
Position of edge label along edge ( \(0=\) head, \(0.5=\) center, \(1=\) tail )
font_size : int
Font size for text labels (default=12)
font_color : string
Font color string (default=' k ' black)
font_weight : string
Font weight (default='normal')
font_family : string
Font family (default='sans-serif')
bbox : Matplotlib bbox
Specify text box shape and colors.
clip_on : bool
Turn on clipping at axis boundaries (default=True)

\section*{See also:}
```

draw, draw_networkx, draw_networkx_nodes, draw_networkx_edges,
draw__networkx_labels

```

\section*{Examples}
```

>>> G=nx.dodecahedral_graph()
>>> edge_labels=nx.draw_networkx_edge_labels (G,pos=nx.spring_layout (G))

```

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

\subsection*{10.1.8 draw_circular}
draw_circular ( \(G, * * k w a r g s\) )
Draw the graph \(G\) with a circular layout.

\subsection*{10.1.9 draw_random}
draw_random ( \(G, * * k w a r g s\) )
Draw the graph G with a random layout.
```

10.1.10 draw_spectral
draw_spectral (G, **kwargs)
Draw the graph G with a spectral layout.

```

\subsection*{10.1.11 draw_spring}
draw_spring ( \(G, * *\) kwargs)
Draw the graph \(G\) with a spring layout.

\subsection*{10.1.12 draw_shell}
draw_shell ( \(G\), **kwargs)
Draw networkx graph with shell layout.

\subsection*{10.1.13 draw_graphviz}
draw_graphviz (G, prog='neato', **kwargs)
Draw networkx graph with graphviz layout.

\subsection*{10.2 Graphviz AGraph (dot)}

Interface to pygraphviz AGraph class.

\subsection*{10.2.1 Examples}
```

>>> G=nx.complete_graph (5)
>>> A=nx.to_agraph(G)
>>> H=nx.from_agraph(A)

```

\subsection*{10.2.2 See Also}

Pygraphviz: http://networkx.lanl.gov/pygraphviz
\begin{tabular}{|rr|}
\hline from_agraph(A[, create_using]) & Return a NetworkX Graph or DiGraph from a PyGraphviz graph. \\
\hline
\end{tabular}

Table 10.2 - continued from previous page
\begin{tabular}{ll}
\hline to_agraph(N) & Return a pygraphviz graph from a NetworkX graph N. \\
\hline write_dot(G, path) & Write NetworkX graph G to Graphviz dot format on path. \\
\hline read_dot(path) & Return a NetworkX graph from a dot file on path. \\
\hline graphviz_layout(G[, prog, root, args]) & Create node positions for G using Graphviz. \\
\hline pygraphviz_layout(G[, prog, root, args]) & Create node positions for G using Graphviz. \\
\hline
\end{tabular}

\subsection*{10.2.3 from_agraph}
from_agraph (A, create_using=None)
Return a NetworkX Graph or DiGraph from a PyGraphviz graph.
Parameters A: PyGraphviz AGraph
A graph created with PyGraphviz create_using : NetworkX graph class instance

The output is created using the given graph class instance

\section*{Notes}

The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes and edges.

Default node attributes will be in the dictionary G.node_attr which is keyed by node.
Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge weight attribute or the value 1 if no edge weight attribute is found.

\section*{Examples}
>>> K5=nx.complete_graph (5)
>>> A=nx.to_agraph (K5)
>>> G=nx.from_agraph(A)
>>> G=nx.from_agraph (A)

\subsection*{10.2.4 to_agraph}

\section*{to_agraph ( \(N\) )}

Return a pygraphviz graph from a NetworkX graph N.
Parameters \(\mathbf{N}\) : NetworkX graph
A graph created with NetworkX

\section*{Notes}

If N has an dict N. graph_attr an attempt will be made first to copy properties attached to the graph (see from_agraph) and then updated with the calling arguments if any.

\section*{Examples}
>>> K5=nx.complete_graph (5)
>>> A=nx.to_agraph (K5)

\subsection*{10.2.5 write_dot}

\section*{write_dot (G, path)}

Write NetworkX graph G to Graphviz dot format on path.
Parameters G:graph
A networkx graph
path : filename
Filename or file handle to write

\subsection*{10.2.6 read_dot}
read_dot (path)
Return a NetworkX graph from a dot file on path.
Parameters path : file or string
File name or file handle to read.

\subsection*{10.2.7 graphviz_layout}
graphviz_layout (G, prog='neato', root=None, args=' ')
Create node positions for \(G\) using Graphviz.
Parameters G:NetworkX graph
A graph created with NetworkX
prog : string
Name of Graphviz layout program
root : string, optional
Root node for twopi layout
args : string, optional
Extra arguments to Graphviz layout program
Returns : dictionary
Dictionary of \(x, y\), positions keyed by node.

\section*{Notes}

This is a wrapper for pygraphviz_layout.

\section*{Examples}
>>> G=nx.petersen_graph()
>>> pos=nx.graphviz_layout (G)
>>> pos=nx.graphviz_layout (G,prog='dot')

\subsection*{10.2.8 pygraphviz_layout}
pygraphviz_layout ( \(G\), prog='neato', root=None, \(\operatorname{args='\text {'})~}\)
Create node positions for \(G\) using Graphviz.
Parameters G : NetworkX graph
A graph created with NetworkX
prog : string
Name of Graphviz layout program
root : string, optional
Root node for twopi layout
args : string, optional
Extra arguments to Graphviz layout program
Returns : dictionary
Dictionary of \(x, y\), positions keyed by node.

\section*{Examples}
```

>>> G=nx.petersen_graph()
>>> pos=nx.graphviz_layout(G)
>>> pos=nx.graphviz_layout(G,prog='dot')

```

\subsection*{10.3 Graphviz with pydot}

Import and export NetworkX graphs in Graphviz dot format using pydot.
Either this module or nx_pygraphviz can be used to interface with graphviz.

\subsection*{10.3.1 See Also}

Pydot: http://code.google.com/p/pydot/ Graphviz: http://www.research.att.com/sw/tools/graphviz/ DOT Language: http://www.graphviz.org/doc/info/lang.html
\begin{tabular}{ll}
\hline from_pydot(P) & Return a NetworkX graph from a Pydot graph. \\
\hline to_pydot(N[, strict]) & Return a pydot graph from a NetworkX graph N. \\
\hline write_dot(G, path) & Write NetworkX graph G to Graphviz dot format on path. \\
\hline read_dot(path) & Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path. \\
\hline graphviz_layout(G[, prog, root]) & Create node positions using Pydot and Graphviz. \\
\hline pydot_layout(G[, prog, root]) & Create node positions using Pydot and Graphviz. \\
\hline
\end{tabular}

\subsection*{10.3.2 from_pydot}

\section*{from_pydot ( \(P\) )}

Return a NetworkX graph from a Pydot graph.
Parameters \(\mathbf{P}\) : Pydot graph
A graph created with Pydot
Returns G: NetworkX multigraph
A MultiGraph or MultiDiGraph.

Examples
>>> K5=nx.complete_graph (5)
>>> A=nx.to_pydot (K5)
>>> G=nx.from_pydot(A) \# return MultiGraph
>>> G=nx.Graph(nx.from_pydot(A)) \# make a Graph instead of MultiGraph

\subsection*{10.3.3 to_pydot}
to_pydot ( \(N\), strict=True)
Return a pydot graph from a NetworkX graph N.
Parameters \(\mathbf{N}\) : NetworkX graph
A graph created with NetworkX

\section*{Examples}
>>> K5=nx.complete_graph (5)
>>> P=nx.to_pydot(K5)

\subsection*{10.3.4 write_dot}
write_dot (G, path)
Write NetworkX graph G to Graphviz dot format on path.
Path can be a string or a file handle.

\subsection*{10.3.5 read_dot}
read_dot (path)
Return a NetworkX MultiGraph or MultiDiGraph from a dot file on path.
Parameters path : filename or file handle
Returns G: NetworkX multigraph
A MultiGraph or MultiDiGraph.

\section*{Notes}

Use G=nx.Graph(nx.read_dot(path)) to return a Graph instead of a MultiGraph.

\subsection*{10.3.6 graphviz_layout}
graphviz_layout (G, prog='neato', root=None, **kwds)
Create node positions using Pydot and Graphviz.
Returns a dictionary of positions keyed by node.

\section*{Notes}

This is a wrapper for pydot_layout.

\section*{Examples}
>>> G=nx.complete_graph (4)
>>> pos=nx.graphviz_layout (G)
>>> pos=nx.graphviz_layout (G,prog=' dot \(^{\prime}\) )

\subsection*{10.3.7 pydot_layout}
```

pydot_layout (G, prog='neato', root=None, **kwds)

```

Create node positions using Pydot and Graphviz.
Returns a dictionary of positions keyed by node.

\section*{Examples}
```

>>> G=nx.complete_graph(4)
>>> pos=nx.pydot_layout (G)
>>> pos=nx.pydot_layout(G,prog='dot')

```

\subsection*{10.4 Graph Layout}

Node positioning algorithms for graph drawing.
\begin{tabular}{ll}
\hline circular_layout(G[, dim, scale]) & Position nodes on a circle. \\
\hline random_layout \((\mathrm{G}[, \mathrm{dim}])\) & Position nodes uniformly at random in the unit square. \\
\hline shell_layout(G[, nlist, dim, scale \(])\) & Position nodes in concentric circles. \\
\hline spring_layout(G[, dim, k, pos, fixed, ...]) & Position nodes using Fruchterman-Reingold force-directed algorithm. \\
\hline spectral_layout(G[, dim, weight, scale]) & Position nodes using the eigenvectors of the graph Laplacian. \\
\hline
\end{tabular}

\subsection*{10.4.1 circular_layout}
circular_layout ( \(G, \operatorname{dim}=2\), scale \(=1\) )
Position nodes on a circle.
Parameters G: NetworkX graph
\(\operatorname{dim}\) : int
Dimension of layout, currently only dim=2 is supported
scale : float
Scale factor for positions

\section*{Returns dict : :}

A dictionary of positions keyed by node

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

Examples
>>> G=nx.path_graph (4)
>>> pos=nx.circular_layout(G)

\subsection*{10.4.2 random_layout}
random_layout ( \(G\), dim=2)
Position nodes uniformly at random in the unit square.
For every node, a position is generated by choosing each of dim coordinates uniformly at random on the interval [0.0, 1.0).

NumPy (http://scipy.org) is required for this function.
Parameters G: NetworkX graph
A position will be assigned to every node in \(G\).
\(\operatorname{dim}\) : int
Dimension of layout.
Returns dict : :
A dictionary of positions keyed by node

\section*{Examples}
>>> G = nx.lollipop_graph(4, 3)
>>> pos = nx.random_layout (G)

\subsection*{10.4.3 shell_layout}
shell_layout ( \(G\), nlist=None, dim \(=2\), scale \(=1\) )
Position nodes in concentric circles.
Parameters G:NetworkX graph
nlist : list of lists
List of node lists for each shell.
\(\operatorname{dim}\) : int
Dimension of layout, currently only dim=2 is supported
scale : float
Scale factor for positions

\section*{Returns dict : :}

A dictionary of positions keyed by node

\section*{Notes}

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

\section*{Examples}
>>> G=nx.path_graph (4)
>>> shells=[[0],[1,2,3]]
>>> pos=nx.shell_layout (G, shells)

\subsection*{10.4.4 spring_layout}
spring_layout ( \(G\), dim=2, \(k=\) None, pos=None, fixed=None, iterations=50, weight='weight', scale \(=1.0\) )
Position nodes using Fruchterman-Reingold force-directed algorithm.
Parameters G: NetworkX graph
\(\operatorname{dim}:\) int
Dimension of layout
\(\mathbf{k}\) : float (default=None)
Optimal distance between nodes. If None the distance is set to \(1 /\) sqrt( \(n\) ) where \(n\) is the number of nodes. Increase this value to move nodes farther apart.
pos : dict or None optional (default=None)
Initial positions for nodes as a dictionary with node as keys and values as a list or tuple. If None, then nuse random initial positions.
fixed : list or None optional (default=None)
Nodes to keep fixed at initial position.
iterations : int optional (default=50)
Number of iterations of spring-force relaxation
```

weight : string or None optional (default='weight')

```

The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1 .
scale : float (default=1.0)
Scale factor for positions. The nodes are positioned in a box of size [0,scale] x [0,scale].
Returns dict : :
A dictionary of positions keyed by node

\section*{Examples}
>>> G=nx.path_graph(4)
>>> pos=nx.spring_layout (G)
\# The same using longer function name >>> pos=nx.fruchterman_reingold_layout(G)

\subsection*{10.4.5 spectral_layout}
spectral_layout ( \(G\), dim=2, weight='weight', scale=1)
Position nodes using the eigenvectors of the graph Laplacian.

\section*{Parameters G:NetworkX graph}
dim : int
Dimension of layout
weight : string or None optional (default='weight')
The edge attribute that holds the numerical value used for the edge weight. If None, then all edge weights are 1 .
scale : float
Scale factor for positions

\section*{Returns dict : :}

A dictionary of positions keyed by node

\section*{Notes}

Directed graphs will be considered as unidrected graphs when positioning the nodes.
For larger graphs ( \(>500\) nodes) this will use the SciPy sparse eigenvalue solver (ARPACK).

\section*{Examples}
>>> G=nx.path_graph (4)
>>> pos=nx.spectral_layout(G)

NetworkX Reference, Release 1.8.1

\section*{EXCEPTIONS}

Base exceptions and errors for NetworkX.
class NetworkXException
Base class for exceptions in NetworkX.

\section*{class NetworkXError}

Exception for a serious error in NetworkX
class NetworkXPointlessConcept
Harary, F. and Read, R. "Is the Null Graph a Pointless Concept?" In Graphs and Combinatorics Conference, George Washington University. New York: Springer-Verlag, 1973.

\section*{class NetworkXAlgorithmError}

Exception for unexpected termination of algorithms.

\section*{class NetworkXUnfeasible}

Exception raised by algorithms trying to solve a problem instance that has no feasible solution.

\section*{class NetworkXNoPath}

Exception for algorithms that should return a path when running on graphs where such a path does not exist.

\section*{class NetworkXUnbounded}

Exception raised by algorithms trying to solve a maximization or a minimization problem instance that is unbounded.

NetworkX Reference, Release 1.8.1

\section*{UTILITIES}

\subsection*{12.1 Helper functions}

Miscellaneous Helpers for NetworkX.
These are not imported into the base networkx namespace but can be accessed, for example, as
```

>>> import networkx
>>> networkx.utils.is_string_like('spam')
True

```
\begin{tabular}{ll}
\hline is_string_like(obj) & Check if obj is string. \\
\hline flatten(obj[, result]) & Return flattened version of (possibly nested) iterable object. \\
\hline iterable(obj) & Return True if obj is iterable with a well-defined len(). \\
\hline is_list_of_ints(intlist) & Return True if list is a list of ints. \\
\hline make_str(t) & Return the string representation of t. \\
\hline cumulative_sum(numbers) & Yield cumulative sum of numbers. \\
\hline generate_unique_node() & Generate a unique node label. \\
\hline default_opener(filename) & Opens filename using system's default program. \\
\hline
\end{tabular}

\subsection*{12.1.1 is_string_like}
is_string_like (obj)
Check if obj is string.

\subsection*{12.1.2 flatten}
flatten (obj, result=None)
Return flattened version of (possibly nested) iterable object.

\subsection*{12.1.3 iterable}
iterable (obj)
Return True if obj is iterable with a well-defined len().

\subsection*{12.1.4 is_list_of_ints}
is_list_of_ints (intlist)
Return True if list is a list of ints.

\subsection*{12.1.5 make_str}
make_str \((t)\)
Return the string representation of \(t\).

\subsection*{12.1.6 cumulative_sum}
cumulative_sum (numbers)
Yield cumulative sum of numbers.
```

 >>> import networkx.utils as utils
 >>> list(utils.cumulative_sum([1, 2,3,4]))
 [1, 3, 6, 10]
    ```

\subsection*{12.1.7 generate_unique_node}
generate_unique_node()
Generate a unique node label.

\subsection*{12.1.8 default_opener}
default_opener (filename)
Opens filename using system's default program.
Parameters filename: str
The path of the file to be opened.

\subsection*{12.2 Data structures and Algorithms}

Union-find data structure.
UnionFind.union(*objects) Find the sets containing the objects and merge them all.

\subsection*{12.2.1 union}

UnionFind. union (*objects)
Find the sets containing the objects and merge them all.

\subsection*{12.3 Random sequence generators}

Utilities for generating random numbers, random sequences, and random selections.
\begin{tabular}{ll}
\hline create_degree_sequence(n[, sfunction, max_tries]) & Attempt to create a valid degree sequence of length n using specified fu \\
\hline pareto_sequence(n[, exponent]) & Return sample sequence of length n from a Pareto distribution. \\
\hline powerlaw_sequence(n[, exponent]) & Return sample sequence of length n from a power law distribution. \\
\hline uniform_sequence(n) & Return sample sequence of length n from a uniform distribution. \\
\hline cumulative_distribution(distribution) & Return normalized cumulative distribution from discrete distribution. \\
\hline discrete_sequence(n[, distribution, ...]) & Return sample sequence of length n from a given discrete distribution o \\
\hline zipf_sequence(n[, alpha, xmin]) & Return a sample sequence of length n from a Zipf distribution with \\
\hline zipf_rv(alpha[,xmin, seed]) & Return a random value chosen from the Zipf distribution. \\
\hline random_weighted_sample(mapping, k) & Return k items without replacement from a weighted sample. \\
\hline weighted_choice(mapping) & Return a single element from a weighted sample. \\
\hline
\end{tabular}

\subsection*{12.3.1 create_degree_sequence}
create_degree_sequence ( \(n\), sfunction=None, max_tries=50, **kwds)
Attempt to create a valid degree sequence of length \(n\) using specified function sfunction( \(\mathrm{n}, * * \mathrm{kwds}\) ).
Parameters \(\mathbf{n}\) : int
Length of degree sequence \(=\) number of nodes

\section*{sfunction: function :}

Function which returns a list of n real or integer values. Called as "sfunction(n, **kwds)".
max_tries: int :
Max number of attempts at creating valid degree sequence.

\section*{Notes}

Repeatedly create a degree sequence by calling sfunction( \(n\), \({ }^{* *}\) kwds) until achieving a valid degree sequence. If unsuccessful after max_tries attempts, raise an exception.

For examples of sfunctions that return sequences of random numbers, see networkx.Utils.

\section*{Examples}
>>> from networkx.utils import uniform_sequence, create_degree_sequence
>>> seq=create_degree_sequence (10,uniform_sequence)

\subsection*{12.3.2 pareto_sequence}
pareto_sequence ( \(n\), exponent=1.0)
Return sample sequence of length n from a Pareto distribution.

\subsection*{12.3.3 powerlaw_sequence}
powerlaw_sequence ( \(n\), exponent \(=2.0\) )
Return sample sequence of length n from a power law distribution.

\subsection*{12.3.4 uniform_sequence}

\section*{uniform_sequence ( \(n\) )}

Return sample sequence of length n from a uniform distribution.

\subsection*{12.3.5 cumulative_distribution}

\section*{cumulative_distribution (distribution)}

Return normalized cumulative distribution from discrete distribution.

\subsection*{12.3.6 discrete_sequence}
discrete_sequence ( \(n\), distribution=None, cdistribution=None)
Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.
One of the following must be specified.
distribution \(=\) histogram of values, will be normalized
cdistribution \(=\) normalized discrete cumulative distribution

\subsection*{12.3.7 zipf_sequence}
zipf_sequence ( \(n\), alpha \(=2.0\), xmin \(=1\) )
Return a sample sequence of length \(n\) from a Zipf distribution with exponent parameter alpha and minimum value xmin.
See also:
zipf_rv

\subsection*{12.3.8 zipf_rv}
zipf_rv (alpha, \(x\) min=1, seed=None)
Return a random value chosen from the Zipf distribution.
The return value is an integer drawn from the probability distribution ::math:
\[
p(x)=\backslash \operatorname{frac}\left\{x^{\wedge}\{-\backslash a l p h a\}\right\}\left\{\text { zeta }\left(\backslash a l p h a, x_{-}\{\min \}\right)\right\},
\]
where \(\zeta\left(\alpha, x_{\text {min }}\right)\) is the Hurwitz zeta function.
Parameters alpha: float
Exponent value of the distribution
xmin : int
Minimum value
seed : int
Seed value for random number generator
Returns \(\mathbf{x}\) : int
Random value from Zipf distribution

\section*{Raises ValueError: :}
```

If xmin < 1 or If alpha <= 1

```

\section*{Notes}

The rejection algorithm generates random values for a the power-law distribution in uniformly bounded expected time dependent on parameters. See [1] for details on its operation.

\section*{References}
..[1] Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.

\section*{Examples}
>>> nx.zipf_rv(alpha=2, xmin=3, seed=42)

\subsection*{12.3.9 random_weighted_sample}
random_weighted_sample (mapping, \(k\) )
Return k items without replacement from a weighted sample.
The input is a dictionary of items with weights as values.

\subsection*{12.3.10 weighted_choice}
weighted_choice (mapping)
Return a single element from a weighted sample.
The input is a dictionary of items with weights as values.

\subsection*{12.4 Decorators}
\begin{tabular}{ll}
\hline open_file(path_arg[, mode]) & Decorator to ensure clean opening and closing of files. \\
\hline require(*packages) & Decorator to check whether specific packages can be imported. \\
\hline
\end{tabular}

\subsection*{12.4.1 open_file}
open_file (path_arg, mode='r')
Decorator to ensure clean opening and closing of files.
Parameters path_arg : int
Location of the path argument in args. Even if the argument is a named positional argument (with a default value), you must specify its index as a positional argument.
mode : str
String for opening mode.
Returns _open_file : function

Function which cleanly executes the io.

\section*{Examples}

Decorate functions like this:
```

@open_file(0,'r')
def read_function(pathname):
pass
@open_file(1,'w')
def write_function(G,pathname):
pass
@open_file(1,'w')
def write_function(G, pathname='graph.dot')
pass
@open_file('path', 'w+')
def another_function(arg, **kwargs):
path = kwargs['path']
pass

```

\subsection*{12.4.2 require}
require (*packages)
Decorator to check whether specific packages can be imported.
If a package cannot be imported, then NetworkXError is raised. If all packages can be imported, then the original function is called.

Parameters packages: container of strings
Container of module names that will be imported.
Returns _require : function
The decorated function.

\section*{Raises NetworkXError:}

\section*{If any of the packages cannot be imported :}

\section*{Examples}

Decorate functions like this:
```

 @require('scipy')
 def sp_function():
 import scipy
 pass
 @require('numpy','scipy')
 def sp_np_function():
 import numpy
 import scipy
 pass
    ```

NetworkX is distributed with the BSD license.
```

Copyright (C) 2004-2012, NetworkX Developers
Aric Hagberg hagberg@lanl.gov
Dan Schult dschult@colgate.edu
Pieter Swart swart@lanl.gov
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

```
* Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
* Neither the name of the NetworkX Developers nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetworkX Reference, Release 1.8.1

\section*{CITING}

To cite NetworkX please use the following publication:
Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, "Exploring network structure, dynamics, and function using NetworkX", in Proceedings of the 7th Python in Science Conference (SciPy2008), Gäel Varoquaux, Travis Vaught, and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11-15, Aug 2008

NetworkX Reference, Release 1.8.1

\section*{CREDITS}

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart, and has been developed with the help of many others.

Thanks to Guido van Rossum for the idea of using Python for implementing a graph data structure http://www.python.org/doc/essays/graphs.html

Thanks to David Eppstein for the idea of representing a graph G so that "for n in G " loops over the nodes in G and \(\mathrm{G}[\mathrm{n}]\) are node n's neighbors.

Thanks to everyone who has improved NetworkX by contributing code, bug reports (and fixes), documentation, and input on design, featues, and the future of NetworkX.

Thanks especially to the following contributors:
- Katy Bold contributed the Karate Club graph.
- Hernan Rozenfeld added dorogovtsev_goltsev_mendes_graph and did stress testing.
- Brendt Wohlberg added examples from the Stanford GraphBase.
- Jim Bagrow reported bugs in the search methods.
- Holly Johnsen helped fix the path based centrality measures.
- Arnar Flatberg fixed the graph laplacian routines.
- Chris Myers suggested using None as a default datatype, suggested improvements for the IO routines, added grid generator index tuple labeling and associated routines, and reported bugs.
- Joel Miller tested and improved the connected components methods fixed bugs and typos in the graph generators, and contributed the random clustered graph generator.
- Keith Briggs sorted out naming issues for random graphs and wrote dense_gnm_random_graph.
- Ignacio Rozada provided the Krapivsky-Redner graph generator.
- Phillipp Pagel helped fix eccentricity etc. for disconnected graphs.
- Sverre Sundsdal contributed bidirectional shortest path and Dijkstra routines, s-metric computation and graph generation
- Ross M. Richardson contributed the expected degree graph generator and helped test the pygraphviz interface.
- Christopher Ellison implemented the VF2 isomorphism algorithm and is a core developer.
- Eben Kenah contributed the strongly connected components and DFS functions.
- Sasha Gutfriend contributed edge betweenness algorithms.
- Udi Weinsberg helped develop intersection and difference operators.
- Matteo Dell'Amico wrote the random regular graph generator.
- Andrew Conway contributed ego_graph, eigenvector centrality, line graph and much more.
- Raf Guns wrote the GraphML writer.
- Salim Fadhley and Matteo Dell'Amico contributed the A* algorithm.
- Fabrice Desclaux contributed the Matplotlib edge labeling code.
- Arpad Horvath fixed the barabasi_albert_graph() generator.
- Minh Van Nguyen contributed the connected_watts_strogatz_graph() and documentation for the Graph and MultiGraph classes.
- Willem Ligtenberg contributed the directed scale free graph generator.
- Loïc Séguin-C. contributed the Ford-Fulkerson max flow and min cut algorithms, and ported all of NetworkX to Python3. He is a NetworkX core developer.
- Paul McGuire improved the performance of the GML data parser.
- Jesus Cerquides contributed the chordal graph algorithms.
- Ben Edwards contributed tree generating functions, the rich club coefficient algorithm, the graph product functions, and a whole lot of other useful nuts and bolts.
- Jon Olav Vik contributed cycle finding algorithms.
- Hugh Brown improved the words.py example from the \(\mathrm{n}^{\wedge} 2\) algorithm.
- Ben Reilly contributed the shapefile reader and writer.
- Leo Lopes contributed the maximal independent set algorithm.
- Jordi Torrents contributed the bipartite clustering, bipartite node redundancy, square clustering, bipartite projection articulation point, and flow-based connectivity algorithms.
- Dheeraj M R contributed the distance-regular testing algorithm
- Franck Kalala contributed the subgraph_centrality and communicability algorithms
- Simon Knight improved the GraphML functions to handle yEd/yfiles data, and to handle types correctly.
- Conrad Lee contributed the k-clique community finding algorithm.
- Sérgio Nery Simões wrote the function for finding all simple paths, and all shortest paths.
- Robert King contributed union, disjoint union, compose, and intersection operators that work on lists of graphs.
- Nick Mancuso wrote the approximation algorithms for dominating set, edge dominating set, independent set, max clique, and min-weighted vertex cover.
- Brian Cloteaux contributed the linear-time graphicality tests and Havel-Hakimi graph generators
- Alejandro Weinstein contributed the directed Laplacian code
- Dustin Smith wrote the dictionary to numpy array function
- Mathieu Larose sped up the topological sort code
- Vincent Gauthier contributed the Katz centrality algorithm
- Sérgio Nery Simões developed the code for finding all simple paths

\section*{GLOSSARY}
dictionary A Python dictionary maps keys to values. Also known as "hashes", or "associative arrays". See http://docs.python.org/tutorial/datastructures.html\#dictionaries
ebunch An iteratable container of edge tuples like a list, iterator, or file.
edge Edges are either two-tuples of nodes ( \(u, v\) ) or three tuples of nodes with an edge attribute dictionary ( \(u, v, d i c t\) ).
edge attribute Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding an edge assigning to the G.edge \([\mathrm{u}][\mathrm{v}]\) attribute dictionary for the specified edge \(\mathrm{u}-\mathrm{v}\).
hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__() method), and can be compared to other objects (it needs an __eq_() or __cmp_() method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the hash value internally.

All of Python's immutable built-in objects are hashable, while no mutable containers (such as lists or dictionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal, and their hash value is their \(\operatorname{id}()\).

Definition from http://docs.python.org/glossary.html
nbunch An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an iterator, e.g. a list, set, graph, file, etc..
node A node can be any hashable Python object except None.
node attribute Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when adding a node or assigning to the G.node[ n\(]\) attribute dictionary for the specified node n .

NetworkX Reference, Release 1.8.1
[R126] Boppana, R., \& Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180-196. Springer. doi:10.1007/BF01994876
[R125] Boppana, R., \& Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180-196. Springer.
[R127] Vazirani, Vijay Approximation Algorithms (2001)
[R128] Boppana, R., \& Halldórsson, M. M. (1992). Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180-196. Springer.
[R129] Vazirani, Vijay Approximation Algorithms (2001)
[R130] Bar-Yehuda, R., \& Even, S. (1985). A local-ratio theorem for approximating the weighted vertex cover problem. Annals of Discrete Mathematics, 25, 27-46 http://www.cs.technion.ac.il/~reuven/PDF/vc_lr.pdf
[R134] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
[R135] Foster, J.G., Foster, D.V., Grassberger, P. \& Paczuski, M. Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
[R131] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
[R139] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67026126,2003
[R136] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67026126,2003
[R137] Foster, J.G., Foster, D.V., Grassberger, P. \& Paczuski, M. Edge direction and the structure of networks, PNAS 107, 10815-20 (2010).
[R133] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747-3752 (2004).
[R132] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747-3752 (2004).
[R138] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, "The architecture of complex weighted networks". PNAS 101 (11): 3747-3752 (2004).
[R149] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications.
[R147] Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64, 016132 (2001).
[R148] Borgatti, S.P. and Halgin, D. In press. Analyzing Affiliation Networks. In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications.
[R151] E. Estrada and J. A. Rodríguez-Velázquez, "Spectral measures of bipartivity in complex networks", PhysRev E 72, 046105 (2005)
[R144] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31-48.
[R143] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31-48.
[R145] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31-48.
[R146] Robins, G. and M. Alexander (2004). Small worlds among interlocking directors: Network structure and distance in bipartite graphs. Computational \& Mathematical Organization Theory 10(1), 69-94.
[R150] Latapy, Matthieu, Clémence Magnien, and Nathalie Del Vecchio (2008). Basic notions for the analysis of large two-mode networks. Social Networks 30(1), 31-48.
[R141] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
[R142] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
[R140] Borgatti, S.P. and Halgin, D. In press. "Analyzing Affiliation Networks". In Carrington, P. and Scott, J. (eds) The Sage Handbook of Social Network Analysis. Sage Publications. http://www.steveborgatti.com/papers/bhaffiliations.pdf
[R152] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj "Generalized Blockmodeling",Cambridge University Press, 2004.
[R157] Freeman, L.C., 1979. Centrality in networks: I. Conceptual clarification. Social Networks 1, 215-239. http://www.soc.ucsb.edu/faculty/friedkin/Syllabi/Soc146/Freeman78.PDF
[R154] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
[R155] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf
[R156] Ulrik Brandes and Christian Pich: Centrality Estimation in Large Networks. International Journal of Bifurcation and Chaos 17(7):2303-2318, 2007. http://www.inf.uni-konstanz.de/algo/publications/bp-celn-06.pdf
[R170] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
[R171] Ulrik Brandes: On Variants of Shortest-Path Betweenness Centrality and their Generic Computation. Social Networks 30(2):136-145, 2008. http://www.inf.uni-konstanz.de/algo/publications/b-vspbc-08.pdf
[R168] Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
[R169] Stephenson, K. and Zelen, M. Rethinking centrality: Methods and examples. Social Networks. Volume 11, Issue 1, March 1989, pp. 1-37 http://dx.doi.org/10.1016/0378-8733(89)90016-6
[R166] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
[R167] A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
[R172] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
[R173] A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54 (2005).
[R153] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
[R175] M. Newman, Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.
[R176] M. Newman, Networks: An Introduction. Oxford University Press, USA, 2010, p. 720.
[R158] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
[R165] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
[R161] Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730
[R162] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
[R163] Ernesto Estrada, Juan A. Rodriguez-Velazquez, "Subgraph centrality in complex networks", Physical Review E 71, 056103 (2005). http://arxiv.org/abs/cond-mat/0504730
[R164] Ernesto Estrada, Naomichi Hatano, "Communicability in complex networks", Phys. Rev. E 77, 036111 (2008). http://arxiv.org/abs/0707.0756
[R160] Ernesto Estrada, Desmond J. Higham, Naomichi Hatano, "Communicability Betweenness in Complex Networks" Physica A 388 (2009) 764-774. http://arxiv.org/abs/0905.4102
[R174] E. Estrada, Characterization of 3D molecular structure, Chem. Phys. Lett. 319, 713 (2000).
[R179] R. E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput., 13 (1984), pp. 566-579.
[R177] http://en.wikipedia.org/wiki/Tree_decomposition\#Treewidth
[R178] Learning Bounded Treewidth Bayesian Networks. Gal Elidan, Stephen Gould; JMLR, 9(Dec):2699-2731, 2008. http://jmlr.csail.mit.edu/papers/volume9/elidan08a/elidan08a.pdf
[R180] Bron, C. and Kerbosch, J. 1973. Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 9 (Sep. 1973), 575-577. http://portal.acm.org/citation.cfm?doid=362342.362367
[R181] Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi, The worst-case time complexity for generating all maximal cliques and computational experiments, Theoretical Computer Science, Volume 363, Issue 1, Computing and Combinatorics, 10th Annual International Conference on Computing and Combinatorics (COCOON 2004), 25 October 2006, Pages 28-42 http://dx.doi.org/10.1016/j.tcs.2006.06.015
[R182] F. Cazals, C. Karande, A note on the problem of reporting maximal cliques, Theoretical Computer Science, Volume 407, Issues 1-3, 6 November 2008, Pages 564-568, http://dx.doi.org/10.1016/j.tcs.2008.05.010
[R185] Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Physical Review E, 75027105 (2007). http://jponnela.com/web_documents/a9.pdf
[R183] Generalizations of the clustering coefficient to weighted complex networks by J. Saramäki, M. Kivelä, J.-P. Onnela, K. Kaski, and J. Kertész, Physical Review E, 75027105 (2007). http://jponnela.com/web_documents/a9.pdf
[R184] Marcus Kaiser, Mean clustering coefficients: the role of isolated nodes and leafs on clustering measures for small-world networks. http://arxiv.org/abs/0802.2512
[R186] Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127.
[R187] Gergely Palla, Imre Derényi, Illés Farkas1, and Tamás Vicsek, Uncovering the overlapping community structure of complex networks in nature and society Nature 435, 814-818, 2005, doi:10.1038/nature03607
[R193] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing 1(2):146-160, (1972).
[R194] On finding the strongly connected components in a directed graph. E. Nuutila and E. Soisalon-Soinen Information Processing Letters 49(1): 9-14, (1994)..
[R195] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing 1(2):146-160, (1972).
[R196] On finding the strongly connected components in a directed graph. E. Nuutila and E. Soisalon-Soinen Information Processing Letters 49(1): 9-14, (1994)..
[R192] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372-378. doi:10.1145/362248.362272
[R191] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372-378. doi:10.1145/362248.362272
[R189] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372-378. doi:10.1145/362248.362272
[R190] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372-378. doi:10.1145/362248.362272
[R188] Hopcroft, J.; Tarjan, R. (1973). "Efficient algorithms for graph manipulation". Communications of the ACM 16: 372-378. doi:10.1145/362248.362272
[R197] Beineke, L., O. Oellermann, and R. Pippert (2002). The average connectivity of a graph. Discrete mathematics 252(1-3), 31-45. http://www.sciencedirect.com/science/article/pii/S0012365X01001807
[R201] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and Erlebach, 'Network Analysis: Methodological Foundations', Lecture Notes in Computer Science, Volume 3418, Springer-Verlag, 2005. http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
[R202] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
[R199] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
[R198] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
[R205] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
[R204] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
[R203] Abdol-Hossein Esfahanian. Connectivity Algorithms. http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
[R206] An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003.
http://arxiv.org/abs/cs.DS/0310049
[R207] An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003. http://arxiv.org/abs/cs.DS/0310049
[R209] A model of Internet topology using k-shell decomposition Shai Carmi, Shlomo Havlin, Scott Kirkpatrick, Yuval Shavitt, and Eran Shir, PNAS July 3, 2007 vol. 104 no. 27 11150-11154 http://www.pnas.org/content/104/27/11150.full
[R208] k -core (bootstrap) percolation on complex networks: Critical phenomena and nonlocal effects, A. V. Goltsev, S. N. Dorogovtsev, and J. F. F. Mendes, Phys. Rev. E 73, 056101 (2006) http://link.aps.org/doi/10.1103/PhysRevE.73.056101
[R210] Paton, K. An algorithm for finding a fundamental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.
[R211] Finding all the elementary circuits of a directed graph. D. B. Johnson, SIAM Journal on Computing 4, no. 1, 77-84, 1975. http://dx.doi.org/10.1137/0204007
[R212] Enumerating the cycles of a digraph: a new preprocessing strategy. G. Loizou and P. Thanish, Information Sciences, v. 27, 163-182, 1982.
[R213] A search strategy for the elementary cycles of a directed graph. J.L. Szwarcfiter and P.E. Lauer, BIT NUMERICAL MATHEMATICS, v. 16, no. 2, 192-204, 1976.
[R215] Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998). http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/
[R214] Jarvis, J. P.; Shier, D. R. (1996), Graph-theoretic analysis of finite Markov chains, in Shier, D. R.; Wallenius, K. T., Applied Mathematical Modeling: A Multidisciplinary Approach, CRC Press.
[R218] Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance-Regular Graphs. New York: Springer-Verlag, 1989.
[R219] Weisstein, Eric W. "Distance-Regular Graph." http://mathworld.wolfram.com/Distance-RegularGraph.html
[R217] Weisstein, Eric W. "Intersection Array." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/IntersectionArray.html
[R216] Weisstein, Eric W. "Global Parameters." From MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/GlobalParameters.html
[R220] Fleury, "Deux problemes de geometrie de situation", Journal de mathematiques elementaires (1883), 257-261.
[R221] http://en.wikipedia.org/wiki/Eulerian_path
[R222] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973)
[R223] S. L. Hakimi. "On the realizability of a set of integers as degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506 (1962).
[R224] F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976).
[R227] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
[R225] A. Tripathi and S. Vijay. "A note on a theorem of Erdős \& Gallai", Discrete Mathematics, 265, pp. 417-420 (2003).
[R226] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992).
[R228] Luo, J.; Magee, C.L. (2011), Detecting evolving patterns of self-organizing networks by flow hierarchy measurement, Complexity, Volume 16 Issue 6 53-61. DOI: 10.1002/cplx. 20368 http://web.mit.edu/~cmagee/www/documents/28-DetectingEvolvingPatterns_FlowHierarchy.pdf
[R229] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, "An Improved Algorithm for Matching Large Graphs", 3rd IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition, Cuen, pp. 149-159, 2001. http://amalfi.dis.unina.it/graph/db/papers/vf-algorithm.pdf
[R236] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
[R237] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en\&doc=199966\&format=pdf
[R238] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
[R239] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en \& doc=199966\&format=pdf
[R240] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
[R241] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en\&doc=199966\&format=pdf
[R230] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
[R231] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.
[R232] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
[R233] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.
[R234] A. Langville and C. Meyer, "A survey of eigenvector methods of web information retrieval." http://citeseer.ist.psu.edu/713792.html
[R235] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-632, 1999. doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.
[R242] "Efficient Algorithms for Finding Maximum Matching in Graphs", Zvi Galil, ACM Computing Surveys, 1986.
[R243] Julian J. McAuley, Luciano da Fontoura Costa, and Tibério S. Caetano, "The rich-club phenomenon across complex network hierarchies", Applied Physics Letters Vol 91 Issue 8, August 2007. http://arxiv.org/abs/physics/0701290
[R244] R. Milo, N. Kashtan, S. Itzkovitz, M. E. J. Newman, U. Alon, "Uniform generation of random graphs with arbitrary degree sequences", 2006. http://arxiv.org/abs/cond-mat/0312028
[R245] R. Sedgewick, "Algorithms in C, Part 5: Graph Algorithms", Addison Wesley Professional, 3rd ed., 2001.
[R246] C. Gkantsidis and M. Mihail and E. Zegura, The Markov chain simulation method for generating connected power law random graphs, 2003. http://citeseer.ist.psu.edu/gkantsidis03markov.html
[R247] Ulrik Brandes, Sec. 3.6.2 in Network Analysis: Methodological Foundations, Springer, 2005. http://books.google.com/books?id=TTNhSm7HYrIC
[R280] Vladimir Batagelj and Ulrik Brandes, "Efficient generation of large random networks", Phys. Rev. E, 71, 036113, 2005.
[R281] 16. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
[R282] 5. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
[R277] Donald E. Knuth, The Art of Computer Programming, Volume 2/Seminumerical algorithms, Third Edition, Addison-Wesley, 1997.
[R278] 16. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
[R279] 5. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
[R275] 16. Erdős and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
[R276] 5. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
[R283] M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Physics Letters A, 263, 341, 1999. http://dx.doi.org/10.1016/S0375-9601(99)00757-4
[R287] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of small-world networks, Nature, 393, pp. 440-442, 1998.
[R285] A. Steger and N. Wormald, Generating random regular graphs quickly, Probability and Computing 8 (1999), 377-396, 1999. http://citeseer.ist.psu.edu/steger99generating.html
[R286] Jeong Han Kim and Van H. Vu, Generating random regular graphs, Proceedings of the thirty-fifth ACM symposium on Theory of computing, San Diego, CA, USA, pp 213-222, 2003. http://portal.acm.org/citation.cfm?id=780542.780576
[R274] A. L. Barabási and R. Albert "Emergence of scaling in random networks", Science 286, pp 509-512, 1999.
[R284] P. Holme and B. J. Kim, "Growing scale-free networks with tunable clustering", Phys. Rev. E, 65, 026107, 2002.
[R251] M.E.J. Newman, "The structure and function of complex networks", SIAM REVIEW 45-2, pp 167-256, 2003.
[R252] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J. Random graphs with arbitrary degree distributions and their applications Phys. Rev. E, 64, 026118 (2001)
[R254] Fan Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann. Combinatorics, 6, pp. 125-145, 2002.
[R255] Joel Miller and Aric Hagberg, Efficient generation of networks with given expected degrees, in Algorithms and Models for the Web-Graph (WAW 2011), Alan Frieze, Paul Horn, and Paweł Prałat (Eds), LNCS 6732, pp. 115-126, 2011.
[R256] Hakimi S., On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I, Journal of SIAM, 10(3), pp. 496-506 (1962)
[R257] Kleitman D.J. and Wang D.L. Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
[R253] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors Discrete Mathematics, 6(1), pp. 79-88 (1973)
[R258] Moshen Bayati, Jeong Han Kim, and Amin Saberi, A sequential algorithm for generating random graphs. Algorithmica, Volume 58, Number 4, 860-910, DOI: 10.1007/s00453-009-9340-1
[R272] J. C. Miller "Percolation and Epidemics on Random Clustered Graphs." Physical Review E, Rapid Communication (to appear).
[R273] M.E.J. Newman, "Random clustered networks". Physical Review Letters (to appear).
[R259] P. L. Krapivsky and S. Redner, Organization of Growing Random Networks, Phys. Rev. E, 63, 066123, 2001.
[R261] P. L. Krapivsky and S. Redner, Organization of Growing Random Networks, Phys. Rev. E, 63, 066123, 2001.
[R260] P. L. Krapivsky and S. Redner, Network Growth by Copying, Phys. Rev. E, 71, 036118, 2005k.\},
[R262] B. Bollob\{'a\}s, C. Borgs, J. Chayes, and O. Riordan, Directed scale-free graphs, Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, 132-139, 2003.
[R266] Penrose, Mathew, Random Geometric Graphs, Oxford Studies in Probability, 5, 2003.
[R263] Masuda, N., Miwa, H., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Physical Review E 71, 036108 (2005)
[R264] Milan Bradonjić, Aric Hagberg and Allon G. Percus, Giant component and connectivity in geographical threshold graphs, in Algorithms and Models for the Web-Graph (WAW 2007), Antony Bonato and Fan Chung (Eds), pp. 209-216, 2007
[R267] B. M. Waxman, Routing of multipoint connections. IEEE J. Select. Areas Commun. 6(9),(1988) 1617-1622.
[R265] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. Proc. 32nd ACM Symposium on Theory of Computing, 2000.
[R249] Jean-Loup Guillaume and Matthieu Latapy, Bipartite structure of all complex networks, Inf. Process. Lett. 90, 2004, pg. 215-221 http://dx.doi.org/10.1016/j.ipl.2004.03.007
[R250] Vladimir Batagelj and Ulrik Brandes, "Efficient generation of large random networks", Phys. Rev. E, 71, 036113, 2005.
[R270] K.B. Singer-Cohen, Random Intersection Graphs, 1995, PhD thesis, Johns Hopkins University
[R271] Fill, J. A., Scheinerman, E. R., and Singer-Cohen, K. B., Random intersection graphs when \(m=!(n)\) : An equivalence theorem relating the evolution of the \(g(n, m, p)\) and \(g(n, p)\) models. Random Struct. Algorithms 16, 2 (2000), 156-176.
[R269] Godehardt, E., and Jaworski, J. Two models of random intersection graphs and their applications. Electronic Notes in Discrete Mathematics 10 (2001), 129-132.
[R268] Nikoletseas, S. E., Raptopoulos, C., and Spirakis, P. G. The existence and efficient construction of large independent sets in general random intersection graphs. In ICALP (2004), J. D' 1 az, J. Karhum"aki, A. Lepist"o, and D. Sannella, Eds., vol. 3142 of Lecture Notes in Computer Science, Springer, pp. 1029-1040.
[R290] Zachary W. An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33, 452-473, (1977).
[R291] Data file from: http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm
[R288] A. Davis, Gardner, B. B., Gardner, M. R., 1941. Deep South. University of Chicago Press, Chicago, IL.
[R289] Ronald L. Breiger and Philippa E. Pattison Cumulated social roles: The duality of persons and their algebras, 1 Social Networks, Volume 8, Issue 3, September 1986, Pages 215-256
[R292] Gil Strang, Network applications: A = incidence matrix, http://academicearth.org/lectures/network-applications-incidence-matrix
[R294] Fan Chung-Graham, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, Number 92, 1997.
[R295] Steve Butler, Interlacing For Weighted Graphs Using The Normalized Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98, March 2007.
[R293] Fan Chung (2005). Laplacians and the Cheeger inequality for directed graphs. Annals of Combinatorics, 9(1), 2005
[R248] Scipy Dev. References, "Sparse Matrices", http://docs.scipy.org/doc/scipy/reference/sparse.html
[R296] GEXF graph format, http://gexf.net/format/
[R297] GEXF graph format, http://gexf.net/format/
[R298] http://docs.python.org/library/pickle.html
[R299] http://docs.python.org/library/pickle.html
[R301] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
[R300] http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html
[R304] http://www.yaml.org
[R305] http://www.yaml.org
[R302] http://en.wikipedia.org/wiki/Shapefile
[R303] http://en.wikipedia.org/wiki/Shapefile

NetworkX Reference, Release 1.8.1

\section*{PYTHON MODULE INDEX}

\section*{a}
networkx.algorithms.approximation, 127
networkx.algorithms.components.connected, 191
networkx.algorithms.approximation.clique, networkx.algorithms.components.strongly_connected, 127

194
 128


129
networkx.algorithms.approximation.matching, 130 networkx.algorithms.connectivity.cuts,
networkx.algorithms.approximation.ramsey, 210 131
networkx.algorithms.core, 214
networkx.algorithms.approximation.vertexnetwexkx.algorithms.cycles, 218 131
networkx.algorithms.assortativity, 132
networkx.algorithms.bipartite, 141
networkx.algorithms.bipartite.basic, 142 networkx.algorithms.distance_regular,
networkx.algorithms.bipartite.centrality, 158
networkx.algorithms.bipartite.cluster, 153
networkx.algorithms.bipartite.projection 146
networkx.algorithms.bipartite.redundancy, networkx.algorithms.isomorphism, 245 157
networkx.algorithms.bipartite.spectral, 152
networkx.algorithms.block, 160
networkx.algorithms.boundary, 161
networkx.algorithms.centrality, 163
networkx.algorithms.chordal.chordal_alg, 181
networkx.algorithms.clique, 185
networkx.algorithms.cluster, 187
networkx.algorithms.community, 191
networkx.algorithms.community.kclique, 191
networkx.algorithms.components, 191
networkx.algorithms.dag, 219
networkx.algorithms.distance_measures, 222
networkx.algorithms.euler, 226
networkx.algorithms.flow, 227
networkx.algorithms.graphical, 239
networkx.algorithms.hierarchy, 243
networkx.algorithms.isolate, 244
networkx.algorithms.isomorphism.isomorphvf2, 247
networkx.algorithms.link_analysis.hits_alg, 261
networkx.algorithms.link_analysis.pagerank_alg, 258
networkx.algorithms.matching, 264
networkx.algorithms.mis, 265
networkx.algorithms.mst, 266
networkx.algorithms.operators.all, 271
networkx.algorithms.operators.binary, 268
networkx.algorithms.operators.product, 273 198
networkx.algorithms.components.attractingetworkx.algorithms.operators.unary, 268
networkx.algorithms.richclub, 275
networkx.algorithms.components.biconnecteatworkx.algorithms.shortest_paths.astar, 200 293
```

networkx.algorithms.shortest_paths.densel

```
    291 networkx.readwrite.adjlist, 369
networkx.algorithms.shortest_paths.generíntworkx.readwrite.edgelist, 376
    276 networkx.readwrite.gexf, 383
networkx.algorithms.shortest_paths.unweiqhêdrkx.readwrite.gml, 385
    280 networkx.readwrite.gpickle, 388
networkx.algorithms.shortest_paths.weightetworkx.readwrite.graphml, 389
    283 networkx.readwrite.json_graph, 391
networkx.algorithms.simple_paths, 294 networkx.readwrite.leda, 397
networkx.algorithms.swap, 295 networkx.readwrite.multiline_adjlist,
networkx.algorithms.traversal.breadth_first_seajrgh,
    298 networkx.readwrite.nx_shp, 402
networkx.algorithms.traversal.depth_firsheefeffex. readwrite.nx_yaml, 398
        297
networkx.algorithms.vitality, 298
networkx.readwrite.pajek, 400
    networkx.readwrite.sparsegraph6, 399

\section*{C}
networkx.classes.function, 301
networkx.convert, 361

\section*{d}
networkx.drawing.layout, 418
networkx.drawing.nx_agraph, 413
networkx.drawing.nx_pydot, 416
networkx.drawing.nx_pylab, 405

\section*{e}
networkx.exception, 423

\section*{g}
networkx.generators.atlas, 309
networkx.generators.bipartite, 341
networkx.generators.classic, 309
networkx.generators.degree_seq, 327
networkx.generators.directed, 334
networkx.generators.ego, 346
networkx.generators.geometric, 337
networkx.generators.hybrid, 341
networkx.generators.intersection, 347
networkx.generators.line, 345
networkx.generators.random_clustered,
333
networkx.generators.random_graphs, 318
networkx.generators.small, 314
networkx.generators.social, 349
networkx.generators.stochastic, 347

\section*{।}
networkx.linalg.attrmatrix, 356
networkx.linalg.graphmatrix, 351
networkx.linalg.laplacianmatrix, 352
networkx.linalg.spectrum, 355

\section*{Symbols}
__contains__() (DiGraph method), 56
__contains__() (Graph method), 27
__contains__() (MultiDiGraph method), 116
__contains__() (MultiGraph method), 86
__getitem__() (DiGraph method), 52
__getitem_() (Graph method), 25
__getitem_() (MultiDiGraph method), 113
__getitem__() (MultiGraph method), 84
__init__() (DiGraph method), 38
__init__() (DiGraphMatcher method), 251
__init__() (Graph method), 12
__init__() (GraphMatcher method), 249
__init__() (MultiDiGraph method), 97
__init__() (MultiGraph method), 69
__iter__() (DiGraph method), 48
__iter__() (Graph method), 21
__iter__() (MultiDiGraph method), 108
__iter__() (MultiGraph method), 80
__len__() (DiGraph method), 57
__len__() (Graph method), 29
__len__() (MultiDiGraph method), 118
__len__() (MultiGraph method), 88

\section*{A}
add_cycle() (DiGraph method), 45 add_cycle() (Graph method), 19 add_cycle() (MultiDiGraph method), 105
add_cycle() (MultiGraph method), 77
add_edge() (DiGraph method), 41
add_edge() (Graph method), 15
add_edge() (MultiDiGraph method), 101
add_edge() (MultiGraph method), 72
add_edges_from() (DiGraph method), 42
add_edges_from() (Graph method), 16
add_edges_from() (MultiDiGraph method), 102
add_edges_from() (MultiGraph method), 73
add_node() (DiGraph method), 39
add_node() (Graph method), 12
add_node() (MultiDiGraph method), 98
add_node() (MultiGraph method), 69
add_nodes_from() (DiGraph method), 39
add_nodes_from() (Graph method), 13
add_nodes_from() (MultiDiGraph method), 99
add_nodes_from() (MultiGraph method), 70
add_path() (DiGraph method), 45
add_path() (Graph method), 19
add_path() (MultiDiGraph method), 105
add_path() (MultiGraph method), 76
add_star() (DiGraph method), 44
add_star() (Graph method), 18
add_star() (MultiDiGraph method), 104
add_star() (MultiGraph method), 76
add_weighted_edges_from() (DiGraph method), 43
add_weighted_edges_from() (Graph method), 17
add_weighted_edges_from() (MultiDiGraph method), 102
add_weighted_edges_from() (MultiGraph method), 74
adjacency_data() (in module networkx.readwrite.json_graph), 392
adjacency_graph() (in module networkx.readwrite.json_graph), 393
adjacency_iter() (DiGraph method), 54
adjacency_iter() (Graph method), 26
adjacency_iter() (MultiDiGraph method), 114
adjacency_iter() (MultiGraph method), 85
adjacency_list() (DiGraph method), 53
adjacency_list() (Graph method), 25
adjacency_list() (MultiDiGraph method), 114
adjacency_list() (MultiGraph method), 84
adjacency_matrix() (in module networkx.linalg.graphmatrix), 351
adjacency_spectrum() (in module networkx.linalg.spectrum), 355
all_neighbors() (in module networkx.classes.function), 304
all_pairs_dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted), 286
all_pairs_dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted), 287
all_pairs_node_connectivity_matrix() (in module networkx.algorithms.connectivity.connectivity),

210
all_pairs_shortest_path() (in module networkx.algorithms.shortest_paths.unweighted), 282
all_pairs_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted), 282
all_shortest_paths() (in module networkx.algorithms.shortest_paths.generic), 278
all_simple_paths() (in module networkx.algorithms.simple_paths), 294
ancestors() (in module networkx.algorithms.dag), 220
approximate_current_flow_betweenness_centrality() (in module networkx.algorithms.centrality), 170
articulation_points() (in module networkx.algorithms.components.biconnected), 204
astar_path() (in module networkx.algorithms.shortest_paths.astar), 293
astar_path_length() (in module networkx.algorithms.shortest_paths.astar), 294
attr_matrix() (in module networkx.linalg.attrmatrix), 356
attr_sparse_matrix() (in module networkx.linalg.attrmatrix), 358
attracting_component_subgraphs() (in module networkx.algorithms.components.attracting), 199
attracting_components() (in module networkx.algorithms.components.attracting), 199
attribute_assortativity_coefficient() (in module workx.algorithms.assortativity), 133
attribute_mixing_dict() (in module networkx.algorithms.assortativity), 140
attribute_mixing_matrix() (in module networkx.algorithms.assortativity), 139
authority_matrix() (in module networkx.algorithms.link_analysis.hits_alg), 264
average_clustering() (in module networkx.algorithms.bipartite.cluster), 154
average_clustering() (in module workx.algorithms.cluster), 189
average_degree_connectivity() (in module networkx.algorithms.assortativity), 137
average_neighbor_degree() (in module networkx.algorithms.assortativity), 135
average_node_connectivity() (in module networkx.algorithms.connectivity.connectivity), 205
average_shortest_path_length() (in module networkx.algorithms.shortest_paths.generic), 280

B
balanced_tree() (in module networkx.generators.classic), 310
barabasi_albert_graph() (in module networkx.generators.random_graphs), 324
barbell_graph() (in module networkx.generators.classic), 310
bellman_ford() (in module networkx.algorithms.shortest_paths.weighted), 290
betweenness_centrality () (in module networkx.algorithms.bipartite.centrality), 160
betweenness_centrality() (in module networkx.algorithms.centrality), 165
bfs_edges() (in module networkx.algorithms.traversal.breadth_first_search), 298
bfs_predecessors() (in module networkx.algorithms.traversal.breadth_first_search), 298
bfs_successors() (in module networkx.algorithms.traversal.breadth_first_search), 298
bfs_tree() (in module networkx.algorithms.traversal.breadth_first_search), 298
biadjacency_matrix() (in module networkx.algorithms.bipartite.basic), 145
biconnected_component_edges() (in module networkx.algorithms.components.biconnected), 202
biconnected_component_subgraphs() (in module networkx.algorithms.components.biconnected), 203
biconnected_components() (in module networkx.algorithms.components.biconnected), 201
bidirectional_dijkstra() (in module networkx.algorithms.shortest_paths.weighted), 288
binomial_graph() (in module networkx.generators.random_graphs), 321
bipartite_alternating_havel_hakimi_graph() (in module networkx.generators.bipartite), 343
bipartite_configuration_model() (in module networkx.generators.bipartite), 341
bipartite_gnmk_random_graph() (in module networkx.generators.bipartite), 345
bipartite_havel_hakimi_graph() (in module networkx.generators.bipartite), 342
bipartite_preferential_attachment_graph() (in module networkx.generators.bipartite), 344
bipartite_random_graph() (in module networkx.generators.bipartite), 344
bipartite_reverse_havel_hakimi_graph() (in module networkx.generators.bipartite), 343
blockmodel() (in module networkx.algorithms.block), 161
bull_graph() (in module networkx.generators.small), 315

\section*{C}
candidate_pairs_iter() (DiGraphMatcher method), 252
candidate_pairs_iter() (GraphMatcher method), 250
cartesian_product() (in module networkx.algorithms.operators.product), 273
categorical_edge_match() (in module networkx.algorithms.isomorphism), 253
categorical_multiedge_match() (in module networkx.algorithms.isomorphism), 254
categorical_node_match() (in module networkx.algorithms.isomorphism), 253
center() (in module networkx.algorithms.distance_measures), 222
chordal_graph_cliques() (in module networkx.algorithms.chordal.chordal_alg), 182
chordal_graph_treewidth() (in module networkx.algorithms.chordal.chordal_alg), 183
chvatal_graph() (in module networkx.generators.small), 315
circular_ladder_graph() (in module networkx.generators.classic), 311
circular_layout() (in module networkx.drawing.layout), 419
clear() (DiGraph method), 46
clear() (Graph method), 20
clear() (MultiDiGraph method), 106
clear() (MultiGraph method), 77
clique_removal() (in module networkx.algorithms.approximation.clique), 128
cliques_containing_node() (in module networkx.algorithms.clique), 187
closeness_centrality() (in module networkx.algorithms.bipartite.centrality), 158
closeness_centrality() (in module networkx.algorithms.centrality), 164
closeness_vitality() (in module networkx.algorithms.vitality), 298
clustering() (in module networkx.algorithms.bipartite.cluster), 153
clustering() (in module networkx.algorithms.cluster), 188 collaboration_weighted_projected_graph() (in module networkx.algorithms.bipartite.projection), 148
color() (in module networkx.algorithms.bipartite.basic), 143
communicability() (in module workx.algorithms.centrality), 175
communicability_betweenness_centrality() (in module networkx.algorithms.centrality), 179
communicability_centrality() (in module networkx.algorithms.centrality), 177
communicability_centrality_exp() (in module networkx.algorithms.centrality), 178
communicability_exp() (in module networkx.algorithms.centrality), 176
complement() (in module networkx.algorithms.operators.unary), 268
complete_bipartite_graph() (in module networkx.generators.classic), 311
complete_graph() (in module networkx.generators.classic), 311
compose() (in module networkx.algorithms.operators.binary), 269
compose_all() (in module networkx.algorithms.operators.all), 271
condensation() (in module networkx.algorithms.components.strongly_connected), 197
configuration_model() (in module networkx.generators.degree_seq), 327
connected_component_subgraphs() (in module networkx.algorithms.components.connected), 193
connected_components() (in module networkx.algorithms.components.connected), 193
connected_double_edge_swap() (in module networkx.algorithms.swap), 296
connected_watts_strogatz_graph() (in module networkx.generators.random_graphs), 323
copy() (DiGraph method), 63
copy() (Graph method), 33
copy() (MultiDiGraph method), 124
copy() (MultiGraph method), 92
core_number() (in module networkx.algorithms.core), 214
cost_of_flow() (in module networkx.algorithms.flow), 237
could_be_isomorphic() (in module networkx.algorithms.isomorphism), 246
create_degree_sequence() (in module networkx.utils.random_sequence), 427
create_empty_copy() (in module networkx.classes.function), 302
cubical_graph() (in module networkx.generators.small), 315
cumulative_distribution() (in module networkx.utils.random_sequence), 428
cumulative_sum() (in module networkx.utils.misc), 426 current_flow_betweenness_centrality() (in module networkx.algorithms.centrality), 168
current_flow_closeness_centrality() (in module networkx.algorithms.centrality), 167
cycle_basis() (in module networkx.algorithms.cycles), 218
cycle_graph() (in module networkx.generators.classic), 311

\section*{D}
davis_southern_women_graph() (in module networkx.generators.social), 349
default_opener() (in module networkx.utils.misc), 426
degree() (DiGraph method), 57
degree() (Graph method), 29
degree() (in module networkx.classes.function), 301
degree() (MultiDiGraph method), 118
degree() (MultiGraph method), 88
degree_assortativity_coefficient() (in module networkx.algorithms.assortativity), 132
degree_centrality() (in module networkx.algorithms.bipartite.centrality), 159
degree_centrality() (in module networkx.algorithms.centrality), 163
degree_histogram() (in module networkx.classes.function), 301
degree_iter() (DiGraph method), 58
degree_iter() (Graph method), 30
degree_iter() (MultiDiGraph method), 118
degree_iter() (MultiGraph method), 89
degree_mixing_dict() (in module networkx.algorithms.assortativity), 140
degree_mixing_matrix() (in module networkx.algorithms.assortativity), 139
degree_pearson_correlation_coefficient() (in module networkx.algorithms.assortativity), 134
degree_sequence_tree() (in module workx.generators.degree_seq), 332
degrees() (in module workx.algorithms.bipartite.basic), 145
dense_gnm_random_graph() (in module workx.generators.random_graphs), 320
density() (in module workx.algorithms.bipartite.basic), 144
density() (in module networkx.classes.function), 301
desargues_graph() (in module networkx.generators.small), 316
descendants() (in module networkx.algorithms.dag), 220
dfs_edges() (in module networkx.algorithms.traversal.depth_first_search), 297
dfs_labeled_edges() (in module networkx.algorithms.traversal.depth_first_search), 298
dfs_postorder_nodes() (in module networkx.algorithms.traversal.depth_first_search),

297
dfs_predecessors() (in module networkx.algorithms.traversal.depth_first_search), 297
dfs_preorder_nodes() (in module networkx.algorithms.traversal.depth_first_search), 297
dfs_successors() (in module networkx.algorithms.traversal.depth_first_search), 297
dfs_tree() (in module networkx.algorithms.traversal.depth_first_search), 297
diameter() (in module networkx.algorithms.distance_measures), 223
diamond_graph() (in module networkx.generators.small), 316
dictionary, 437
difference() (in module networkx.algorithms.operators.binary), 271
DiGraph() (in module networkx), 35
dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted), 284
dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted), 284
dijkstra_predecessor_and_distance() (in module networkx.algorithms.shortest_paths.weighted), 289
directed_configuration_model() (in module networkx.generators.degree_seq), 329
directed_havel_hakimi_graph() (in module networkx.generators.degree_seq), 331
net- directed_laplacian_matrix() (in module networkx.linalg.laplacianmatrix), 354
net- discrete_sequence() (in module networkx.utils.random_sequence), 428
net- disjoint_union() (in module networkx.algorithms.operators.binary), 270
net- disjoint_union_all() (in module networkx.algorithms.operators.all), 272
dodecahedral_graph() (in module networkx.generators.small), 316
dorogovtsev_goltsev_mendes_graph() (in module networkx.generators.classic), 311
double_edge_swap() (in module networkx.algorithms.swap), 295
draw() (in module networkx.drawing.nx_pylab), 405
draw_circular() (in module networkx.drawing.nx_pylab), 413
draw_graphviz() (in module networkx.drawing.nx_pylab), 413
draw_networkx() (in module net-
workx.drawing.nx_pylab), 406
draw_networkx_edge_labels() (in module networkx.drawing.nx_pylab), 411
draw_networkx_edges() (in module net-
workx.drawing.nx_pylab), 409
draw_networkx_labels() (in module networkx.drawing.nx_pylab), 411
draw_networkx_nodes() (in module networkx.drawing.nx_pylab), 408
draw_random() (in module networkx.drawing.nx_pylab), 413
draw_shell() (in module networkx.drawing.nx_pylab), 413
draw_spectral() (in module networkx.drawing.nx_pylab), 413
draw_spring() (in module networkx.drawing.nx_pylab), 413
dump (in module networkx.readwrite.json_graph), 396
dumps (in module networkx.readwrite.json_graph), 395

\section*{E}
ebunch, 437
eccentricity() (in module networkx.algorithms.distance_measures), 223
edge, 437
edge attribute, 437
edge_betweenness_centrality() (in module networkx.algorithms.centrality), 166
edge_boundary() (in module networkx.algorithms.boundary), 162
edge_connectivity() (in module networkx.algorithms.connectivity.connectivity), 209
edge_current_flow_betweenness_centrality() (in module networkx.algorithms.centrality), 169
edge_load() (in module networkx.algorithms.centrality), 181
edges() (DiGraph method), 48
edges() (Graph method), 22
edges() (in module networkx.classes.function), 305
edges() (MultiDiGraph method), 108
edges() (MultiGraph method), 80
edges_iter() (DiGraph method), 49
edges_iter() (Graph method), 22
edges_iter() (in module networkx.classes.function), 305
edges_iter() (MultiDiGraph method), 109
edges_iter() (MultiGraph method), 81
ego_graph() (in module networkx.generators.ego), 346
eigenvector_centrality() (in module networkx.algorithms.centrality), 171
eigenvector_centrality_numpy() (in module networkx.algorithms.centrality), 172
empty_graph() (in module networkx.generators.classic), 312
erdos_renyi_graph() (in module networkx.generators.random_graphs), 321
estrada_index() (in module networkx.algorithms.centrality), 180
eulerian_circuit() (in module networkx.algorithms.euler), 226
expected_degree_graph() (in module networkx.generators.degree_seq), 330

F
fast_could_be_isomorphic() (in module networkx.algorithms.isomorphism), 247
fast_gnp_random_graph() (in module networkx.generators.random_graphs), 318
faster_could_be_isomorphic() (in module networkx.algorithms.isomorphism), 247
find_cliques() (in module networkx.algorithms.clique), 185
find_induced_nodes() (in module networkx.algorithms.chordal.chordal_alg), 184
flatten() (in module networkx.utils.misc), 425
florentine_families_graph() (in module networkx.generators.social), 350
flow_hierarchy() (in module networkx.algorithms.hierarchy), 243
floyd_warshall() (in module networkx.algorithms.shortest_paths.dense), 291
floyd_warshall_numpy() (in module networkx.algorithms.shortest_paths.dense), 292
floyd_warshall_predecessor_and_distance() (in module networkx.algorithms.shortest_paths.dense), 292
ford_fulkerson() (in module networkx.algorithms.flow), 229
ford_fulkerson_flow() (in module networkx.algorithms.flow), 230
ford_fulkerson_flow_and_auxiliary() (in module networkx.algorithms.flow), 231
freeze() (in module networkx.classes.function), 307
from_agraph() (in module networkx.drawing.nx_agraph), 414
from_dict_of_dicts() (in module networkx.convert), 362
from_dict_of_lists() (in module networkx.convert), 363
from_edgelist() (in module networkx.convert), 364
from_numpy_matrix() (in module networkx.convert), 366
from_pydot() (in module networkx.drawing.nx_pydot), 417
from_scipy_sparse_matrix() (in module networkx.convert), 368
frucht_graph() (in module networkx.generators.small), 316

\section*{G}
general_random_intersection_graph() (in module networkx.generators.intersection), 349
generate_adjlist() (in module networkx.readwrite.adjlist), 372
generate_edgelist() (in module networkx.readwrite.edgelist), 381
generate_gml() (in module networkx.readwrite.gml), 387 generate_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 376
generate_unique_node() (in module networkx.utils.misc), 426
generic_edge_match() (in module networkx.algorithms.isomorphism), 256
generic_multiedge_match() (in module
workx.algorithms.isomorphism), 257
generic_node_match() (in module workx.algorithms.isomorphism), 256
generic_weighted_projected_graph() (in module networkx.algorithms.bipartite.projection), 150
geographical_threshold_graph() (in module networkx.generators.geometric), 338
get_edge_attributes() (in module networkx.classes.function), 307
get_edge_data() (DiGraph method), 51
get_edge_data() (Graph method), 23
get_edge_data() (MultiDiGraph method), 112
get_edge_data() (MultiGraph method), 82
get_node_attributes() (in module net-
workx.classes.function), 306
global_parameters() (in module networkx.algorithms.distance_regular), 225
gn_graph() (in module networkx.generators.directed), 334
gnc_graph() (in module networkx.generators.directed), 336
gnm_random_graph() (in module networkx.generators.random_graphs), 320
gnp_random_graph() (in module networkx.generators.random_graphs), 319
gnr_graph() (in module networkx.generators.directed), 335
google_matrix() (in module networkx.algorithms.link_analysis.pagerank_alg), 261
Graph() (in module networkx), 9
graph_atlas_g() (in module networkx.generators.atlas), 309
graph_clique_number() (in module networkx.algorithms.clique), 186
graph_number_of_cliques() (in module workx.algorithms.clique), 186
graphviz_layout() (in module workx.drawing.nx_agraph), 415
graphviz_layout() (in module networkx.drawing.nx_pydot), 418
grid_2d_graph() (in module networkx.generators.classic), 312
grid_graph() (in module networkx.generators.classic), 312

\section*{H}
has_edge() (DiGraph method), 56
has_edge() (Graph method), 28
has_edge() (MultiDiGraph method), 116
has_edge() (MultiGraph method), 87
has_node() (DiGraph method), 55
has_node() (Graph method), 27
net- has_node() (MultiDiGraph method), 116
has_node() (MultiGraph method), 86
net- has_path() (in module networkx.algorithms.shortest_paths.generic), 280
hashable, 437
havel_hakimi_graph() (in module networkx.generators.degree_seq), 331
heawood_graph() (in module networkx.generators.small), 316
hits() (in module networkx.algorithms.link_analysis.hits_alg), 262
hits_numpy() (in module networkx.algorithms.link_analysis.hits_alg), 263
hits_scipy() (in module networkx.algorithms.link_analysis.hits_alg), 263
house_graph() (in module networkx.generators.small), 316
house_x_graph() (in module networkx.generators.small), 316
hub_matrix() (in module networkx.algorithms.link_analysis.hits_alg), 264
hypercube_graph() (in module networkx.generators.classic), 312
I
icosahedral_graph() (in module networkx.generators.small), 316
in_degree() (DiGraph method), 58
in_degree() (MultiDiGraph method), 119
in_degree_centrality() (in module networkx.algorithms.centrality), 163
net- in_degree_iter() (DiGraph method), 59
in_degree_iter() (MultiDiGraph method), 120
net- in_edges() (DiGraph method), 51
in_edges() (MultiDiGraph method), 111
in_edges_iter() (DiGraph method), 51
in_edges_iter() (MultiDiGraph method), 111
incidence_matrix() (in module workx.linalg.graphmatrix), 352
\(\operatorname{info}()\) (in module networkx.classes.function), 302
initialize() (DiGraphMatcher method), 251
initialize() (GraphMatcher method), 250
intersection() (in module workx.algorithms.operators.binary), 270
intersection_all() (in module workx.algorithms.operators.all), 273
intersection_array() (in module workx.algorithms.distance_regular), 225
is_aperiodic() (in module networkx.algorithms.dag), 222 is_attracting_component() (in module networkx.algorithms.components.attracting), 198
is_biconnected() (in module networkx.algorithms.components.biconnected), 200
is_bipartite() (in module networkx.algorithms.bipartite.basic), 142
is_bipartite_node_set() (in module workx.algorithms.bipartite.basic), 143
is_chordal() (in module networkx.algorithms.chordal.chordal_alg), 182
is_connected() (in module networkx.algorithms.components.connected), 192
is_digraphical() (in module networkx.algorithms.graphical), 240
is_directed() (in module networkx.classes.function), 302
is_directed_acyclic_graph() (in module networkx.algorithms.dag), 221
is_distance_regular() (in module networkx.algorithms.distance_regular), 224
is_eulerian() (in module networkx.algorithms.euler), 226
is_frozen() (in module networkx.classes.function), 308
is_graphical() (in module networkx.algorithms.graphical), 239
is_isolate() (in module networkx.algorithms.isolate), 244 is_isomorphic() (DiGraphMatcher method), 252
is_isomorphic() (GraphMatcher method), 250
is_isomorphic() (in module workx.algorithms.isomorphism), 245
is_kl_connected() (in module networkx.generators.hybrid), 341
is_list_of_ints() (in module networkx.utils.misc), 426
is_multigraphical() (in module networkx.algorithms.graphical), 241
is_pseudographical() (in module networkx.algorithms.graphical), 241
is_string_like() (in module networkx.utils.misc), 425
is_strongly_connected() (in module net-
workx.algorithms.components.strongly_connected), 194
net- is_valid_degree_sequence_erdos_gallai() (in module networkx.algorithms.graphical), 242
is_valid_degree_sequence_havel_hakimi() (in module networkx.algorithms.graphical), 241
is_weakly_connected() (in module networkx.algorithms.components.weakly_connected), 197
net- isolates() (in module networkx.algorithms.isolate), 244
isomorphisms_iter() (DiGraphMatcher method), 252
isomorphisms_iter() (GraphMatcher method), 250
iterable() (in module networkx.utils.misc), 425
K
k_clique_communities() (in module networkx.algorithms.community.kclique), 191
k_core() (in module networkx.algorithms.core), 215
k_corona() (in module networkx.algorithms.core), 217
k_crust() (in module networkx.algorithms.core), 216
k_nearest_neighbors() (in module networkx.algorithms.assortativity), 138
k_random_intersection_graph() (in module networkx.generators.intersection), 348
k_shell() (in module networkx.algorithms.core), 216
karate_club_graph() (in module networkx.generators.social), 349
katz_centrality() (in module networkx.algorithms.centrality), 172
katz_centrality_numpy() (in module networkx.algorithms.centrality), 174
kl_connected_subgraph() (in module networkx.generators.hybrid), 341
kosaraju_strongly_connected_components()
(in module net- workx.algorithms.components.strongly_connected), 196
krackhardt_kite_graph() (in module networkx.generators.small), 317

\section*{\(L\)}
ladder_graph() (in module networkx.generators.classic), 313
laplacian_matrix() (in module networkx.linalg.laplacianmatrix), 353
laplacian_spectrum() (in module networkx.linalg.spectrum), 355
latapy_clustering() (in module networkx.algorithms.bipartite.cluster), 155
LCF_graph() (in module networkx.generators.small), 315 lexicographic_product() (in module networkx.algorithms.operators.product), 274
line_graph() (in module networkx.generators.line), 346
load (in module networkx.readwrite.json_graph), 396
load_centrality() (in module net- minimum_edge_cut() (in module networkx.algorithms.centrality), 181
loads (in module networkx.readwrite.json_graph), 395
local_edge_connectivity() (in module networkx.algorithms.connectivity.connectivity), 208
local_node_connectivity() (in module networkx.algorithms.connectivity.connectivity), 206
lollipop_graph() (in module networkx.generators.classic), 313

\section*{M}
make_clique_bipartite() (in module networkx.algorithms.clique), 186
make_max_clique_graph() (in module
networkx.algorithms.clique), 185
make_small_graph() (in module workx.generators.small), 314
make_str() (in module networkx.utils.misc), 426
match() (DiGraphMatcher method), 252
match() (GraphMatcher method), 250
max_clique() (in module networkx.algorithms.approximation.clique), 127
max_flow() (in module networkx.algorithms.flow), 227
max_flow_min_cost() (in module networkx.algorithms.flow), 238
max_weight_matching() (in module
networkx.algorithms.matching), 265
net-
minimum_node_cut() (in module net
workx.algorithms.connectivity.cuts), 211
minimum_spanning_edges() (in module networkx.algorithms.mst), 267
minimum_spanning_tree() (in module networkx.algorithms.mst), 266
minimum_st_edge_cut() (in module networkx.algorithms.connectivity.cuts), 212
minimum_st_node_cut() (in module networkx.algorithms.connectivity.cuts), 210
moebius_kantor_graph() (in module networkx.generators.small), 317
MultiDiGraph() (in module networkx), 95
net- MultiGraph() (in module networkx), 66
N
navigable_small_world_graph() (in module networkx.generators.geometric), 340
nbunch, 437
nbunch_iter() (DiGraph method), 54
nbunch_iter() (Graph method), 26
nbunch_iter() (MultiDiGraph method), 115
nbunch_iter() (MultiGraph method), 85
negative_edge_cycle() (in module networkx.algorithms.shortest_paths.weighted), 291
neighbors() (DiGraph method), 52
neighbors() (Graph method), 24
maximal_independent_set() (in module networkx.algorithms.mis), 266
maximal_matching() (in module net- neighbors_iter() (DiGraph method), 52 workx.algorithms.matching), 264
maximum_independent_set() (in module net- neighbors_iter() (MultiDiGraph method), 113 workx.algorithms.approximation.independent_setheighbors_iter() (MultiGraph method), 83 129
min_cost_flow() (in module networkx.algorithms.flow), 236
min_cost_flow_cost() (in module networkx.algorithms.flow), 235
min_cut() (in module networkx.algorithms.flow), 228
min_edge_dominating_set() (in module net- networkx.algorithms.approximation.independent_set workx.algorithms.approximation.dominating_set),
network_simplex() (in module networkx.algorithms.flow), 233
networkx.algorithms.approximation (module), 127
networkx.algorithms.approximation.clique (module), 127
networkx.algorithms.approximation.dominating_set (module), 128
(module), 129
networkx.algorithms.approximation.matching (module),
min_maximal_matching() (in module networkx.algorithms.approximation.matching), 130
min_weighted_dominating_set() (in module net- networkx.algorithms.approximation.vertex_cover (modworkx.algorithms.approximation.dominating_set), 128
min_weighted_vertex_cover() (in module networkx.algorithms.approximation.vertex_cover), 131

130
networkx.algorithms.approximation.ramsey (module), 131
ule), 131
networkx.algorithms.assortativity (module), 132
networkx.algorithms.bipartite (module), 141
networkx.algorithms.bipartite.basic (module), 142
networkx.algorithms.bipartite.centrality (module), 158
networkx.algorithms.bipartite.cluster (module), 153 networkx.algorithms.bipartite.projection (module), 146 networkx.algorithms.bipartite.redundancy (module), 157 networkx.algorithms.bipartite.spectral (module), 152 networkx.algorithms.block (module), 160 networkx.algorithms.boundary (module), 161 networkx.algorithms.centrality (module), 163 networkx.algorithms.chordal.chordal_alg (module), 181 networkx.algorithms.clique (module), 185 networkx.algorithms.cluster (module), 187 networkx.algorithms.community (module), 191 networkx.algorithms.community.kclique (module), 191 networkx.algorithms.components (module), 191
networkx.algorithms.components.attracting (module), 198
networkx.algorithms.components.biconnected (module), 200
networkx.algorithms.components.connected (module), 191
networkx.algorithms.components.strongly_connected (module), 194
networkx.algorithms.components.weakly_connected (module), 197
networkx.algorithms.connectivity (module), 205
networkx.algorithms.connectivity.connectivity (module), 205
networkx.algorithms.connectivity.cuts (module), 210
networkx.algorithms.core (module), 214
networkx.algorithms.cycles (module), 218
networkx.algorithms.dag (module), 219
networkx.algorithms.distance_measures (module), 222
networkx.algorithms.distance_regular (module), 224
networkx.algorithms.euler (module), 226
networkx.algorithms.flow (module), 227
networkx.algorithms.graphical (module), 239
networkx.algorithms.hierarchy (module), 243
networkx.algorithms.isolate (module), 244
networkx.algorithms.isomorphism (module), 245
networkx.algorithms.isomorphism.isomorphvf2 (module), 247
networkx.algorithms.link_analysis.hits_alg (module), 261
networkx.algorithms.link_analysis.pagerank_alg (module), 258
networkx.algorithms.matching (module), 264
networkx.algorithms.mis (module), 265
networkx.algorithms.mst (module), 266
networkx.algorithms.operators.all (module), 271
networkx.algorithms.operators.binary (module), 268
networkx.algorithms.operators.product (module), 273
networkx.algorithms.operators.unary (module), 268
networkx.algorithms.richclub (module), 275
networkx.algorithms.shortest_paths.astar (module), 293
networkx.algorithms.shortest_paths.dense (module), 291
networkx.algorithms.shortest_paths.generic (module), 276
networkx.algorithms.shortest_paths.unweighted (module), 280
networkx.algorithms.shortest_paths.weighted (module), 283
networkx.algorithms.simple_paths (module), 294
networkx.algorithms.swap (module), 295
networkx.algorithms.traversal.breadth_first_search (module), 298
networkx.algorithms.traversal.depth_first_search (module), 297
networkx.algorithms.vitality (module), 298
networkx.classes.function (module), 301
networkx.convert (module), 361
networkx.drawing.layout (module), 418
networkx.drawing.nx_agraph (module), 413
networkx.drawing.nx_pydot (module), 416
networkx.drawing.nx_pylab (module), 405
networkx.exception (module), 423
networkx.generators.atlas (module), 309
networkx.generators.bipartite (module), 341
networkx.generators.classic (module), 309
networkx.generators.degree_seq (module), 327
networkx.generators.directed (module), 334
networkx.generators.ego (module), 346
networkx.generators.geometric (module), 337
networkx.generators.hybrid (module), 341
networkx.generators.intersection (module), 347
networkx.generators.line (module), 345
networkx.generators.random_clustered (module), 333
networkx.generators.random_graphs (module), 318
networkx.generators.small (module), 314
networkx.generators.social (module), 349
networkx.generators.stochastic (module), 347
networkx.linalg.attrmatrix (module), 356
networkx.linalg.graphmatrix (module), 351
networkx.linalg.laplacianmatrix (module), 352
networkx.linalg.spectrum (module), 355
networkx.readwrite.adjlist (module), 369
networkx.readwrite.edgelist (module), 376
networkx.readwrite.gexf (module), 383
networkx.readwrite.gml (module), 385
networkx.readwrite.gpickle (module), 388
networkx.readwrite.graphml (module), 389
networkx.readwrite.json_graph (module), 391
networkx.readwrite.leda (module), 397
networkx.readwrite.multiline_adjlist (module), 373
networkx.readwrite.nx_shp (module), 402
networkx.readwrite.nx_yaml (module), 398
networkx.readwrite.pajek (module), 400
networkx.readwrite.sparsegraph6 (module), 399
networkx.utils (module), 425
networkx.utils.decorators (module), 429
networkx.utils.misc (module), 425
networkx.utils.random_sequence (module), 426
networkx.utils.union_find (module), 426
NetworkXAlgorithmError (class in networkx), 423
NetworkXError (class in networkx), 423
NetworkXException (class in networkx), 423
NetworkXNoPath (class in networkx), 423
NetworkXPointlessConcept (class in networkx), 423
NetworkXUnbounded (class in networkx), 423
NetworkXUnfeasible (class in networkx), 423
newman_watts_strogatz_graph() (in module workx.generators.random_graphs), 322
node, 437
node attribute, 437
node_boundary() (in module networkx.algorithms.boundary), 162
node_clique_number() (in module workx.algorithms.clique), 186
node_connected_component() (in module networkx.algorithms.components.connected), 194
node_connectivity() (in module networkx.algorithms.connectivity.connectivity), 207
node_link_data() (in module networkx.readwrite.json_graph), 391
node_link_graph() (in module networkx.readwrite.json_graph), 392
node_redundancy() (in module networkx.algorithms.bipartite.redundancy), 157
nodes() (DiGraph method), 47
nodes() (Graph method), 20
nodes() (in module networkx.classes.function), 304
nodes() (MultiDiGraph method), 107
nodes() (MultiGraph method), 79
nodes_iter() (DiGraph method), 47
nodes_iter() (Graph method), 21
nodes_iter() (in module networkx.classes.function), 304
nodes_iter() (MultiDiGraph method), 107
nodes_iter() (MultiGraph method), 79
nodes_with_selfloops() (DiGraph method), 62
nodes_with_selfloops() (Graph method), 31
nodes_with_selfloops() (MultiDiGraph method), 122
nodes_with_selfloops() (MultiGraph method), 91
non_neighbors() (in module networkx.classes.function), 304
normalized_laplacian_matrix() (in module networkx.linalg.laplacianmatrix), 353
null_graph() (in module networkx.generators.classic), 313
number_attracting_components() (in module networkx.algorithms.components.attracting), 199
number_connected_components() (in module networkx.algorithms.components.connected), 192
number_of_cliques() (in module networkx.algorithms.clique), 186
number_of_edges() (DiGraph method), 61
number_of_edges() (Graph method), 31
number_of_edges() (in module networkx.classes.function), 305
number_of_edges() (MultiDiGraph method), 122
number_of_edges() (MultiGraph method), 90
number_of_nodes() (DiGraph method), 57
number_of_nodes() (Graph method), 29
number_of_nodes() (in module networkx.classes.function), 304
number_of_nodes() (MultiDiGraph method), 117
net- number_of_nodes() (MultiGraph method), 88
number_of_selfloops() (DiGraph method), 63
number_of_selfloops() (Graph method), 32
number_of_selfloops() (MultiDiGraph method), 123
number_of_selfloops() (MultiGraph method), 92
number_strongly_connected_components()
(in module networkx.algorithms.components.strongly_connected), 195
number_weakly_connected_components() (in module networkx.algorithms.components.weakly_connected), 198
numeric_assortativity_coefficient() (in module networkx.algorithms.assortativity), 134
numerical_edge_match() (in module networkx.algorithms.isomorphism), 255
numerical_multiedge_match() (in module networkx.algorithms.isomorphism), 255
numerical_node_match() (in module networkx.algorithms.isomorphism), 254

\section*{0}
octahedral_graph() (in module networkx.generators.small), 317
open_file() (in module networkx.utils.decorators), 429
order() (DiGraph method), 56
order() (Graph method), 28
order() (MultiDiGraph method), 117
order() (MultiGraph method), 87
out_degree() (DiGraph method), 60
out_degree() (MultiDiGraph method), 120
out_degree_centrality() (in module net-
workx.algorithms.centrality), 164
out_degree_iter() (DiGraph method), 60
out_degree_iter() (MultiDiGraph method), 121
out_edges() (DiGraph method), 49
out_edges() (MultiDiGraph method), 109
out_edges_iter() (DiGraph method), 50
out_edges_iter() (MultiDiGraph method), 110
overlap_weighted_projected_graph() (in module networkx.algorithms.bipartite.projection), 149

\section*{P}
pagerank() (in module networkx.algorithms.link_analysis.pagerank_alg), 258
pagerank_numpy() (in module networkx.algorithms.link_analysis.pagerank_alg), 259
pagerank_scipy() (in module networkx.algorithms.link_analysis.pagerank_alg), 260
pappus_graph() (in module networkx.generators.small), 317
pareto_sequence() (in module networkx.utils.random_sequence), 427
parse_adjlist() (in module networkx.readwrite.adjlist), 371
parse_edgelist() (in module networkx.readwrite.edgelist), 382
parse_gml() (in module networkx.readwrite.gml), 387
parse_graph6() (in module networkx.readwrite.sparsegraph6), 400
parse_leda() (in module networkx.readwrite.leda), 397
parse_multiline_adjlist() (in module net workx.readwrite.multiline_adjlist), 375
parse_pajek() (in module networkx.readwrite.pajek), 402
parse_sparse6() (in module networkx.readwrite.sparsegraph6), 400
path_graph() (in module networkx.generators.classic), 313
periphery() (in module networkx.algorithms.distance_measures), 223
petersen_graph() (in module networkx.generators.small), 317
powerlaw_cluster_graph() (in module networkx.generators.random_graphs), 325
powerlaw_sequence() (in module workx.utils.random_sequence), 427
predecessor() (in module networkx.algorithms.shortest_paths.unweighted), 283
predecessors() (DiGraph method), 53
predecessors() (MultiDiGraph method), 114
predecessors_iter() (DiGraph method), 53
predecessors_iter() (MultiDiGraph method), 114
projected_graph() (in module networkx.algorithms.bipartite.projection), 146
pydot_layout() (in module networkx.drawing.nx_pydot), 418
pygraphviz_layout() (in module networkx.drawing.nx_agraph), 416

\section*{R}
radius() (in module networkx.algorithms.distance_measures), 224
ramsey_R2() (in module networkx.algorithms.approximation.ramsey), 131
random_clustered_graph() (in module networkx.generators.random_clustered), 333
random_degree_sequence_graph() (in module networkx.generators.degree_seq), 332
random_geometric_graph() (in module networkx.generators.geometric), 337
random_layout() (in module networkx.drawing.layout), 419
random_lobster() (in module networkx.generators.random_graphs), 325
random_powerlaw_tree() (in module networkx.generators.random_graphs), 326
random_powerlaw_tree_sequence() (in module networkx.generators.random_graphs), 327
random_regular_graph() (in module networkx.generators.random_graphs), 324
random_shell_graph() (in module networkx.generators.random_graphs), 326
random_weighted_sample() (in module networkx.utils.random_sequence), 429
read_adjlist() (in module networkx.readwrite.adjlist), 369 read_dot() (in module networkx.drawing.nx_agraph), 415 read_dot() (in module networkx.drawing.nx_pydot), 417 read_edgelist() (in module networkx.readwrite.edgelist), 377
read_gexf() (in module networkx.readwrite.gexf), 383
read_gml() (in module networkx.readwrite.gml), 385
read_gpickle() (in module networkx.readwrite.gpickle), 388
read_graph6() (in module networkx.readwrite.sparsegraph6), 399
read_graph6_list() (in module networkx.readwrite.sparsegraph6), 400
read_graphml() (in module networkx.readwrite.graphml), 390
read_leda() (in module networkx.readwrite.leda), 397
read_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 373
read_pajek() (in module networkx.readwrite.pajek), 401
read_shp() (in module networkx.readwrite.nx_shp), 402
read_sparse6() (in module networkx.readwrite.sparsegraph6), 400
read_sparse6_list() (in module
networkx.readwrite.sparsegraph6), 400
read_weighted_edgelist() (in modul workx.readwrite.edgelist), 379
read_yaml() (in module networkx.readwrite.nx_yaml), 398
relabel_gexf_graph() (in module networkx.readwrite.gexf), 385
remove_edge() (DiGraph method), 43
remove_edge() (Graph method), 17
remove_edge() (MultiDiGraph method), 103
remove_edge() (MultiGraph method), 74
remove_edges_from() (DiGraph method), 44
remove_edges_from() (Graph method), 18
remove_edges_from() (MultiDiGraph method), 104
remove_edges_from() (MultiGraph method), 75
remove_node() (DiGraph method), 40
remove_node() (Graph method), 14
remove_node() (MultiDiGraph method), 100
remove_node() (MultiGraph method), 71
remove_nodes_from() (DiGraph method), 41
remove_nodes_from() (Graph method), 14
remove_nodes_from() (MultiDiGraph method), 100
remove_nodes_from() (MultiGraph method), 71
require() (in module networkx.utils.decorators), 430
reverse() (DiGraph method), 66
reverse() (in module
workx.algorithms.operators.unary), 268
reverse() (MultiDiGraph method), 126
rich_club_coefficient() (in module workx.algorithms.richclub), 275
robins_alexander_clustering() (in module networkx.algorithms.bipartite.cluster), 156

\section*{S}
scale_free_graph() (in module networkx.generators.directed), 336
sedgewick_maze_graph() (in module workx.generators.small), 317
selfloop_edges() (DiGraph method), 62
selfloop_edges() (Graph method), 32
selfloop_edges() (MultiDiGraph method), 123
selfloop_edges() (MultiGraph method), 91
semantic_feasibility() (DiGraphMatcher method), 252
semantic_feasibility() (GraphMatcher method), 250
set_edge_attributes() (in module networkx.classes.function), 306
set_node_attributes() (in module networkx.classes.function), 305
sets() (in module networkx.algorithms.bipartite.basic), 143
shell_layout() (in module networkx.drawing.layout), 420
shortest_path() (in module networkx.algorithms.shortest_paths.generic), 277
shortest_path_length() (in module networkx.algorithms.shortest_paths.generic), 278
simple_cycles() (in module networkx.algorithms.cycles), 219
single_source_dijkstra() (in module networkx.algorithms.shortest_paths.weighted), 287
single_source_dijkstra_path() (in module networkx.algorithms.shortest_paths.weighted), 285
single_source_dijkstra_path_length() (in module networkx.algorithms.shortest_paths.weighted), 286
single_source_shortest_path() (in module networkx.algorithms.shortest_paths.unweighted), 281
single_source_shortest_path_length() (in module networkx.algorithms.shortest_paths.unweighted), 281
size() (DiGraph method), 61
size() (Graph method), 30
size() (MultiDiGraph method), 121
size() (MultiGraph method), 89
spectral_bipartivity() (in module networkx.algorithms.bipartite.spectral), 152
spectral_layout() (in module networkx.drawing.layout), 421
spring_layout() (in module networkx.drawing.layout), 420
square_clustering() (in module networkx.algorithms.cluster), 190
star_graph() (in module networkx.generators.classic), 313 stochastic_graph() (in module networkx.generators.stochastic), 347
strong_product() (in module networkx.algorithms.operators.product), 274
strongly_connected_component_subgraphs() (in module networkx.algorithms.components.strongly_connected), 195
strongly_connected_components() (in module networkx.algorithms.components.strongly_connected), 195
strongly_connected_components_recursive() (in module networkx.algorithms.components.strongly_connected), 196
subgraph() (DiGraph method), 65
subgraph() (Graph method), 35
subgraph() (MultiDiGraph method), 126
subgraph() (MultiGraph method), 94
subgraph_is_isomorphic() (DiGraphMatcher method), 252
subgraph_is_isomorphic() (GraphMatcher method), 250
subgraph_isomorphisms_iter() (DiGraphMatcher method), 252
subgraph_isomorphisms_iter() (GraphMatcher method), 250
successors() (DiGraph method), 53
successors() (MultiDiGraph method), 113
successors_iter() (DiGraph method), 53
successors_iter() (MultiDiGraph method), 113
symmetric_difference() (in module networkx.algorithms.operators.binary), 271
syntactic_feasibility() (DiGraphMatcher method), 252
syntactic_feasibility() (GraphMatcher method), 251

\section*{T}
tensor_product() (in module networkx.algorithms.operators.product), 275
tetrahedral_graph() (in module networkx.generators.small), 317
to_agraph() (in module networkx.drawing.nx_agraph), 414
to_dict_of_dicts() (in module networkx.convert), 362
to_dict_of_lists() (in module networkx.convert), 363
to_directed() (DiGraph method), 64
to_directed() (Graph method), 34
to_directed() (MultiDiGraph method), 125
to_directed() (MultiGraph method), 93
to_edgelist() (in module networkx.convert), 364
to_networkx_graph() (in module networkx.convert), 361
to_numpy_matrix() (in module networkx.convert), 364
to_numpy_recarray() (in module networkx.convert), 365
to_pydot() (in module networkx.drawing.nx_pydot), 417
to_scipy_sparse_matrix() (in module networkx.convert), 367
to_undirected() (DiGraph method), 64
to_undirected() (Graph method), 33
to_undirected() (MultiDiGraph method), 124
to_undirected() (MultiGraph method), 93
topological_sort() (in module networkx.algorithms.dag), 220
topological_sort_recursive() (in module networkx.algorithms.dag), 221
transitivity() (in module networkx.algorithms.cluster), 188
tree_data() (in module networkx.readwrite.json_graph), 394
tree_graph() (in module networkx.readwrite.json_graph), 394
triangles() (in module networkx.algorithms.cluster), 187
trivial_graph() (in module networkx.generators.classic), 313
truncated_cube_graph() (in module networkx.generators.small), 317
truncated_tetrahedron_graph() (in module networkx.generators.small), 318
tutte_graph() (in module networkx.generators.small), 318

\section*{U}
uniform_random_intersection_graph() (in module networkx.generators.intersection), 348
uniform_sequence() (in module networkx.utils.random_sequence), 428
union()
(in module
networkx.algorithms.operators.binary), 269
union() (UnionFind method), 426
union_all() (in module networkx.algorithms.operators.all), 272

\section*{W}
watts_strogatz_graph() (in module networkx.generators.random_graphs), 322
waxman_graph() (in module networkx.generators.geometric), 339
weakly_connected_component_subgraphs()
(in module networkx.algorithms.components.weakly_connected), 198
weakly_connected_components() (in module networkx.algorithms.components.weakly_connected), 198
weighted_choice() (in module networkx.utils.random_sequence), 429
weighted_projected_graph() (in module networkx.algorithms.bipartite.projection), 147
wheel_graph() (in module networkx.generators.classic), 314
write_adjlist() (in module networkx.readwrite.adjlist), 370
write_dot() (in module networkx.drawing.nx_agraph), 415
write_dot() (in module networkx.drawing.nx_pydot), 417 write_edgelist() (in module networkx.readwrite.edgelist), 378
write_gexf() (in module networkx.readwrite.gexf), 384
write_gml() (in module networkx.readwrite.gml), 386
write_gpickle() (in module networkx.readwrite.gpickle), 389
write_graphml() (in module networkx.readwrite.graphml), 390
write_multiline_adjlist() (in module networkx.readwrite.multiline_adjlist), 374
write_pajek() (in module networkx.readwrite.pajek), 401 write_shp() (in module networkx.readwrite.nx_shp), 403 write_weighted_edgelist() (in module networkx.readwrite.edgelist), 380
write_yaml() (in module networkx.readwrite.nx_yaml), 399

\section*{NetworkX Reference, Release 1.8.1}
```

Z
zipf_rv() (in module networkx.utils.random_sequence),
4 2 8
zipf_sequence() (in module net-
workx.utils.random_sequence), 428

```
```


[^0]: 1 "It's dictionaries all the way down."

