Find a maximum single-commodity flow using the Ford-Fulkerson algorithm.
This algorithm uses Edmonds-Karp-Dinitz path selection rule which guarantees a running time of O(nm^2) for n nodes and m edges.
Parameters : | G : NetworkX graph
s : node
t : node
capacity: string :
|
---|---|
Returns : | flow_value : integer, float
flow_dict : dictionary
|
Raises : | NetworkXError :
NetworkXUnbounded :
|
Examples
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_edge('x','a', capacity=3.0)
>>> G.add_edge('x','b', capacity=1.0)
>>> G.add_edge('a','c', capacity=3.0)
>>> G.add_edge('b','c', capacity=5.0)
>>> G.add_edge('b','d', capacity=4.0)
>>> G.add_edge('d','e', capacity=2.0)
>>> G.add_edge('c','y', capacity=2.0)
>>> G.add_edge('e','y', capacity=3.0)
>>> flow, F = nx.ford_fulkerson(G, 'x', 'y')
>>> flow
3.0