NetworkX

Previous topic

average_degree_connectivity

Next topic

attribute_mixing_matrix

k_nearest_neighbors

k_nearest_neighbors(G, source='in+out', target='in+out', nodes=None, weight=None)

Compute the average degree connectivity of graph.

The average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degree defined in [R101], for a node i, as:

k_{nn,i}^{w} = \frac{1}{s_i} \sum_{j \in N(i)} w_{ij} k_j

where s_i is the weighted degree of node i, w_{ij} is the weight of the edge that links i and j, and N(i) are the neighbors of node i.

Parameters :

G : NetworkX graph

source : “in”|”out”|”in+out” (default:”in+out”)

Directed graphs only. Use “in”- or “out”-degree for source node.

target : “in”|”out”|”in+out” (default:”in+out”

Directed graphs only. Use “in”- or “out”-degree for target node.

nodes: list or iterable (optional) :

Compute neighbor connectivity for these nodes. The default is all nodes.

weight : string or None, optional (default=None)

The edge attribute that holds the numerical value used as a weight. If None, then each edge has weight 1.

Returns :

d: dict :

A dictionary keyed by degree k with the value of average connectivity.

See also

neighbors_average_degree

Notes

This algorithm is sometimes called “k nearest neighbors’.

References

[R101](1, 2) A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of complex weighted networks”. PNAS 101 (11): 3747–3752 (2004).

Examples

>>> G=nx.path_graph(4)
>>> G.edge[1][2]['weight'] = 3
>>> nx.k_nearest_neighbors(G)
{1: 2.0, 2: 1.5}
>>> nx.k_nearest_neighbors(G, weight='weight')
{1: 2.0, 2: 1.75}