Source code for networkx.algorithms.bipartite.basic
# -*- coding: utf-8 -*-
"""
==========================
Bipartite Graph Algorithms
==========================
"""
import networkx as nx
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
# Copyright (C) 2011 by
# Aric Hagberg <hagberg@lanl.gov>
# Dan Schult <dschult@colgate.edu>
# Pieter Swart <swart@lanl.gov>
# All rights reserved.
# BSD license.
__all__ = ['is_bipartite', 'is_bipartite_node_set',
'color', 'sets',
'density', 'degrees']
[docs]def color(G):
"""Returns a two-coloring of the graph.
Raises an exception if the graph is not bipartite.
Parameters
----------
G : NetworkX graph
Returns
-------
color : dictionary
A dictionary keyed by node with a 1 or 0 as data for each node color.
Raises
------
NetworkXError if the graph is not two-colorable.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> c = bipartite.color(G)
>>> print(c)
{0: 1, 1: 0, 2: 1, 3: 0}
You can use this to set a node attribute indicating the biparite set:
>>> nx.set_node_attributes(G, 'bipartite', c)
>>> print(G.node[0]['bipartite'])
1
>>> print(G.node[1]['bipartite'])
0
"""
if G.is_directed():
import itertools
def neighbors(v):
return itertools.chain.from_iterable([G.predecessors_iter(v),
G.successors_iter(v)])
else:
neighbors=G.neighbors_iter
color = {}
for n in G: # handle disconnected graphs
if n in color or len(G[n])==0: # skip isolates
continue
queue = [n]
color[n] = 1 # nodes seen with color (1 or 0)
while queue:
v = queue.pop()
c = 1 - color[v] # opposite color of node v
for w in neighbors(v):
if w in color:
if color[w] == color[v]:
raise nx.NetworkXError("Graph is not bipartite.")
else:
color[w] = c
queue.append(w)
# color isolates with 0
color.update(dict.fromkeys(nx.isolates(G),0))
return color
[docs]def is_bipartite(G):
""" Returns True if graph G is bipartite, False if not.
Parameters
----------
G : NetworkX graph
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> print(bipartite.is_bipartite(G))
True
See Also
--------
color, is_bipartite_node_set
"""
try:
color(G)
return True
except nx.NetworkXError:
return False
[docs]def is_bipartite_node_set(G,nodes):
"""Returns True if nodes and G/nodes are a bipartition of G.
Parameters
----------
G : NetworkX graph
nodes: list or container
Check if nodes are a one of a bipartite set.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X = set([1,3])
>>> bipartite.is_bipartite_node_set(G,X)
True
Notes
-----
For connected graphs the bipartite sets are unique. This function handles
disconnected graphs.
"""
S=set(nodes)
for CC in nx.connected_component_subgraphs(G):
X,Y=sets(CC)
if not ( (X.issubset(S) and Y.isdisjoint(S)) or
(Y.issubset(S) and X.isdisjoint(S)) ):
return False
return True
[docs]def sets(G):
"""Returns bipartite node sets of graph G.
Raises an exception if the graph is not bipartite.
Parameters
----------
G : NetworkX graph
Returns
-------
(X,Y) : two-tuple of sets
One set of nodes for each part of the bipartite graph.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.path_graph(4)
>>> X, Y = bipartite.sets(G)
>>> list(X)
[0, 2]
>>> list(Y)
[1, 3]
See Also
--------
color
"""
c = color(G)
X = set(n for n in c if c[n]) # c[n] == 1
Y = set(n for n in c if not c[n]) # c[n] == 0
return (X, Y)
[docs]def density(B, nodes):
"""Return density of bipartite graph B.
Parameters
----------
G : NetworkX graph
nodes: list or container
Nodes in one set of the bipartite graph.
Returns
-------
d : float
The bipartite density
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> X=set([0,1,2])
>>> bipartite.density(G,X)
1.0
>>> Y=set([3,4])
>>> bipartite.density(G,Y)
1.0
See Also
--------
color
"""
n=len(B)
m=nx.number_of_edges(B)
nb=len(nodes)
nt=n-nb
if m==0: # includes cases n==0 and n==1
d=0.0
else:
if B.is_directed():
d=m/(2.0*float(nb*nt))
else:
d= m/float(nb*nt)
return d
[docs]def degrees(B, nodes, weight=None):
"""Return the degrees of the two node sets in the bipartite graph B.
Parameters
----------
G : NetworkX graph
nodes: list or container
Nodes in one set of the bipartite graph.
weight : string or None, optional (default=None)
The edge attribute that holds the numerical value used as a weight.
If None, then each edge has weight 1.
The degree is the sum of the edge weights adjacent to the node.
Returns
-------
(degX,degY) : tuple of dictionaries
The degrees of the two bipartite sets as dictionaries keyed by node.
Examples
--------
>>> from networkx.algorithms import bipartite
>>> G = nx.complete_bipartite_graph(3,2)
>>> Y=set([3,4])
>>> degX,degY=bipartite.degrees(G,Y)
>>> degX
{0: 2, 1: 2, 2: 2}
See Also
--------
color, density
"""
bottom=set(nodes)
top=set(B)-bottom
return (B.degree(top,weight),B.degree(bottom,weight))