Return the PageRank of the nodes in the graph.
PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.
Parameters : | G : graph
alpha : float, optional
personalization: dict, optional :
max_iter : integer, optional
tol : float, optional
|
---|---|
Returns : | pagerank : dictionary
|
See also
Notes
The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.
References
[R92] | A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.” http://citeseer.ist.psu.edu/713792.html |
[R93] | Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf |
Examples
>>> G=nx.DiGraph(nx.path_graph(4))
>>> pr=nx.pagerank_scipy(G,alpha=0.9)