Find a minimum cost flow satisfying all demands in digraph G.
This is a primal network simplex algorithm that uses the leaving arc rule to prevent cycling.
G is a digraph with edge costs and capacities and in which nodes have demand, i.e., they want to send or receive some amount of flow. A negative demand means that the node wants to send flow, a positive demand means that the node want to receive flow. A flow on the digraph G satisfies all demand if the net flow into each node is equal to the demand of that node.
Parameters : | G : NetworkX graph
demand: string :
capacity: string :
weight: string :
|
---|---|
Returns : | flowCost: integer, float :
flowDict: dictionary :
|
Raises : | NetworkXError :
NetworkXUnfeasible :
NetworkXUnbounded :
|
See also
cost_of_flow, max_flow_min_cost, min_cost_flow, min_cost_flow_cost
References
W. J. Cook, W. H. Cunningham, W. R. Pulleyblank and A. Schrijver. Combinatorial Optimization. Wiley-Interscience, 1998.
Examples
A simple example of a min cost flow problem.
>>> import networkx as nx
>>> G = nx.DiGraph()
>>> G.add_node('a', demand = -5)
>>> G.add_node('d', demand = 5)
>>> G.add_edge('a', 'b', weight = 3, capacity = 4)
>>> G.add_edge('a', 'c', weight = 6, capacity = 10)
>>> G.add_edge('b', 'd', weight = 1, capacity = 9)
>>> G.add_edge('c', 'd', weight = 2, capacity = 5)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost
24
>>> flowDict
{'a': {'c': 1, 'b': 4}, 'c': {'d': 1}, 'b': {'d': 4}, 'd': {}}
The mincost flow algorithm can also be used to solve shortest path problems. To find the shortest path between two nodes u and v, give all edges an infinite capacity, give node u a demand of -1 and node v a demand a 1. Then run the network simplex. The value of a min cost flow will be the distance between u and v and edges carrying positive flow will indicate the path.
>>> G=nx.DiGraph()
>>> G.add_weighted_edges_from([('s','u',10), ('s','x',5),
... ('u','v',1), ('u','x',2),
... ('v','y',1), ('x','u',3),
... ('x','v',5), ('x','y',2),
... ('y','s',7), ('y','v',6)])
>>> G.add_node('s', demand = -1)
>>> G.add_node('v', demand = 1)
>>> flowCost, flowDict = nx.network_simplex(G)
>>> flowCost == nx.shortest_path_length(G, 's', 'v', weighted = True)
True
>>> [(u, v) for u in flowDict for v in flowDict[u] if flowDict[u][v] > 0]
[('x', 'u'), ('s', 'x'), ('u', 'v')]
>>> nx.shortest_path(G, 's', 'v', weighted = True)
['s', 'x', 'u', 'v']
It is possible to change the name of the attributes used for the algorithm.
>>> G = nx.DiGraph()
>>> G.add_node('p', spam = -4)
>>> G.add_node('q', spam = 2)
>>> G.add_node('a', spam = -2)
>>> G.add_node('d', spam = -1)
>>> G.add_node('t', spam = 2)
>>> G.add_node('w', spam = 3)
>>> G.add_edge('p', 'q', cost = 7, vacancies = 5)
>>> G.add_edge('p', 'a', cost = 1, vacancies = 4)
>>> G.add_edge('q', 'd', cost = 2, vacancies = 3)
>>> G.add_edge('t', 'q', cost = 1, vacancies = 2)
>>> G.add_edge('a', 't', cost = 2, vacancies = 4)
>>> G.add_edge('d', 'w', cost = 3, vacancies = 4)
>>> G.add_edge('t', 'w', cost = 4, vacancies = 1)
>>> flowCost, flowDict = nx.network_simplex(G, demand = 'spam',
... capacity = 'vacancies',
... weight = 'cost')
>>> flowCost
37
>>> flowDict
{'a': {'t': 4}, 'd': {'w': 2}, 'q': {'d': 1}, 'p': {'q': 2, 'a': 2}, 't': {'q': 1, 'w': 1}, 'w': {}}