NetworkX

Previous topic

networkx.pagerank_numpy

Next topic

networkx.google_matrix

networkx.pagerank_scipy

pagerank_scipy(G, alpha=0.84999999999999998, max_iter=100, tol=9.9999999999999995e-07, nodelist=None)

Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was originally designed as an algorithm to rank web pages.

Parameters:

G : graph

A NetworkX graph

alpha : float, optional

Damping parameter for PageRank, default=0.85

Returns:

nodes : dictionary

Dictionary of nodes with value as PageRank

Notes

The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.

References

[R93]A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.” http://citeseer.ist.psu.edu/713792.html
[R94]Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking: Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf

Examples

>>> G=nx.DiGraph(nx.path_graph(4))
>>> pr=nx.pagerank_numpy(G,alpha=0.9)