NetworkX Reference
Release 1.2

Aric Hagberg, Dan Schult, Pieter Swart

August 01, 2010

Introduction

1.1 Whouses NetworkX?
1.2 The Python programming language
1.3 Freesoftware
14 Goals
1.5 History
Overview

2.1 NetworkX Basics
22 NodesandEdges
Graph types

3.1 Which graph class should Tuse?
3.2 Basicgraphtypes.
Algorithms

4.1 Bipartite
42 Blockmodeling
43 Boundary o
44 Centrality
45 Clique e
4.6 Clusteringo v v vt i i
47 Components
48 COreso i e
49 Cycles
4.10 Directed AcyclicGraphs
4.11 Distance Measures
412 Eulerian.o
413 Flows oo i
414 Isolates
4.15 TIsomorphism
4.16 Link Analysis.
417 Matching
4.18 Mixing Patterns
4.19 Minimum Spanning Tree
420 Operators o .o i e e e
421 ShortestPaths
422 Traversal
423 Vitality oo

.......................... 4

CONTENTS

DO M = = =

w W

.......................... 9

.......................... 179

10

11

12

13

Functions

5.1 Graph functions e e e e e e e e
Graph generators

6.1 ALlaS e e
6.2 ClIassiC v i i e e e e e e
6.3 Small
6.4 Random Graphs L e e e e e e
6.5 Degree SEqUENCE L L e e e e e e e e e e e e e e
6.6 Directed L e e e
6.7 GEOMELIIC v v vt e e e e e e e e e e e e e e
6.8 Hybrid e
6.9 Bipartite e
6.10 Line Graph o L e e e e e
6.11 EgoGraph
6.12 StochastiC e e e e
Linear algebra

T.1 0 SPECtrum o o e e e e e e e e e e e e e e
7.2 Attribute MatriCes L e e e e e e e e e e
Converting to and from other data formats

8.1 ToNetworkX Graph o e e
8.2 Relabeling L e e
83 DICHONATIES o v i i e e e e e e e e e e e e e
84 LiStS . . . o e e e e e e e e e
85 NUmMpY . . . o e e e
8.6 SCIPY .« o o o e e
Reading and writing graphs

9.1 Adjacency List e e
0.2 Edge List e e e e e e e e e
0.3 GML e
9.4 Pickle oL
9.5 GraphML e e
0.6 LEDA
0.7 YAML
9.8 SparseGraph® e e e e e e e e e e
9.9 Pajek e e e e
Drawing

10.1 Matplotlib e e e e e e e e e e
10.2 Graphviz AGraph (dot) o e e e e e e
10.3 Graphvizwithpydot e
10.4 Graph Layout. o L e e e e e e e
Exceptions

Utilities

12.1 Helper functions o 0 i e e e e e e e e e e e e e e
12.2 Data structures and Algorithms oL
12.3 Random Sequence enerators« v v bt e e e e e e e e e e e e e e e e e e e
12.4 SciPy random sequence generators ou ot e e e e e e e e e e e e e e e e
License

213
213

217
217
217
221
226
236
243
247
247
247
251
252
252

253
253
255

259
259
260
261
262
264
265

269
269
273
277
279
280
281
281
281
282

285
285
293
296
299

303

305
305
306
306
307

309

14 Citing

15 Credits
16 Glossary
Bibliography
Module Index

Index

311

313

315

317

321

323

CHAPTER
ONE

INTRODUCTION

NetworkX is a Python-based package for the creation, manipulation, and study of the structure, dynamics, and function
of complex networks.

The structure of a graph or network is encoded in the edges (connections, links, ties, arcs, bonds) between nodes
(vertices, sites, actors). If unqualified, by graph we mean an undirected graph, i.e. no multiple edges are allowed. By
a network we usually mean a graph with weights (fields, properties) on nodes and/or edges.

1.1 Who uses NetworkX?

The potential audience for NetworkX includes mathematicians, physicists, biologists, computer scientists, and social
scientists. The current state of the art of the science of complex networks is presented in Albert and Barabési [BA02],
Newman [NewmanO03], and Dorogovtsev and Mendes [DMO3]. See also the classic texts [Bollobas01], [Diestel97]
and [WestO1] for graph theoretic results and terminology. For basic graph algorithms, we recommend the texts of
Sedgewick, e.g. [Sedgewick01] and [Sedgewick02] and the survey of Brandes and Erlebach [BEOS].

1.2 The Python programming language

Why Python? Past experience showed this approach to maximize productivity, power, multi-disciplinary scope (ap-
plications include large communication, social, data and biological networks), and platform independence. This phi-
losophy does not exclude using whatever other language is appropriate for a specific subtask, since Python is also an
excellent “glue” language [Langtangen(04]. Equally important, Python is free, well-supported and a joy to use. Among
the many guides to Python, we recommend the documentation at http://www.python.org and the text by Alex Martelli
[MartelliO3].

1.3 Free software

NetworkX is free software; you can redistribute it and/or modify it under the terms of the NetworkX License. We wel-
come contributions from the community. Information on NetworkX development is found at the NetworkX Developer
Zone https://networkx.lanl.gov/trac.

1.4 Goals

NetworkX is intended to:

http://www.python.org
https://networkx.lanl.gov/trac

NetworkX Reference, Release 1.2

* Be a tool to study the structure and dynamics of social, biological, and infrastructure networks
* Provide ease-of-use and rapid development in a collaborative, multidisciplinary environment

* Be an Open-source software package that can provide functionality to a diverse community of active and easily
participating users and developers.

* Provide an easy interface to existing code bases written in C, C++, and FORTRAN
* Painlessly slurp in large nonstandard data sets

* Provide a standard API and/or graph implementation that is suitable for many applications.

1.5 History

* NetworkX was inspired by Guido van Rossum’s 1998 Python graph representation essay [vanRossum98].

* First public release in April 2005. Version 1.0 released in 2009.

1.5.1 What Next

e A Brief Tour
* Installing
* Reference

* Examples

2 Chapter 1. Introduction

CHAPTER
TWO

OVERVIEW

The structure of NetworkX can be seen by the organization of its source code. The package provides classes for graph
objects, generators to create standard graphs, 10 routines for reading in existing datasets, algorithms to analyse the
resulting networks and some basic drawing tools.

Most of the NetworkX API is provided by functions which take a graph object as an argument. Methods of the graph
object are limited to basic manipulation and reporting. This provides modularity of code and documentation. It also
makes it easier for newcomers to learn about the package in stages. The source code for each module is meant to be
easy to read and reading this Python code is actually a good way to learn more about network algorithms, but we have
put a lot of effort into making the documentation sufficient and friendly. If you have suggestions or questions please
contact us by joining the NetworkX Google group.

Classes are named using CamelCase (capital letters at the start of each word). functions, methods and variable names
are lower_case_underscore (lowercase with an underscore representing a space between words).

2.1 NetworkX Basics

After starting Python, import the networkx module with (the recommended way)

>>> import networkx as nx

To save repetition, in the documentation we assume that NetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your
PYTHONPATH.

The following basic graph types are provided as Python classes:

Graph This class implements an undirected graph. It ignores multiple edges between two nodes. It does allow
self-loop edges between a node and itself.

DiGraph Directed graphs, that is, graphs with directed edges. Operations common to directed graphs, (a subclass of
Graph).

MultiGraph A flexible graph class that allows multiple undirected edges between pairs of nodes. The additional
flexibility leads to some degradation in performance, though usually not significant.

MultiDiGraph A directed version of a MultiGraph.

Empty graph-like objects are created with

>>> G=nx.Graph ()
>>> G=nx.DiGraph ()

http://groups.google.com/group/networkx-discuss

NetworkX Reference, Release 1.2

>>> G=nx.MultiGraph ()
>>> G=nx.MultiDiGraph ()

All graph classes allow any hashable object as a node. Hashable objects include strings, tuples, integers, and more.
Arbitrary edge attributes such as weights and labels can be associated with an edge.

The graph internal data structures are based on an adjacency list representation and implemented using Python dic-
tionary datastructures. The graph adjaceny structure is implemented as a Python dictionary of dictionaries; the outer
dictionary is keyed by nodes to values that are themselves dictionaries keyed by neighboring node to the edge at-
tributes associated with that edge. This “dict-of-dicts” structure allows fast addition, deletion, and lookup of nodes
and neighbors in large graphs. The underlying datastructure is accessed directly by methods (the programming in-
terface “API”) in the class definitions. All functions, on the other hand, manipulate graph-like objects solely via
those API methods and not by acting directly on the datastructure. This design allows for possible replacement of the
‘dicts-of-dicts’-based datastructure with an alternative datastructure that implements the same methods.

2.1.1 Graphs

The first choice to be made when using NetworkX is what type of graph object to use. A graph (network) is a collection
of nodes together with a collection of edges that are pairs of nodes. Attributes are often associated with nodes and/or
edges. NetworkX graph objects come in different flavors depending on two main properties of the network:

* Directed: Are the edges directed? Does the order of the edge pairs (u,v) matter? A directed graph is specified
by the “Di” prefix in the class name, e.g. DiGraph(). We make this distinction because many classical graph
properties are defined differently for directed graphs.

e Multi-edges: Are multiple edges allowed between each pair of nodes? As you might imagine, multiple edges
requires a different data structure, though tricky users could design edge data objects to support this function-
ality. We provide a standard data structure and interface for this type of graph using the prefix “Multi”, e.g.
MultiGraph().

The basic graph classes are named: Graph, DiGraph, MultiGraph, and MultiDiGraph

2.2 Nodes and Edges

The next choice you have to make when specifying a graph is what kinds of nodes and edges to use.

If the topology of the network is all you care about then using integers or strings as the nodes makes sense and you
need not worry about edge data. If you have a data structure already in place to describe nodes you can simply use
that structure as your nodes provided it is hashable. If it is not hashable you can use a unique identifier to represent
the node and assign the data as a node attribute.

Edges often have data associated with them. Arbitrary data can associated with edges as an edge attribute. If the data
is numeric and the intent is to represent a weighted graph then use the ‘weight’ keyword for the attribute. Some of the
graph algorithms, such as Dijkstra’s shortest path algorithm, use this attribute name to get the weight for each edge.

Other attributes can be assigned to an edge by using keyword/value pairs when adding edges. You can use any keyword
except ‘weight’ to name your attribute and can then easily query the edge data by that attribute keyword.

Once you’ve decided how to encode the nodes and edges, and whether you have an undirected/directed graph with or
without multiedges you are ready to build your network.

2.2.1 Graph Creation

NetworkX graph objects can be created in one of three ways:

4 Chapter 2. Overview

NetworkX Reference, Release 1.2

* Graph generators — standard algorithms to create network topologies.
* Importing data from pre-existing (usually file) sources.
* Adding edges and nodes explicitly.

Explicit addition and removal of nodes/edges is the easiest to describe. Each graph object supplies methods to manip-
ulate the graph. For example,

>>> import networkx as nx

>>> G=nx.Graph ()

>>> G.add_edge (1, 2) # default edge data=l1

>>> G.add_edge (2, 3,weight=0.9) # specify edge data

Edge attributes can be anything:

>>> import math
>>> G.add_edge ('y’,’x",function=math.cos)
>>> G.add_node (math.cos) # any hashable can be a node

You can add many edges at one time:

>>> elist=[("a’,’'b’,5.0), ('b","c",3.0),("a",’"c",1.0), ("c’,"d",7.3)]
>>> G.add_weighted_edges_from(elist)

See the /tutorial/index for more examples.
Some basic graph operations such as union and intersection are described in the Operators module documentation.
Graph generators such as binomial_graph and powerlaw_graph are provided in the Graph generators subpackage.

For importing network data from formats such as GML, GraphML, edge list text files see the Reading and writing
graphs subpackage.

2.2.2 Graph Reporting

Class methods are used for the basic reporting functions neighbors, edges and degree. Reporting of lists is often needed
only to iterate through that list so we supply iterator versions of many property reporting methods. For example edges()
and nodes() have corresponding methods edges_iter() and nodes_iter(). Using these methods when you can will save
memory and often time as well.

The basic graph relationship of an edge can be obtained in two basic ways. One can look for neighbors of a node or
one can look for edges incident to a node. We jokingly refer to people who focus on nodes/neighbors as node-centric
and people who focus on edges as edge-centric. The designers of NetworkX tend to be node-centric and view edges
as a relationship between nodes. You can see this by our avoidance of notation like G[u,v] in favor of G[u][v]. Most
data structures for sparse graphs are essentially adjacency lists and so fit this perspective. In the end, of course, it
doesn’t really matter which way you examine the graph. G.edges() removes duplicate representations of each edge
while G.neighbors(n) or G[n] is slightly faster but doesn’t remove duplicates.

Any properties that are more complicated than edges, neighbors and degree are provided by functions. For example
nx.triangles(G,n) gives the number of triangles which include node n as a vertex. These functions are grouped in the
code and documentation under the term algorithms.

2.2. Nodes and Edges 5

NetworkX Reference, Release 1.2

2.2.3 Algorithms

A number of graph algorithms are provided with NetworkX. These include shortest path, and breadth first search (see
traversal), clustering and isomorphism algorithms and others. There are many that we have not developed yet too. If
you implement a graph algorithm that might be useful for others please let us know through the NetworkX Google
group or the Developer Zone.

As an example here is code to use Dijkstra’s algorithm to find the shortest weighted path:
>>> G=nx.Graph ()

>>> e=[('a’,’'b’,0.3), (b’ ,’c’,0.9),("a’",’c’,0.5),('c’,’d ,1.2)]
>>> G.add_weighted_edges_from(e)

>>> print nx.dijkstra_path(G,’a’,’d’)
[IaI, ICI, Idl]

2.2.4 Drawing

While NetworkX is not designed as a network layout tool, we provide a simple interface to drawing packages and some
simple layout algorithms. We interface to the excellent Graphviz layout tools like dot and neato with the (suggested)
pygraphviz package or the pydot interface. Drawing can be done using external programs or the Matplotlib Python
package. Interactive GUI interfaces are possible though not provided. The drawing tools are provided in the module
drawing.

The basic drawing functions essentially place the nodes on a scatterplot using the positions in a dictionary or computed

with a layout function. The edges are then lines between those dots.

>>> G=nx.cubical_graph ()
>>> nx.draw (G) # default spring_layout
>>> nx.draw (G, pos=nx.spectral_layout (G), nodecolor="r’,edge_color="b")

See the examples for more ideas.

2.2.5 Data Structure

NetworkX uses a “dictionary of dictionaries of dictionaries” as the basic network data structure. This allows fast
lookup with reasonable storage for large sparse networks. The keys are nodes so G[u] returns an adjacency dictionary
keyed by neighbor to the edge attribute dictionary. The expression G[u][v] returns the edge attribute dictionary itself.
A dictionary of lists would have also been possible, but not allowed fast edge detection nor convenient storage of edge
data.

Advantages of dict-of-dicts-of-dicts data structure:
* Find edges and remove edges with two dictionary look-ups.
* Prefer to “lists” because of fast lookup with sparse storage.
* Prefer to “sets” since data can be attached to edge.
e G[u][v] returns the edge attribute dictionary.
e n in G testsif node n is in graph G.
e for n in G: iterates through the graph.
e for nbr in G[n]: iterates through neighbors.

As an example, here is a representation of an undirected graph with the edges (‘A’,’B’), (‘B’,’C’)

6 Chapter 2. Overview

http://groups.google.com/group/networkx-discuss
http://groups.google.com/group/networkx-discuss
http://networkx.lanl.gov/trac/

NetworkX Reference, Release 1.2

>>> G=nx.Graph (

>>> G.add_edge ('A’,’B")

>>> G.add_edge ("B’ ,’C")

>>> print G.adj

{7A": {'B’: {}}, "C': {"B': {}}, 'B’: {"A’: {}, 'C": {}}}

)

The data structure gets morphed slightly for each base graph class. For DiGraph two dict-of-dicts-of-dicts structures
are provided, one for successors and one for predecessors. For MultiGraph/MultiDiGraph we use a dict-of-dicts-of-
dicts-of-dicts ! where the third dictionary is keyed by an edge key identifier to the fourth dictionary which contains
the edge attributes for that edge between the two nodes.

Graphs use a dictionary of attributes for each edge. We use a dict-of-dicts-of-dicts data structure with the inner
dictionary storing ‘“name-value” relationships for that edge.

>>> G=nx.Graph ()

>>> G.add_edge (1, 2,color="red’ ,weight=0.84,size=300)
>>> print G[1][2]['size’]

300

! “It’s dictionaries all the way down.”

2.2. Nodes and Edges 7

NetworkX Reference, Release 1.2

8 Chapter 2. Overview

CHAPTER
THREE

GRAPH TYPES

NetworkX provides data structures and methods for storing graphs.

All NetworkX graph classes allow (hashable) Python objects as nodes. and any Python object can be assigned as an
edge attribute.

The choice of graph class depends on the structure of the graph you want to represent.

3.1 Which graph class should | use?

Graph Type NetworkX Class
Undirected Simple | Graph

Directed Simple DiGraph

With Self-loops Graph, DiGraph

With Parallel edges | MultiGraph, MultiDiGraph

3.2 Basic graph types

3.2.1 Graph - Undirected graphs with self loops

Overview

Graph (data=None, name=", **attr)
Base class for undirected graphs.
A Graph stores nodes and edges with optional data, or attributes.
Graphs hold undirected edges. Self loops are allowed but multiple (parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")

NetworkX Reference, Release 1.2

An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also:

DiGraph,MultiGraph,MultiDiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.
>>> G = nx.Graph()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph (10)

>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

>>> G.add_edge (1, 2)

a list of edges,

>>> G.add_edges_from([(1,2), (1,3)1])
or a collection of edges,

>>> G.add_edges_from(H.edges())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

10 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct

manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.Graph (day="Friday")
>>> G.graph
{’day’: ’'Friday’}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm’)

>>> G.add_nodes_from([3], time=’2pm’)

>>> G.node[1l]

{’time’: ’'5Spm’}

>>> G.node[l] ["room’”] = 714

>>> G.nodes (data=True)

[(1, {"room’: 714, ’"time’: ’'Spm’}), (3, {’time’: ’'2pm’})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.
>>> G.add_edge (1, 2, weight=4.7)

>>> G.add_edges_from([(3,4), (4,5)], color="red’)

>>> G.add_edges_from([(1,2, {’color’:"blue’}), (2,3,{ weight’:8})1])

>>> G[1][2]["weight’] = 4.7
>>> G.edge[l][2]['weight’] = 4

Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> print [n for n in G if n<3] # iterate through nodes
[1, 21

>>> print len(G) # number of nodes in graph

5

>>> print G[1l] # adjacency dict keyed by neighbor to edge attributes
ce # Note: you should not change this dict manually!
{2: {’color’: "blue’, ’"weight’: 4}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more

convenient.

>>> for n,nbrsdict in G.adjacency_iter () :
for nbr,eattr in nbrsdict.iteritems () :
if "weight’ in eattr:
print (n,nbr,eattr[’weight’])

1, 2, 4)
2, 1, 4)
2, 3, 8)
3, 2, 8)

>>> print [(u,v,edata[’weight’]) for u,v,edata in G.edges(data=True) if ’'weight’
[(x, 2, 4), (2, 3, 8)]

in edata]

3.2.

Basic graph types 11

NetworkX Reference, Release 1.2

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and removing nodes and edges

Graph._ init__ (**attr[, data, name]) Initialize a graph with edges, name, graph attributes.
Graph.add_node(n, **attr[, attr_dict]) Add a single node n and update node attributes.
Graph.add_nodes_ from(nodes, **attr) Add multiple nodes.

Graph.remove_node(n) Remove node n.

Graph.remove_nodes_ from(nodes) Remove multiple nodes.

Graph.add_edge(u, v, **attr[, attr_dict]) Add an edge between u and v.
Graph.add_edges_ from(ebunch, **attr[, Add all the edges in ebunch.

attr_dict])
Graph.add_weighted_edges_from(ebunch, Add all the edges in ebunch as weighted edges with

**attr) specified weights.
Graph.remove_edge(u, v) Remove the edge between u and v.
Graph.remove_edges_ from(ebunch) Remove all edges specified in ebunch.
Graph.add_star(nlist, **attr) Add a star.

Graph.add_path(nlist, ¥*attr) Add a path.

Graph.add_cycle(nlist, **attr) Add a cycle.

Graph.clear() Remove all nodes and edges from the graph.

networkx.Graph.__init__

__init__ (data=None, name=", **attr)
Initialize a graph with edges, name, graph attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also:

convert

Examples

12 Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph (name="my graph’)

>>> e = [(1,2),(2,3),(3,4)] # list of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{’day’: ’"Friday’}

networkx.Graph.add_node

add _node (n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters n : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with
the node.

attr : keyword arguments, optional
Set or change attributes using key=value.
See Also:

add_nodes_from

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node ('Hello’)

>>> K3 = nx.Graph ([(0,1), (1,2),(2,0)1])

>>> G.add_node (K3)

>>> G.number_of_nodes ()

3

Use keywords set/change node attributes:

>>> G.add_node(1l,size=10)
>>> G.add_node (3,weight=0.4,UTM=("13S’,382871,3972649))

3.2. Basic graph types 13

NetworkX Reference, Release 1.2

networkx.Graph.add_nodes_from

add nodes_from (nodes, **attr)
Add multiple nodes.

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See Also:
add_node

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from(’Hello’)

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes ())

(o, 1, 2, "H’, ’'e’", 17, 70"]

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from ([(1l,dict (size=11)), (2,{’color’:"blue’})])
>>> G.node[l] ['size’]

11

>>> H = nx.Graph()

>>> .add_nodes_from(G.nodes (data=True))

>>> H.node[l][’'size’]

11

jas]

networkx.Graph.remove_node

remove_node (n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n : node
A node in the graph
Raises NetworkXError :

If n is not in the graph.

14 Chapter 3. Graph types

NetworkX Reference, Release 1.2

See Also:

remove_nodes_from
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> G.edges ()

[0, 1), (1, 2)]

>>> G.remove_node (1)

>>> G.edges ()

L]

networkx.Graph.remove_nodes_from

remove_nodes_from (nodes)
Remove multiple nodes.

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it
is silently ignored.

See Also:

remove_node
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> e = G.nodes ()

>>> e

[0, 1, 2]

>>> G.remove_nodes_from(e)

>>> G.nodes ()

networkx.Graph.add_edge

add_edge (4, v, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None)
Python objects.

3.2. Basic graph types 15

NetworkX Reference, Release 1.2

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
the edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edges_from add a collection of edges
Notes
Adding an edge that already exists updates the edge data.

NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to the
keyword ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two—-node form

>>> G.add_edge (*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge (1, 2, weight=3)
>>> G.add_edge (1, 3, weight=7, capacity=15, length=342.7)

networkx.Graph.add_edges_from

add_edges_ from (ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters ebunch : container of edges

Each edge given in the container will be added to the graph. The edges must be given
as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
each edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edge add a single edge

16 Chapter 3. Graph types

NetworkX Reference, Release 1.2

add_weighted_edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1), (1,2)]) # using a list of edge tuples
>>> e = zip(range (0, 3),range(1l,4))

>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

networkx.Graph.add_weighted_edges_from

add_weighted_edges_from (ebunch, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch : container of edges

Each edge given in the list or container will be added to the graph. The edges must be
given as 3-tuples (u,v,w) where w is a number.

attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.
See Also:

add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)1)

3.2. Basic graph types 17

NetworkX Reference, Release 1.2

networkx.Graph.remove_edge

remove_edge (u, v)

Remove the edge between u and v.
Parameters u,v: nodes :
Remove the edge between nodes u and v.
Raises NetworkXError :
If there is not an edge between u and v.

See Also:

remove_edges_from remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc

>>> G.add_path([0,1,2,3])

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple

>>> e = (2,3,{’'weight’:7}) # an edge with attribute data
>>> G.remove_edge (xe[:2]) # select first part of edge tuple

networkx.Graph.remove_edges_from

remove_edges_from (ebunch)

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples :

Each edge given in the list or container will be removed from the graph. The edges can

be:
e 2-tuples (u,v) edge between u and v.
* 3-tuples (u,v,k) where k is ignored.

See Also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

18

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> ebunch=[(1,2), (2,3)]

>>> G.remove_edges_from(ebunch)

networkx.Graph.add_star

add_star (nlist, **attr)
Add a star.

The first node in nlist is the middle of the star. It is connected to all other nodes in nlist.
Parameters nlist : list
A list of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.
See Also:
add_path, add_cycle

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

networkx.Graph.add_path

add_path (nlist, **attr)
Add a path.

Parameters nlist : list

A list of nodes. A path will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.
See Also:

add_star,add_cycle
Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

3.2. Basic graph types 19

NetworkX Reference, Release 1.2

networkx.Graph.add_cycle

add_cycle (nlist, **attr)
Add a cycle.

Parameters nlist : list

A list of nodes. A cycle will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.
See Also:
add_path, add_star

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

networkx.Graph.clear

clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.
Examples

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path ([0,1,2,31)

.clear ()

.nodes ()

>>> G.edges ()

20 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Iterating over nodes and edges

Graph.nodes([data]) Return a list of the nodes in the graph.

Graph.nodes_iter([data]) Return an iterator over the nodes.

Graph._ _iter_ () Iterate over the nodes.

Graph .edges([nbunch, data]) Return a list of edges.

Graph.edges_iter([nbunch, data]) Return an iterator over the edges.

Graph.get_edge_data(u, v[, default]) Return the attribute dictionary associated with edge (u,v).

Graph.neighbors(n) Return a list of the nodes connected to the node n.

Graph.neighbors_iter(n) Return an iterator over all neighbors of node n.

Graph.__getitem__(n) Return a dict of neighbors of node n.

Graph.adjacency_list() Return an adjacency list representation of the graph.

Graph.adjacency_iter() Return an iterator of (node, adjacency dict) tuples for all nodes.

Graph.nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that are also in the graph.
networkx.Graph.nodes

nodes (data=Fualse)
Return a list of the nodes in the graph.

Parameters data : boolean, optional (default=False)
If False return a list of nodes. If True return a two-tuple of node and node data dictionary
Returns nlist : list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print G.nodes ()

[0, 1, 2]

>>> G.add_node (1, time='5pm’)

>>> print G.nodes (data=True)

[0, {1, (1, {'time’: "Spm’}), (2, {})]

networkx.Graph.nodes_iter

nodes_iter (data=False)
Return an iterator over the nodes.

Parameters data : boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data
dictionary

Returns niter : iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node
data, dictionary)

3.2. Basic graph types 21

NetworkX Reference, Release 1.2

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for nin G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> for n in G:

print n,

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> for n in G.nodes_iter():

. print n,

01 2

>>> for n,d in G.nodes_iter (data=True) :
print d,

{r {r {}

networkx.Graph.__iter

__iter_ ()
Iterate over the nodes. Use the expression ‘for nin G’.

Returns niter : iterator

An iterator over all nodes in the graph.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> for n in G:

. print n,

0123

networkx.Graph.edges

edges (nbunch=None, data=False)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

22 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not
specified.

See Also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.edges ()

[0, 1), (1, 23, (2, 3)]

>>> G.edges (data=True) # default edge data is {} (empty dictionary)
[, 1, {H, 1, 2, {hH, 2, 3, {}N]

>>> G.edges ([0,3])

[0, 1), (3, 2)]

>>> G.edges (0)

[(0, 1)1

networkx.Graph.edges_iter

edges_iter (nbunch=None, data=False)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).
Returns edge_iter : iterator
An iterator of (u,v) or (u,v,d) tuples of edges.

See Also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.

3.2. Basic graph types 23

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or MultiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [e for e in G.edges_iter ()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges_iter (data=True)) # default data is {} (empty dict)
[0, 1, (), (L, 2, {bH), (2, 3, {}H]

>>> list (G.edges_iter ([0,3]))

[0, 1), (3, 2)]

>>> list (G.edges_iter (0))

[(0, 1)]

networkx.Graph.get_edge_data

get_edge_data (u, v, default=None)

Return the attribute dictionary associated with edge (u,v).
Parameters u,v : nodes
default: any Python object (default=None) :
Value to return if the edge (u,v) is not found.
Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G[0][1]

{}

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

>>> G[O0][1]["weight’] = 7

>>> G[O0][1]["weight’]

7

>>> G[1][0] ["weight’]

7

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.get_edge_data(0,1) # default edge data is {}
{}

>>> e = (0,1)

24

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G.get_edge_data(xe) # tuple form

{}

>>> G.get_edge_data(’a’,’b’,default=0) # edge not in graph, return 0
0

networkx.Graph.neighbors

neighbors (n)
Return a list of the nodes connected to the node n.

Parameters n : node

A node in the graph
Returns nlist : list

A list of nodes that are adjacent to n.
Raises NetworkXError :

If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(’a’,’b’,weight=7)

>>> G['a’]

{"b’": {'weight’: 7}}

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.neighbors (0)

networkx.Graph.neighbors_iter

neighbors_iter (n)
Return an iterator over all neighbors of node n.

Notes

It is faster to use the idiom “in G[0]”, e.g. >>> for n in G[O]: ... printn 1

3.2. Basic graph types 25

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print [n for n in G.neighbors_iter (0)]

[1]

networkx.Graph.__getitem___

__getitem__ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n : node
A node in the graph.
Returns adj_dict : dictionary

The adjacency dictionary for nodes connected to n.

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print G[O0]

{1: {}}

networkx.Graph.adjacency_list

adjacency_ list ()
Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.
See Also:

adjacency_iter

26 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.adjacency_list () # in order given by G.nodes ()

(rx1, o, 21, (1, 31, [2]]

networkx.Graph.adjacency _iter

adjacency_ iter()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter : iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.
See Also:

adjacency_list
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter ()]

[0, {1: {}}), (1, {0z {}, 2: {}}), (2, {1: {3}, 3: {}}), (3, {2: {}})]

networkx.Graph.nbunch_iter

nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
Returns niter : iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate
over all nodes in the graph.

Raises NetworkXError :
If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.
See Also:

Graph._ _iter

3.2. Basic graph types 27

NetworkX Reference, Release 1.2

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when

nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

Graph.has_node(n)

Graph._ contains__ (n)
Graph.has_edge(u, v)
Graph.order()
Graph.number_of_nodes()
Graph._ _len_ ()

Graph .degree([nbunch, weighted])
Graph.degree_iter([nbunch, weighted])
Graph. size([weighted])
Graph.number_of_edges([u, v])
Graph.nodes_with_selfloops()
Graph.selfloop_edges([data])
Graph.number_of_selfloops()

Return True if the graph contains the node n.
Return True if n is a node, False otherwise. Use the expression
Return True if the edge (u,v) is in the graph.
Return the number of nodes in the graph.
Return the number of nodes in the graph.
Return the number of nodes.

Return the degree of a node or nodes.

Return an iterator for (node, degree).

Return the number of edges.

Return the number of edges between two nodes.
Return a list of nodes with self loops.

Return a list of selfloop edges.

Return the number of selfloop edges.

networkx.Graph.has_node

has_node (n)

Return True if the graph contains the node n.

Parameters n : node
Examples

>>> G = nx.Graph()
>>> G.add_path([0,1,2])
>>> print G.has_node (0)
True

It is more readable and simpler to use

>>> 0 in G
True

networkx.Graph.__contains___

__contains__ (n)

or DiGraph,

MultiGraph, MultiDiGraph, etc

Return True if n is a node, False otherwise. Use the expression ‘nin G’.

28

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print 1 in G

True

networkx.Graph.has_edge

has_edge (u, v)
Return True if the edge (u,v) is in the graph.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None)
Python objects.

Returns edge_ind : bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.has_edge (0, 1) # using two nodes

True

>>> e = (0,1)

>>> G.has_edge (xe) # e 1is a 2-tuple (u,v)

True

>>> e = (0,1, {"weight’:7})

>>> G.has_edge (xe[:2]) # e i1s a 3-tuple (u,v,data _dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge (0, 1)

True

>>> 1 in G[0] # though this gives KeyError if 0 not in G
True

networkx.Graph.order

order ()
Return the number of nodes in the graph.

Returns nnodes : int

The number of nodes in the graph.

3.2. Basic graph types 29

NetworkX Reference, Release 1.2

See Also:

number_of_ nodes, len

networkx.Graph.number_of_nodes

number_of_ nodes ()
Return the number of nodes in the graph.

Returns nnodes : int
The number of nodes in the graph.

See Also:

order, len

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print len (G)

3

networkx.Graph.__len__

len_ ()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes : int

The number of nodes in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print len (G)

4

networkx.Graph.degree

degree (nbunch=None, weighted=False)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.

weighted : bool, optional (default=False)

30 Chapter 3. Graph types

NetworkX Reference, Release 1.2

If True return the sum of edge weights adjacent to the node.
Returns nd : dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree (0)

>>> G.degree ([0,1])

{0: 1, 1: 2}

>>> G.degree ([0,1]) .values ()
[1, 2]

networkx.Graph.degree_iter

degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).
See Also:

degree
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> 1list (G.degree_iter(0)) # node 0 with degree 1

[(0, 1)]

>>> list (G.degree_iter ([0,1]))

[0, 1), (1, 2)]

networkx.Graph.size

size (weighted=False)
Return the number of edges.

3.2. Basic graph types 31

NetworkX Reference, Release 1.2

Parameters weighted : boolean, optional (default=False)

If True return the sum of the edge weights.

Returns nedges : int

The number of edges in the graph.

See Also:

number_of_edges

Examples

>>>
>>>
>>>

>>>
>>>
>>>
>>>

>>>

QO O

(DO ROINO!

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

.add_path ([0,1,2,31)
.size ()

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

.add_edge ("a’,’b’ ,weight=2)
.add_edge ("b’,’c’,weight=4)
.size ()

.size (weighted=True)

networkx.Graph.number_of_edges

number_of_edges (u=None, v=None)

Return the number of edges between two nodes.

Parameters u,v : nodes, optional (default=all edges)

If u and v are specified, return the number of edges between u and v. Otherwise return

the total number of all edges.

Returns nedges : int

The number of edges in the graph. If nodes u and v are specified return the number of

edges between those nodes.

See Also:

size

Examples

>>>

>>>

>>>

>>>

>>>

[N0]

= nx.Graph () # or DiGraph, MultiGraph,
.add_path([0,1,2,3])
.number_of_edges ()

.number_of_edges (0, 1)

= (0,1)

MultiDiGraph, etc

32

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G.number_of_edges (*e)
1

networkx.Graph.nodes_with_selfloops

nodes_with_selfloops ()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist : list
A list of nodes with self loops.

See Also:

selfloop_edges, number_of_selfloops
Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

G
>>> G.add_edge (1,1)
>>> G.add_edge (1,2)
>>> G.nodes_with_selfloops ()

networkx.Graph.selfloop_edges

selfloop_edges (data=False)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.
Parameters data : bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data)
(data=True)

Returns edgelist : list of edge tuples
A list of all selfloop edges.
See Also:

selfloop_nodes, number_of_selfloops
Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> .add_edge (1,1)

.add_edge (1,2)

>>> .selfloop_edges ()

[(1, 1)]

@

>>>

@ @

3.2. Basic graph types 33

NetworkX Reference, Release 1.2

>>> G.selfloop_edges (data=True)
[(1, 1, {})]

networkx.Graph.number_of_selfloops

number_of_selfloops ()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.
Returns nloops : int
The number of selfloops.
See Also:

selfloop_nodes, selfloop_edges
Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops()

1

Making copies and subgraphs

Graph.copy() Return a copy of the graph.
Graph.to_undirected() Return an undirected copy of the graph.
Graph.to_directed() Return a directed representation of the graph.

Graph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.

networkx.Graph.copy

copy ()
Return a copy of the graph.

Returns G : Graph
A copy of the graph.
See Also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

34 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.

Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy ()

networkx.Graph.to_undirected

to_undirected()
Return an undirected copy of the graph.

Returns G : Graph/MultiGraph

See Also:

A deepcopy of the graph.

copy, add_edge, add_edges_from

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information

http://docs.python.org/library/copy.html.

Examples

>>> G = nx.

Graph () # or MultiGraph, etc

>>> G.add_path([0,1])
>>> H = G.to_directed()
>>> H.edges ()

[(0, 1), (1, 0)]

>>> G2

H.

to_undirected()

>>> G2.edges ()

[0, 1)1

networkx.Graph.to_directed

to_directed()

Return a directed representation of the graph.

Returns G : DiGraph

A directed graph with the same name, same nodes, and with each edge (u,v,data) re-

placed by two directed edges (u,v,data) and (v,u,data).

on shallow

copies,

3.2. Basic graph

types

35

http://docs.python.org/library/copy.html

NetworkX Reference, Release 1.2

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> G.add_path ([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[(0, 1)]

networkx.Graph.subgraph

subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.
Returns G : Graph
A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an in-place reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

36 Chapter 3. Graph types

http://docs.python.org/library/copy.html

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> H = G.subgraph([0,1,2])

>>> print H.edges ()

[, 1), (1, 2)]

3.2.2 DiGraph - Directed graphs with self loops

Overview

DiGraph (data=None, name=", **attr)
Base class for directed graphs.
A DiGraph stores nodes and edges with optional data, or attributes.
DiGraphs hold directed edges. Self loops are allowed but multiple (parallel) edges are not.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also:

Graph, MultiGraph, MultiDiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.
>>> G = nx.DiGraph ()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

3.2. Basic graph types 37

NetworkX Reference, Release 1.2

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph(10)

>>> G.add_nodes_from(H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

>>> G.add_edge (1, 2)

a list of edges,

>>> G.add_edges_from([(1,2), (1,3)])

or a collection of edges,

>>> G.add_edges_from(H.edges ())

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.DiGraph (day="Friday")
>>> G.graph
{’day’: ’'Friday’}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm’)

>>> G.add_nodes_from([3], time=’2pm’)

>>> G.node[1]

{’time’ : ’5pm’ }

>>> G.node[l] ['room’] = 714

>>> G.nodes (data=True)

[(1, {"room’: 714, 'time’: ’'5Spm’}), (3, {’'time’: ’"2pm’})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge (1, 2, weight=4.7)
>>> G.add_edges_from([(3,4), (4,5)], color='red’)
>>> G.add_edges_from([(1,2,{ " color’:"blue’}), (2,3,{ 'weight’”:8})1)

38

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G[1][2]["weight’] = 4.7
>>> G.edge[l][2]['weight’] = 4
Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> print [n for n in G if n<3] # iterate through nodes
[1, 2]

>>> print len (G) # number of nodes in graph

5

>>> print G[1l] # adjacency dict keyed by neighbor to edge attributes
ce # Note: you should not change this dict manually!
{2: {’color’: "blue’, "weight’: 4}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter () :

for nbr,eattr in nbrsdict.iteritems|() :
if "weight’ in eattr:
. print (n,nbr,eattr[’weight’])
(1, 2, 4)

(2, 3, 8)

>>> print [(u,v,edata[’weight’]) for u,v,edata in G.edges(data=True) if ’'weight’ in edata]
[(x, 2, 4), (2, 3, 8)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and removing nodes and edges

DiGraph.__init__ (¥**attr[, data, name]) Initialize a graph with edges, name, graph attributes.
DiGraph.add_node(n, **attr[, attr_dict]) Add a single node n and update node attributes.
DiGraph.add_nodes_from(nodes, **attr) Add multiple nodes.
DiGraph.remove_node(n) Remove node n
DiGraph.remove_nodes_from(nbunch) Remove multiple nodes.

DiGraph.add_edge(u, v, **attr[, attr_dict]) Add an edge between u and v.
DiGraph.add_edges_ from(ebunch, **attr[, Add all the edges in ebunch.

)]

DiGraph.add_weighted_edges_from(ebunch, Add all the edges in ebunch as weighted edges with
**attr) specified weights.

DiGraph.remove_edge(u, V) Remove the edge between u and v.
DiGraph.remove_edges_ from(ebunch) Remove all edges specified in ebunch.
DiGraph.add_star(nlist, **attr) Add a star.

DiGraph.add_path(nlist, **attr) Add a path.

DiGraph.add_cycle(nlist, **attr) Add a cycle.

DiGraph.clear() Remove all nodes and edges from the graph.

3.2. Basic graph types 39

NetworkX Reference, Release 1.2

networkx.DiGraph.__init__

__init_ (data=None, name=", **attr)
Initialize a graph with edges, name, graph attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See Also:

convert

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph (name="my graph’)

>>> e = [(1,2),(2,3),(3,4)] # list of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{’day’: 'Friday’}

networkx.DiGraph.add_node

add_node (n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters n : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with
the node.

attr : keyword arguments, optional
Set or change attributes using key=value.
See Also:

add_nodes_from

40 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node ('Hello’)

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_node (K3)

>>> G.number_of_nodes ()

3

Use keywords set/change node attributes:

>>> G.add_node(1l,size=10)
>>> G.add_node (3,weight=0.4,UTM=("13S’,382871,3972649))

networkx.DiGraph.add_nodes_from

add_nodes_from (nodes, **attr)
Add multiple nodes.

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See Also:
add_node

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from(’'Hello’)

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes ())

[0, 1, 2, "H’, ’'e’", 17, 70’]

Use keywords to update specific node attributes for every node.

3.2. Basic graph types 4

NetworkX Reference, Release 1.2

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from ([(1,dict (size=11)), (2,{’color’:"blue’})])
>>> G.node[l] ['size’]

11

>>> H = nx.Graph()

>>> .add_nodes_from(G.nodes (data=True))

>>> H.node[l] ['size’]

11

jas}

networkx.DiGraph.remove_node

remove_node (n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n : node
A node in the graph
Raises NetworkXError :
If n is not in the graph.
See Also:

remove_nodes_from
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> G.edges ()

[, 1), (1, 2)1]

>>> G.remove_node (1)

>>> G.edges ()

[]

networkx.DiGraph.remove_nodes_from

remove_nodes_from (nbunch)
Remove multiple nodes.

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it
is silently ignored.

See Also:

remove_node

42 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

add_path ([0,1,21)

G

>>> G.
>>> e = G.nodes ()

e

1,

>>>
[o, 2]

>>> G.remove_nodes_from(e)
>>> G.nodes ()

networkx.DiGraph.add_edge

add_edge (u, v, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None)
Python objects.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
the edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:
add_edges_from add a collection of edges
Notes

Adding an edge that already exists updates the edge data.

NetworkX algorithms designed for weighted graphs use as the edge weight a numerical value assigned to the
keyword ‘weight’.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two—-node form

>>> G.add_edge (xe) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

3.2. Basic graph types 43

NetworkX Reference, Release 1.2

Associate data to edges using keywords:

>>> G.add_edge (1, 2, weight=3)
>>> G.add_edge (1, 3, weight=7, capacity=15, length=342.7)

networkx.DiGraph.add_edges_from

add_edges_ from (ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters ebunch : container of edges

Each edge given in the container will be added to the graph. The edges must be given
as as 2-tuples (u,v) or 3-tuples (u,v,d) where d is a dictionary containing edge data.

attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
each edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edge add a single edge

add_weighted_ edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1), (1,2)]) # using a list of edge tuples
>>> e = zip(range (0, 3),range(1l,4))

>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges
>>> G.add_edges_from([(1,2), (2,3)], weight=3)

>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

networkx.DiGraph.add_weighted_edges_from

add_weighted_edges_from (ebunch, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch : container of edges

44 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Each edge given in the list or container will be added to the graph. The edges must be
given as 3-tuples (u,v,w) where w is a number.

attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.
See Also:

add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0),(1,2,7.5)1)

networkx.DiGraph.remove_edge

remove_edge (u, v)

Remove the edge between u and v.
Parameters u,v: nodes :
Remove the edge between nodes u and v.
Raises NetworkXError :
If there is not an edge between u and v.

See Also:

remove_edges_from remove a collection of edges

Examples

>>> G = nx.Graph() # or DiGraph, etc

>>> G.add_path([0,1,2,3])

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple

>>> e = (2,3,{’weight’:7}) # an edge with attribute data
>>> G.remove_edge (xe[:2]) # select first part of edge tuple

3.2.

Basic graph types 45

NetworkX Reference, Release 1.2

networkx.DiGraph.remove_edges_from

remove_edges_from (ebunch)
Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples :

Each edge given in the list or container will be removed from the graph. The edges can
be:

* 2-tuples (u,v) edge between u and v.
* 3-tuples (u,v,k) where k is ignored.

See Also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> ebunch=[(1,2), (2,3)]

>>> G.remove_edges_from(ebunch)

networkx.DiGraph.add_star

add_star (nlist, **attr)
Add a star.

The first node in nlist is the middle of the star. It is connected to all other nodes in nlist.
Parameters nlist : list
A list of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.
See Also:

add_path, add_cycle

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,31)
>>> G.add_star([10,11,12],weight=2)

46 Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.DiGraph.add_path

add_path (nlist, **attr)
Add a path.

Parameters nlist : list

A list of nodes. A path will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.
See Also:

add_star,add_cycle
Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

networkx.DiGraph.add_cycle

add_cycle (nlist, **attr)
Add a cycle.

Parameters nlist : list

A list of nodes. A cycle will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.
See Also:

add_path, add_star

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

networkx.DiGraph.clear

clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

3.2. Basic graph types 47

NetworkX Reference, Release 1.2

Examples

= nx.Graph()
.add_path([0,1,2,3])
.clear ()
.nodes ()

.edges ()

Iterating over nodes and edges

or DiGraph, MultiGraph, MultiDiGraph,

etc

DiGraph.
DiGraph.
DiGraph
DiGraph.
DiGraph.
DiGraph.
DiGraph.
data])
DiGraph.
DiGraph.
data])
DiGraph.
default])
DiGraph.
DiGraph.
DiGraph
DiGraph.
DiGraph.
DiGraph.
DiGraph
DiGraph.
DiGraph.
DiGraph.

nodes([data])
nodes_iter([data])

.__dter_ (0

edges([nbunch, data])
edges_1iter([nbunch, data])
out_edges([nbunch, data])
out_edges_1iter([nbunch,

in_edges([nbunch, data])
in_edges_iter([nbunch,

get_edge_data(u, v[,

neighbors(n)
neighbors_iter(n)

.__getitem__ (n)

successors(n)
successors_iter(n)
predecessors(n)

.predecessors_iter(n)

adjacency_list()
adjacency_iter()
nbunch_iter([nbunch])

Return a list of the nodes in the graph.
Return an iterator over the nodes.
Iterate over the nodes.

Return a list of edges.

Return an iterator over the edges.
Return a list of edges.

Return an iterator over the edges.

Return a list of the incoming edges.
Return an iterator over the incoming edges.

Return the attribute dictionary associated with edge (u,v).

Return a list of successor nodes of n.

Return an iterator over successor nodes of n.

Return a dict of neighbors of node n.

Return a list of successor nodes of n.

Return an iterator over successor nodes of n.

Return a list of predecessor nodes of n.

Return an iterator over predecessor nodes of n.

Return an adjacency list representation of the graph.

Return an iterator of (node, adjacency dict) tuples for all nodes.
Return an iterator of nodes contained in nbunch that are also in the
graph.

networkx.DiGraph.nodes

nodes (data=Fualse)
Return a list of the nodes in the graph.

Parameters data : boolean, optional (default=False)

If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns nlist : list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

48

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2])

>>> print G.nodes ()

[0, 1, 2]

>>> G.add_node (1, time='5pm’)

>>> print G.nodes (data=True)

[0, {1, (1, {'time’: "5Spm’}), (2,

networkx.DiGraph.nodes_iter

nodes_iter (data=False)
Return an iterator over the nodes.

Parameters data : boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data

dictionary

Returns niter : iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node

data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph,

>>> G.add_path([0,1,2])
>>> for n in G:
print n,

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph,

>>> G.add_path([0,1,2])

>>> for n in G.nodes_iter () :
. print n,

012

>>> for n,d in G.nodes_iter (data=True) :

e print d,
{y {1y {}

networkx.DiGraph.__iter__

__iter ()

Iterate over the nodes. Use the expression ‘for nin G’.

MultiDiGraph, etc

MultiDiGraph, etc

3.2. Basic graph types

49

NetworkX Reference, Release 1.2

Returns niter : iterator

An iterator over all nodes in the graph.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> for n in G:

ce print n,

0123

networkx.DiGraph.edges

edges (nbunch=None, data=False)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not
specified.

See Also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.edges ()

[0, 1), (1, 2), (2, 3)]

>>> G.edges (data=True) # default edge data is {} (empty dictionary)
[, 1, {H, 1, 2, {hH, 2, 3, {}1H]

>>> G.edges ([0,3])

[0, 1), (3, 2)]

>>> G.edges (0)

[(0, 1)]

50 Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.DiGraph.edges_iter

edges_iter (nbunch=None, data=False)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).
Returns edge_iter : iterator
An iterator of (u,v) or (u,v,d) tuples of edges.

See Also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.

Examples

>>> G = nx.DiGraph () # or MultiDiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [e for e in G.edges_iter ()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges_iter (data=True)) # default data is {} (empty dict)
[, 1, {H, (1, 2, {hH, 2, 3, {}N]

>>> list (G.edges_iter ([0,21))

[0, 1), (2, 3)]

>>> list (G.edges_iter (0))

[(0, 1)]

networkx.DiGraph.out_edges

out_edges (nbunch=None, data=False)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).

Returns edge_list: list of edge tuples :

3.2. Basic graph types 51

NetworkX Reference, Release 1.2

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not
specified.

See Also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.edges ()

[0, 1), (1, 23, (2, 3)]

>>> G.edges (data=True) # default edge data is {} (empty dictionary)
[0, 1, {H, (1, 2, {1, (2, 3, {}H]

>>> G.edges ([0,3])

[0, 1), (3, 2)]

>>> G.edges (0)

[(0, 1)]

networkx.DiGraph.out_edges _iter

out_edges_iter (nbunch=None, data=False)
Return an iterator over the edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).
Returns edge_iter : iterator
An iterator of (u,v) or (u,v,d) tuples of edges.

See Also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.

52 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.DiGraph () # or MultiDiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [e for e in G.edges_iter ()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges_iter (data=True)) # default data is {}
[0, 1, (), (L, 2, {bH), (2, 3, {}H]

>>> list (G.edges_iter ([0,21))

[0, 1), (2, 3)]

>>> list (G.edges_iter (0))

[(0, 1)]

(empty dict)

networkx.DiGraph.in_edges

in_edges (nbunch=None, data=False)
Return a list of the incoming edges.

See Also:

edges return a list of edges

networkx.DiGraph.in_edges_iter

in_edges_iter (nbunch=None, data=False)
Return an iterator over the incoming edges.

Parameters nbunch : iterable container, optional (default= all nodes)

A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict in 3-tuple (u,v,data).

Returns in_edge_iter : iterator

An iterator of (u,v) or (u,v,d) tuples of incoming edges.
See Also:

edges_iter return an iterator of edges

networkx.DiGraph.get_edge_data

get_edge_data (u, v, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters u,v : nodes
default: any Python object (default=None) :
Value to return if the edge (u,v) is not found.

Returns edge_dict : dictionary

3.2. Basic graph types 53

NetworkX Reference, Release 1.2

The edge attribute dictionary.

Notes

It is faster to use G[u][v].

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G[O0][1]

{}

Warning: Assigning G[u][v] corrupts the graph data structure. But it is safe to assign attributes to that dictionary,

>>> G[O0][1]['weight’] = 7
>>> G[0][1]["weight']

5

>>> G[1]1[0]['weight’]

7

Examples

>>>

(9]

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path([0,1,2,3])
.get_edge_data (0,1) # default edge data is {}

>>>

()

>>>

{}

>>>

@

(0]

= (0,1)
>>> G.get_edge_data(xe) # tuple form

{}
>>> G.get_edge_data(’a’,’b’,default=0) # edge not in graph, return 0

@

networkx.DiGraph.neighbors

neighbors (n)
Return a list of successor nodes of n.

neighbors() and successors() are the same function.

networkx.DiGraph.neighbors_iter
neighbors_iter (n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

networkx.DiGraph.__getitem__

__getitem_ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

54 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Parameters n : node
A node in the graph.

Returns adj_dict : dictionary

The adjacency dictionary for nodes connected to n.

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])
>>> print G[O0]
{1: {}}

networkx.DiGraph.successors
successors (n)

Return a list of successor nodes of n.

neighbors() and successors() are the same function.

networkx.DiGraph.successors_iter
successors_iter (n)

Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

networkx.DiGraph.predecessors

predecessors (n)
Return a list of predecessor nodes of n.

networkx.DiGraph.predecessors_iter

predecessors_iter (n)
Return an iterator over predecessor nodes of n.

3.2. Basic graph types

55

NetworkX Reference, Release 1.2

networkx.DiGraph.adjacency_list

adjacency_ list ()

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See Also:

adjacency_iter
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.adjacency_list () # in order given by G.nodes ()

(rx1, o, 21, (1, 31, [2]]

networkx.DiGraph.adjacency iter

adjacency_iter ()

Return an iterator of (node, adjacency dict) tuples for all nodes.
This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter : iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.
See Also:

adjacency_list
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter ()]

[0, {1: {}+}), (L, {0 {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

networkx.DiGraph.nbunch_iter

nbunch_iter (nbunch=None)

Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch : iterable container, optional (default=all nodes)

56

Chapter 3. Graph types

NetworkX Reference, Release 1.2

A container of nodes. The container will be iterated through once.

Returns niter : iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate

over all nodes in the graph.

Raises NetworkXError :

If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.

See Also:

Graph._ _iter

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when

nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

DiGraph.has_node(n)
DiGraph._ contains__ (n)

DiGraph.has_edge(u, V)
DiGraph.order()
DiGraph.number_of_nodes()
DiGraph.__len_ ()
DiGraph.degree([nbunch, weighted])
DiGraph.degree_iter([nbunch, weighted])
DiGraph.in_degree([nbunch, weighted])
DiGraph.in_degree_iter([nbunch,
weighted])
DiGraph.out_degree([nbunch, weighted])
DiGraph.out_degree_iter([nbunch,
weighted])

DiGraph. size([weighted])
DiGraph.number_of_edges([u, v])
DiGraph.nodes_with_selfloops()
DiGraph.selfloop_edges([data])
DiGraph.number_of_selfloops()

Return True if the graph contains the node n.
Return True if n is a node, False otherwise. Use the
expression

Return True if the edge (u,v) is in the graph.
Return the number of nodes in the graph.
Return the number of nodes in the graph.
Return the number of nodes.

Return the degree of a node or nodes.
Return an iterator for (node, degree).

Return the in-degree of a node or nodes.
Return an iterator for (node, in-degree).

Return the out-degree of a node or nodes.
Return an iterator for (node, out-degree).

Return the number of edges.

Return the number of edges between two nodes.
Return a list of nodes with self loops.

Return a list of selfloop edges.

Return the number of selfloop edges.

networkx.DiGraph.has_node

has_node (n)
Return True if the graph contains the node n.

Parameters n : node

3.2. Basic graph types

57

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print G.has_node (0)

True

It is more readable and simpler to use

>>> 0 in G
True

networkx.DiGraph.__contains___

__contains__ (n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print 1 in G

True

networkx.DiGraph.has_edge

has_edge (u, v)
Return True if the edge (u,v) is in the graph.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None)
Python objects.

Returns edge_ind : bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v or edge tuple (u,v)

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.has_edge (0, 1) # using two nodes

True

>>> e = (0,1)

>>> G.has_edge (xe) # e 1is a 2-tuple (u,v)

True

>>> e = (0,1, {"weight’:7})

58 Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G.has_edge (*xe[:2]) # e is a 3-tuple (u,v,data_dictionary)
True

The following syntax are all equivalent:

>>> G.has_edge (0, 1)

True

>>> 1 in G[O] # though this gives KeyError if 0 not in G
True

networkx.DiGraph.order

order ()
Return the number of nodes in the graph.

Returns nnodes : int
The number of nodes in the graph.
See Also:

number_of_ nodes, len

networkx.DiGraph.number_of_nodes

number of nodes ()
Return the number of nodes in the graph.

Returns nnodes : int
The number of nodes in the graph.
See Also:

order, len

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print len (G)

3

networkx.DiGraph.__len___

_len__ ()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes : int

The number of nodes in the graph.

3.2. Basic graph types 59

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print len (G)

4

networkx.DiGraph.degree

degree (nbunch=None, weighted=False)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd : dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree (0)

>>> G.degree ([0,1])

{0: 1, 1: 2}

>>> G.degree([0,1]) .values()
[1, 2]

networkx.DiGraph.degree_iter

degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator

The iterator returns two-tuples of (node, degree).

60 Chapter 3. Graph types

NetworkX Reference, Release 1.2

See Also:

degree, in_degree, out_degree, in_degree_iter, out_degree_iter

Examples

>>> G = nx.DiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])

>>> list (G.degree_iter (0)) # node 0 with degree 1

[(0, 1)]
>>> list (G.degree_iter ([0,1]))
[0, 1), (1, 2)1

networkx.DiGraph.in_degree

in_degree (nbunch=None, weighted=False)
Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.

Parameters nbunch : iterable container, optional (default=all nodes)

A container of nodes. The container will be iterated through once.

weighted : bool, optional (default=False)

If True return the sum of edge weights adjacent to the node.

Returns nd : dictionary, or number

A dictionary with nodes as keys and in-degree as values or a number if a single node is

specified.
See Also:

degree, out_degree, in_degree_iter
Examples

>>> G = nx.DiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree (0)

>>> G.in_degree ([0,1])

{0: 0, 1: 1}

>>> G.in_degree ([0,1]) .values()
[0, 1]

networkx.DiGraph.in_degree_iter

in_degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.

3.2. Basic graph types

61

NetworkX Reference, Release 1.2

Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, in-degree).

See Also:

degree, in_degree, out_degree, out_degree_iter
Examples

>>> G = nx.DiGraph ()

>>> G.add_path([0,1,2,3])

>>> 1ist (G.in_degree_iter (0)) # node 0 with degree 0
[(0, 0)]

>>> 1list (G.in_degree_iter ([0,1]))

[0, 0), (1, 1)]

networkx.DiGraph.out_degree

out_degree (nbunch=None, weighted=False)
Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd : dictionary, or number

A dictionary with nodes as keys and out-degree as values or a number if a single node
is specified.

Examples

>>> G = nx.DiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree (0)

>>> G.out_degree ([0,1])

{0: 1, 1: 1}

>>> G.out_degree([0,1]) .values()
[1, 1]

62 Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.DiGraph.out_degree _iter

out_degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, out-degree).
See Also:

degree, in_degree, out_degree, in_degree_iter
Examples

>>> G = nx.DiGraph ()

>>> G.add_path([0,1,2,3])

>>> 1list (G.out_degree_iter (0)) # node 0 with degree 1
[(0, 1)]

>>> list (G.out_degree_iter ([0,11]))

[0, 1), (1, 1)1

networkx.DiGraph.size

size (weighted=False)
Return the number of edges.

Parameters weighted : boolean, optional (default=False)
If True return the sum of the edge weights.
Returns nedges : int
The number of edges in the graph.
See Also:

number_of_edges
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.size ()

3

3.2. Basic graph types 63

NetworkX Reference, Release 1.2

>>>
>>>
>>>
>>>

>>>

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph,

.add_edge (’"a’,’b’ ,weight=2)
.add_edge ("b’,’c’,weight=4)
.size ()

.size (weighted=True)

networkx.DiGraph.number_of_edges

number_ of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u,v : nodes, optional (default=all edges)

etc

If u and v are specified, return the number of edges between u and v. Otherwise return

the total number of all edges.

Returns nedges : int

The number of edges in the graph. If nodes u and v are specified return the number of

edges between those nodes.

See Also:

size

Examples

>>>
>>>
>>>

>>>

>>>
>>>

@ @

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph,

.add_path([0,1,2,3])
.number_of_edges ()

.number_of_edges (0, 1)

= (0,1)

.number_of_edges (*e)

networkx.DiGraph.nodes_with_selfloops

nodes_with_selfloops ()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.

Returns nodelist : list

A list of nodes with self loops.

See Also:

selfloop_edges, number_of_selfloops

etc

64

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_edge (1,1)
>>> G.add_edge (1,2)
>>> G.nodes_with_selfloops ()

[1]

networkx.DiGraph.selfloop_edges

selfloop_edges (data=False)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

Parameters data : bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data)

(data=True)
Returns edgelist : list of edge tuples
A list of all selfloop edges.
See Also:

selfloop_nodes, number_of_selfloops

Examples

G

G.add_edge(1,1)
>>> G.add_edge (1, 2)

G.

>>> selfloop_edges ()

[(1, 1)]

>>> G.selfloop_edges (data=True)
(1, 1, {H1

networkx.DiGraph.number_of_selfloops

number_ of_selfloops ()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.
Returns nloops : int
The number of selfloops.
See Also:
selfloop_nodes, selfloop_edges

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

3.2. Basic graph types

65

NetworkX Reference, Release 1.2

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops|()

1

Making copies and subgraphs

DiGraph.copy() Return a copy of the graph.
DiGraph.to_undirected() Return an undirected representation of the digraph.
DiGraph.to_directed() Return a directed copy of the graph.
DiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
DiGraph.reverse([copy]) Return the reverse of the graph.

networkx.DiGraph.copy

copy ()
Return a copy of the graph.

Returns G : Graph
A copy of the graph.
See Also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H G.copy ()

networkx.DiGraph.to_undirected

to_undirected()
Return an undirected representation of the digraph.

Returns G : Graph

An undirected graph with the same name and nodes and with edge (u,v,data) if either
(u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge
data is different, only one edge is created with an arbitrary choice of which edge data to
use. You must check and correct for this manually if desired.

66 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a
combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the
edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

networkx.DiGraph.to_directed

to_directed()
Return a directed copy of the graph.

Returns G : DiGraph
A deepcopy of the graph.

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph () # or MultiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[(0, 1)]

3.2. Basic graph types 67

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 1.2

networkx.DiGraph.subgraph

subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.
Returns G : Graph
A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an in-place reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> H = G.subgraph([0,1,2])

>>> print H.edges|()

[0, 1), (1, 2)]

networkx.DiGraph.reverse

reverse (copy=True)
Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.
Parameters copy : bool optional (default=True)

If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse
graph is created using the original graph (this changes the original graph).

3.2.3 MultiGraph - Undirected graphs with self loops and parallel edges
Overview

MultiGraph (data=None, name=", **attr)
An undirected graph class that can store multiedges.

Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.

68 Chapter 3. Graph types

NetworkX Reference, Release 1.2

A MultiGraph holds undirected edges. Self loops are allowed.

Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.

Edges are represented as links between nodes with optional key/value attributes.
Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also:

Graph, DiGraph, MultiDiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.
>>> G = nx.MultiGraph()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph (10)

>>> G.add_nodes_from (H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a
customized node object, or even another Graph.

>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

>>> G.add_edge (1, 2)

a list of edges,

3.2. Basic graph types 69

NetworkX Reference, Release 1.2

>>> G.add_edges_from ([(1,2), (1,3)])
or a collection of edges,
>>> G.add_edges_from(H.edges ())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused
integer.

>>> G.add_edges_from ([(4,5,dict (route=282)), (4,5,dict (route=37))1)
>>> G[4]
{3: {0: {}}, 5: {0: {}, 1: {’'route’: 282}, 2: {’'route’: 37}}}

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiGraph (day="Friday")
>>> G.graph
{"day’: ’"Friday’}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm’)

>>> G.add_nodes_from([3], time=’'2pm’)

>>> G.node[1]

{"time’: ’"5pm’}

>>> G.node[l]['room”] = 714

>>> G.nodes (data=True)

[(1, {"room’”: 714, "time’: ’'5Spm’}), (3, {’time’: ’"2pm’})]

Warning: adding a node to G.node does not add it to the graph.

Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.

>>> G.add_edge (1, 2, weight=4.7)
>>> G.add_edges_from([(3,4), (4,5)], color="red’)
>>> G.add_edges_from([(1,2,{ color’:"blue’}), (2,3,{ weight’:8})1)

>>> G[1][2]1[0]["weight’] = 4.7
>>> G.edge[1l][2][0]["weight’] = 4
Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> print [n for n in G if n<3] # iterate through nodes
(1, 2]

>>> print len (G) # number of nodes in graph

5

>>> print G[1l] # adjacency dict keyed by neighbor to edge attributes

70

Chapter 3. Graph types

NetworkX Reference, Release 1.2

ce # Note: you should not change this dict manually!
{2: {0: {’weight’: 4}, 1: {’color’: ’'blue’}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter () :
for nbr,keydict in nbrsdict.iteritems():
for key,eattr in keydict.iteritems () :
if 'weight’ in eattr:
print (n,nbr,eattr[’weight’])

(1, 2, 4)
(2, 1, 4)
(2, 3, 8)
(3, 2, 8)

>>> print [(u,v,edata[’weight’]) for u,v,edata in G.edges(data=True) if ’'weight’ in edata]
[y, 2, 4), (2, 3, 8)]

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and removing nodes and edges

MultiGraph.__init__ (¥*attr[, data, name]) Initialize a graph with edges, name, graph attributes.
MultiGraph.add_node(n, **attr[, attr_dict]) Add a single node n and update node attributes.
MultiGraph.add_nodes_from(nodes, **attr) Add multiple nodes.
MultiGraph.remove_node(n) Remove node n.
MultiGraph.remove_nodes_from(nodes) Remove multiple nodes.
MultiGraph.add_edge(u, v, **attr[, key, ...]) Add an edge between u and v.
MultiGraph.add_edges_from(ebunch, Add all the edges in ebunch.

**attr[, ...])

MultiGraph.add_weighted_edges_from(eburddid all the edges in ebunch as weighted edges with
) specified weights.
MultiGraph.remove_edge(u, v[, key]) Remove an edge between u and v.
MultiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
MultiGraph.add_star(nlist, **attr) Add a star.

MultiGraph.add_path(nlist, **attr) Add a path.

MultiGraph.add_cycle(nlist, **attr) Add a cycle.

MultiGraph.clear() Remove all nodes and edges from the graph.

networkx.MultiGraph.__init__

__init_ (data=None, name=", **attr)
Initialize a graph with edges, name, graph attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python

3.2. Basic graph types 4

NetworkX Reference, Release 1.2

packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

See Also:

convert

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph (name="my graph’)

>> e = [(1,2),(2,3),(3,4)] # list of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{’day’: ’'Friday’}

networkx.MultiGraph.add_node

add_node (n, attr_dict=None, **attr)

Add a single node n and update node attributes.
Parameters n : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with
the node.

attr : keyword arguments, optional
Set or change attributes using key=value.

See Also:

add_nodes_from

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

72

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node('Hello’)

>>> K3 = nx.Graph([(0,1),(1,2),(2,0)])

>>> G.add_node (K3)

>>> G.number_of_nodes ()

3

Use keywords set/change node attributes:

>>> G.add_node(l,size=10)
>>> G.add_node (3,weight=0.4,UTM= (" 13S’,382871,3972649))

networkx.MultiGraph.add_nodes_from

add_nodes_ from (nodes, **attr)

Add multiple nodes.
Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples.
Node attributes are updated using the attribute dict.

attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple
take precedence over attributes specified generally.

See Also:

add_node

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_nodes_from(’Hello’)

>>> K3 = nx.Graph ([(0,1), (1,2),(2,0)1])

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes ())

(o, 1, 2, "H’, e, 17, 70’]

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1,2], size=10)
>>> G.add_nodes_from([3,4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from ([(1,dict (size=11)), (2,{’color’:"blue’})])
>>> G.node[l] ['size’]

11

>>> H = nx.Graph()

3.2.

Basic graph types 73

NetworkX Reference, Release 1.2

>>> H.add_nodes_from(G.nodes (data=True))
>>> H.node[l]['size’]
11

networkx.MultiGraph.remove_node

remove_node (n)
Remove node n.

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.
Parameters n : node
A node in the graph
Raises NetworkXError :
If n is not in the graph.
See Also:

remove_nodes_from
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> G.edges ()

[, 1), (1, 2)1

>>> G.remove_node (1)

>>> G.edges ()

[]

networkx.MultiGraph.remove_nodes_from

remove_nodes_from (nodes)
Remove multiple nodes.

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it
is silently ignored.

See Also:

remove_node
Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path([0,1,21)

= G.nodes ()

>>>
>>>

O O Q@

>>>

74 Chapter 3. Graph types

NetworkX Reference, Release 1.2

[0, 1, 2]
>>> G.remove_nodes_from(e)
>>> G.nodes ()

[]

networkx.MultiGraph.add_edge

add_edge (u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None)
Python objects.

key : hashable identifier, optional (default=lowest unused integer)
Used to distinguish multiedges between a pair of nodes.
attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
the edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edges_from add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge
will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear
how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph
algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two-node form

>>> G.add_edge (*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

3.2. Basic graph types 75

NetworkX Reference, Release 1.2

Associate data to edges using keywords:

>>> G.add_edge (1, 2, weight=3)
>>> G.add_edge (1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge (1, 3, weight=7, capacity=15, length=342.7)

networkx.MultiGraph.add_edges_from

add_edges_from (ebunch, attr_dict=None, **attr)

Add all the edges in ebunch.
Parameters ebunch : container of edges
Each edge given in the container will be added to the graph. The edges can be:
e 2-tuples (u,v) or
* 3-tuples (u,v,d) for an edge attribute dict d, or
* 4-tuples (u,v.k.d) for an edge identified by key k
attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
each edge.

attr : keyword arguments, optional

Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edge add a single edge

add_weighted_ edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edges_from([(0,1), (1,2)]) # using a list of edge tuples
>>> e = zip(range (0, 3),range(1l,4))
>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

76

Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.MultiGraph.add_weighted_edges_from

add_weighted_edges_from (ebunch, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch : container of edges

Each edge given in the list or container will be added to the graph. The edges must be
given as 3-tuples (u,v,w) where w is a number.

attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.
See Also:

add_edge add a single edge
add_edges_from add multiple edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)1)

networkx.MultiGraph.remove_edge

remove_edge (u, v, key=None)
Remove an edge between u and v.

Parameters u,v: nodes :
Remove an edge between nodes u and v.
key : hashable identifier, optional (default=None)

Used to distinguish multiple edges between a pair of nodes. If None remove a single
(arbitrary) edge between u and v.

Raises NetworkXError :

If there is not an edge between u and v, or if there is no edge with the specified key.

See Also:

remove_edges_from remove a collection of edges

3.2. Basic graph types 77

NetworkX Reference, Release 1.2

Examples

>>> G = nx.MultiGraph ()

>>> G.add_path([0,1,2,3])

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple
For multiple edges

>>> G = nx.MultiGraph () # or MultiDiGraph, etc
>>> G.add_edges_from([(1,2), (1,2), (1,2)])
>>> G.remove_edge (1l,2) # remove a single (arbitrary) edge

For edges with keys
>>> = nx.MultiGraph () # or MultiDiGraph, etc
add_edge (1, 2,key="first’)

G

G.
>>> G.add_edge (1,2, key="second’)
>>> G.remove_edge (1, 2,key="second’)

>>>

networkx.MultiGraph.remove_edges_from

remove_edges_from (ebunch)

Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples :

Each edge given in the list or container will be removed from the graph. The edges can

be:

* 2-tuples (u,v) All edges between u and v are removed.

* 3-tuples (u,v.key) The edge identified by key is removed.
See Also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.
Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])

>>> ebunch=[(1,2), (2,3)]

>>> G.remove_edges_from (ebunch)

Removing multiple copies of edges

78

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G = nx.MultiGraph()

>>> G.add_edges_from([(1,2), (1,2),(1,2)1])

>>> G.remove_edges_from([(1,2), (1,2)])

>>> print G.edges|()

[(1, 2)]

>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> print G.edges () # now empty graph

[]

networkx.MultiGraph.add_star

add_star (nlist, **attr)
Add a star.

The first node in nlist is the middle of the star. It is connected to all other nodes in nlist.
Parameters nlist : list
A list of nodes.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in star.
See Also:

add_path, add_cycle
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,31)
>>> G.add_star([10,11,12],weight=2)

networkx.MultiGraph.add_path

add_path (nlist, **attr)
Add a path.

Parameters nlist : list

A list of nodes. A path will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.

See Also:

add_star, add_cycle

3.2. Basic graph types 79

NetworkX Reference, Release 1.2

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

networkx.MultiGraph.add_cycle

add_cycle (nlist, **attr)
Add a cycle.

Parameters nlist : list

A list of nodes. A cycle will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.
See Also:

add_path, add_star
Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([10,11,12],weight=7)

networkx.MultiGraph.clear

clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.
Examples

G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

G.clear ()
G.nodes ()

>>> G.edges ()

80 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Iterating over nodes and edges

MultiGraph.
MultiGraph.

MultiGraph

keys])

MultiGraph.

default])

MultiGraph.
MultiGraph.
.__getitem__(n)
MultiGraph.
MultiGraph.
MultiGraph.

MultiGraph

nodes([data])
nodes_1iter([data])

. dter_ ()
MultiGraph.
MultiGraph.

edge s([nbunch, data, keys])
edges_ iter([nbunch, data,

get_edge_data(u, v[, key,

neighbors(n)
neighbors_iter(n)

adjacency_list()
adjacency_iter()
nbunch_ iter([nbunch])

Return a list of the nodes in the graph.
Return an iterator over the nodes.
Iterate over the nodes.

Return a list of edges.

Return an iterator over the edges.

Return the attribute dictionary associated with edge (u,v).

Return a list of the nodes connected to the node n.

Return an iterator over all neighbors of node n.

Return a dict of neighbors of node n.

Return an adjacency list representation of the graph.

Return an iterator of (node, adjacency dict) tuples for all nodes.
Return an iterator of nodes contained in nbunch that are also in
the graph.

networkx.MultiGraph.nodes

nodes (data=Fualse)
Return a list of the nodes in the graph.

Parameters data : boolean, optional (default=False)

If False return a list of nodes. If True return a two-tuple of node and node data dictionary

Returns nlist : list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).

Examples

>>> G =
>>>

nx.Graph ()
G.add_path([0,1,2])

>>> print G.nodes ()

[0, 1, 2]
G.add_node (1,

>>>

time=’5pm’)

>>> print G.nodes (data=True)

L0, {1

(1, {"time’: ’"5pm’}),

networkx.MultiGraph.nodes _iter

nodes_iter (data=False)
Return an iterator over the nodes.

or DiGraph, MultiGraph, MultiDiGraph,

etc

(2, {H1

Parameters data : boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data

dictionary

Returns niter : iterator

3.2. Basic graph types

81

NetworkX Reference, Release 1.2

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node
data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for nin G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> for n in G:

print n,

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> for n in G.nodes_iter():

ce print n,

01 2

>>> for n,d in G.nodes_iter (data=True) :
print d,

{r {r {}

networkx.MultiGraph.__iter

__iter_ ()
Iterate over the nodes. Use the expression ‘for nin G’.

Returns niter : iterator

An iterator over all nodes in the graph.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> for n in G:

o print n,

0123

networkx.MultiGraph.edges

edges (nbunch=None, data=False, keys=False)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).

Parameters nbunch : iterable container, optional (default= all nodes)

82 Chapter 3. Graph types

NetworkX Reference, Release 1.2

A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
keys : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).
Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not
specified.

See Also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> G.add_path([0,1,2,3])

>>> G.edges ()

[, 1)y, (1, 23, (2, 3)]

>>> G.edges (data=True) # default edge data is {} (empty dictionary)
[0, 1, {H, (1, 2, {1, (2, 3, {}H]

>>> G.edges (keys=True) # default keys are integers

[(o, 1, 0), (1, 2, 0), (2, 3, 0)]

>>> G.edges (data=True, keys=True) # default keys are integers
(o, 1, o, {», 1, 2, 0, {1, (2, 3, 0, {H]

>>> G.edges ([0,3])

[0, 1), (3, 2)]

>>> G.edges (0)

[(0, 1)]

networkx.MultiGraph.edges_iter

edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)

If True, return edge keys with each edge.

3.2. Basic graph types 83

NetworkX Reference, Release 1.2

Returns edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.
See Also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> G.add_path([0,1,2,3])

>>> [e for e in G.edges_iter ()]

[0, 1), (1, 2), (2, 3)]

>>> list (G.edges_iter (data=True)) # default data is {} (empty dict)
[, 1, {H, 1, 2, {H, 2, 3, {}N]

>>> list (G.edges (keys=True)) # default keys are integers
(o, 1, 0), (1, 2, 0), (2, 3, 0)1]
>>> list (G.edges (data=True, keys=True)) # default keys are integers

[0, 1, o, {H), (1, 2, 0, {}), (2, 3, 0, {})]
>>> list (G.edges_iter ([0,31))

[0, 1), (3, 2)]

>>> list (G.edges_iter (0))

[(0, 1)]

networkx.MultiGraph.get_edge_data

get_edge_data (u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters u,v : nodes
default: any Python object (default=None) :
Value to return if the edge (u,v) is not found.
key : hashable identifier, optional (default=None)
Return data only for the edge with specified key.
Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use G[u][v][key].

84 Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge (0, 1,key="a’,weight=7)

>>> G[O0][1]1["a’"]l # key=’a’

{’weight’: 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that
dictionary,

>>> G[0][1]["a’"]l["weight’] = 10
>>> G[O][1]["a’"][’weight’]

10

>>> G[1]1[0]["a’"]l[’weight’]

10

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> G.add_path([0,1,2,3])

>>> G.get_edge_data(0,1)

{0: {}}

>>> e = (0,1)

>>> G.get_edge_data(xe) # tuple form

{0: {}}

>>> G.get_edge_data(’a’,’b’,default=0) # edge not in graph, return 0

networkx.MultiGraph.neighbors

neighbors (n)
Return a list of the nodes connected to the node n.

Parameters n : node

A node in the graph
Returns nlist : list

A list of nodes that are adjacent to n.
Raises NetworkXError :

If the node n is not in the graph.

Notes

It is usually more convenient (and faster) to access the adjacency dictionary as G[n]:

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge(’a’,’b’,weight=7)

>>> G[’a’]

{’b’": {'weight’: 7}}

3.2. Basic graph types 85

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.neighbors (0)

[1]

networkx.MultiGraph.neighbors_iter

neighbors_iter (n)
Return an iterator over all neighbors of node n.

Notes

It is faster to use the idiom “in G[0]”, e.g. >>> for n in G[O]: ... printn 1
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print [n for n in G.neighbors_iter (0)]

[1]

networkx.MultiGraph.__getitem__

__getitem__ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n : node
A node in the graph.
Returns adj_dict : dictionary

The adjacency dictionary for nodes connected to n.

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print G[O]

{1: {}}

86 Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.MultiGraph.adjacency_list

adjacency_ list ()
Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See Also:

adjacency_iter
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.adjacency_list () # in order given by G.nodes ()

(rx1, o, 21, (1, 31, [2]]

networkx.MultiGraph.adjacency iter

adjacency_iter ()
Return an iterator of (node, adjacency dict) tuples for all nodes.

This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter : iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.
See Also:

adjacency_list
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter ()]

[0, {1: {}+}), (L, {0 {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

networkx.MultiGraph.nbunch_iter

nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.

Parameters nbunch : iterable container, optional (default=all nodes)

3.2. Basic graph types 87

NetworkX Reference, Release 1.2

A container of nodes. The container will be iterated through once.
Returns niter : iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate
over all nodes in the graph.

Raises NetworkXError :
If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.
See Also:

Graph._ _iter

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

Information about graph structure

MultiGraph.has_node(n) Return True if the graph contains the node n.
MultiGraph.__contains__(n) Return True if n is a node, False otherwise. Use the expression
MultiGraph.has_edge(u, v[, key]) Return True if the graph has an edge between nodes u and v.
MultiGraph.order() Return the number of nodes in the graph.
MultiGraph.number_of_nodes() Return the number of nodes in the graph.

MultiGraph.

len_ ()

Return the number of nodes.

MultiGraph.degree([nbunch, weighted])
MultiGraph.degree_iter([nbunch, weighted])
MultiGraph. size([weighted])
MultiGraph.number_of_edges([u, v])
MultiGraph.nodes_with_selfloops()
MultiGraph.selfloop_edges([data, keys])
MultiGraph.number_of_selfloops()

Return the degree of a node or nodes.

Return an iterator for (node, degree).

Return the number of edges.

Return the number of edges between two nodes.
Return a list of nodes with self loops.

Return a list of selfloop edges.

Return the number of selfloop edges.

networkx.MultiGraph.has_node

has_node (n)

Return True if the graph contains the node n.

Parameters n : node
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print G.has_node (0)

True

88

Chapter 3. Graph types

NetworkX Reference, Release 1.2

It is more readable and simpler to use

>>> 0 in G
True

networkx.MultiGraph.__contains___

__contains__ (n)

Return True if n is a node, False otherwise. Use the expression ‘n in G’.

Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])
>>> print 1 in G
True

networkx.MultiGraph.has_edge

has_edge (u, v, key=None)

Return True if the graph has an edge between nodes u and v.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers.

key : hashable identifier, optional (default=None)

If specified return True only if the edge with key is found.

Returns edge_ind : bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])

>>> G.has_edge (0, 1) # using two nodes

True

>>> e = (0,1)

>>> G.has_edge (*e) # e is a 2-tuple (u,v)
True

>>> G.add_edge (0, 1,key="a")

>>> G.has_edge (0, 1,key="a’") # specify key
True

>>> e=(0,1,"a")

>>> G.has_edge(*xe) # e is a 3-tuple

True

The following syntax are equivalent:

3.2. Basic graph types

89

NetworkX Reference, Release 1.2

>>> G.has_edge (0,1)
True

>>> 1 in G[O0] # though this gives KeyError if 0 not in G

True

networkx.MultiGraph.order

order ()
Return the number of nodes in the graph.

Returns nnodes : int
The number of nodes in the graph.

See Also:

number_of_ nodes, len

networkx.MultiGraph.number_of_nodes

number_of_nodes ()
Return the number of nodes in the graph.

Returns nnodes : int
The number of nodes in the graph.
See Also:

order, len

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,

>>> G.add_path([0,1,2])
>>> print len (G)
3

networkx.MultiGraph.__len___

len__ ()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes : int

The number of nodes in the graph.

Examples

etc

90

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,
>>> G.add_path([0,1,2,3])

>>> print len (G)

4

networkx.MultiGraph.degree

degree (nbunch=None, weighted=False)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.

Returns nd : dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is

specified.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,
>>> G.add_path([0,1,2,3])
>>> G.degree (0)

>>> G.degree([0,1])

{0: 1, 1: 2}

>>> G.degree([0,1]) .values()
[1, 2]

networkx.MultiGraph.degree_iter

degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).
See Also:

degree

etc

etc

3.2. Basic graph types

91

NetworkX Reference, Release 1.2

Examples

>>>
>>>
>>>
[(0,
>>>
[(0,

G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,
G.add_path([0,1,2,3])
list (G.degree_iter (0)) # node 0 with degree 1
1)]
list (G.degree_iter ([0,1]))
1, (1, 2)]

networkx.MultiGraph.size

size (weighted=False)
Return the number of edges.

Parameters weighted : boolean, optional (default=False)
If True return the sum of the edge weights.
Returns nedges : int

The number of edges in the graph.

See Also:

number_of_edges

Examples

>>>
>>>
>>>

>>>
>>>
>>>
>>>

>>>

@

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph,
.add_path ([0,1,2,31)
.size ()

Q @

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph,
.add_edge ("a’,’b’ ,weight=2)

.add_edge ("b’,’c’,weight=4)

.size ()

[ORI

G.size (weighted=True)

networkx.MultiGraph.number_of_edges

number_of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u,v : nodes, optional (default=all edges)

etc

etc

etc

If u and v are specified, return the number of edges between u and v. Otherwise return

the total number of all edges.

Returns nedges : int

92

Chapter 3. Graph types

NetworkX Reference, Release 1.2

The number of edges in the graph. If nodes u and v are specified return the number of
edges between those nodes.

See Also:

size

Examples

>>>

()

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path([0,1,2,3])
>>> G.number_of_edges ()

>>>

@

3

>>> G.number_of_edges(0,1)
1

>>> e = (0,1)

>>> G.number_of_edges (xe)
1

networkx.MultiGraph.nodes_with_selfloops

nodes_with_selfloops ()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist : list
A list of nodes with self loops.
See Also:

selfloop_edges, number_of_selfloops
Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> G.nodes_with_selfloops ()

networkx.MultiGraph.selfloop_edges

selfloop_edges (data=False, keys=False)
Return a list of selfloop edges.

A selfloop edge has the same node at both ends.
Parameters data : bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data)
(data=True)

3.2. Basic graph types 93

NetworkX Reference, Release 1.2

keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edgelist : list of edge tuples
A list of all selfloop edges.
See Also:

selfloop_nodes, number_of_selfloops
Examples

>>> = nx.MultiGraph () # or MultiDiGraph

add_edge (1, 1)

G
>>> G.

>>> G.add_edge (1, 2)
G.

>>> selfloop_edges ()

[(1, 1)]

>>> G.selfloop_edges (data=True)
[(1, 1, {H]

>>> G.selfloop_edges (keys=True)
[(1, 1, 0)1

>>> G.selfloop_edges (keys=True, data=True)
[(1, 1, 0, {})]

networkx.MultiGraph.number_of_selfloops

number_of_selfloops ()

Return the number of selfloop edges.
A selfloop edge has the same node at both ends.
Returns nloops : int
The number of selfloops.
See Also:

selfloop_nodes, selfloop_edges
Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph,
>>> G.add_edge(1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops|()

etc

94

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Making copies and subgraphs

MultiGraph.copy() Return a copy of the graph.
MultiGraph.to_undirected() Return an undirected copy of the graph.
MultiGraph.to_directed() Return a directed representation of the graph.

MultiGraph.subgraph(nbunch) Return the subgraph induced on nodes in nbunch.

networkx.MultiGraph.copy

copy ()
Return a copy of the graph.

Returns G : Graph
A copy of the graph.
See Also:

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy ()

networkx.MultiGraph.to_undirected

to_undirected()
Return an undirected copy of the graph.

Returns G : Graph/MultiGraph
A deepcopy of the graph.
See Also:

copy, add_edge, add_edges_from

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

3.2. Basic graph types 95

http://docs.python.org/library/copy.html

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[(0O, 1), (1, 0)]

>>> G2 = H.to_undirected()

>>> G2.edges ()

[(0, 1)]

networkx.MultiGraph.to_directed

to_directed()
Return a directed representation of the graph.

Returns G : MultiDiGraph

A directed graph with the same name, same nodes, and with each edge (u,v,data) re-
placed by two directed edges (u,v,data) and (v,u,data).

Notes

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[(0O, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.DiGraph () # or MultiDiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[(0, 1)]

networkx.MultiGraph.subgraph

subgraph (nbunch)
Return the subgraph induced on nodes in nbunch.

96 Chapter 3. Graph types

http://docs.python.org/library/copy.html

NetworkX Reference, Release 1.2

The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.
Returns G : Graph
A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an in-place reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> H = G.subgraph([0,1,2])

>>> print H.edges ()

[0, 1), (1, 2)]

3.2.4 MultiDiGraph - Directed graphs with self loops and parallel edges

Overview
MultiDiGraph (data=None, name=", **attr)
A directed graph class that can store multiedges.
Multiedges are multiple edges between two nodes. Each edge can hold optional data or attributes.
A MultiDiGraph holds directed edges. Self loops are allowed.
Nodes can be arbitrary (hashable) Python objects with optional key/value attributes.
Edges are represented as links between nodes with optional key/value attributes.
Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)

Attributes to add to graph as key=value pairs.

3.2. Basic graph types 97

NetworkX Reference, Release 1.2

See Also:

Graph, DiGraph, MultiGraph

Examples

Create an empty graph structure (a “null graph”) with no nodes and no edges.

>>> G = nx.MultiDiGraph ()

G can be grown in several ways.
Nodes:

Add one node at a time:

>>> G.add_node (1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

>>> G.add_nodes_from([2,3])

>>> G.add_nodes_from(range (100,110))
>>> H=nx.path_graph (10)

>>> G.add_nodes_from (H)

In addition to strings and integers any hashable Python object (except None) can represent a node, e.g. a

customized node object, or even another Graph.
>>> G.add_node (H)

Edges:
G can also be grown by adding edges.
Add one edge,

>>> G.add_edge (1, 2)

a list of edges,

>>> G.add_edges_from([(1,2), (1,3)])
or a collection of edges,

>>> G.add_edges_from(H.edges ())

If some edges connect nodes not yet in the graph, the nodes are added automatically. If an edge already exists,
an additional edge is created and stored using a key to identify the edge. By default the key is the lowest unused

integer.

>>> G.add_edges_from([(4,5,dict (route=282)), (4,5,dict (route=37))1)

>>> G[4]
{5: {0: {}, 1: {'route’: 282}, 2: {'route’: 37}}}

98

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Attributes:

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys
must be hashable). By default these are empty, but can be added or changed using add_edge, add_node or direct
manipulation of the attribute dictionaries named graph, node and edge respectively.

>>> G = nx.MultiDiGraph (day="Friday")
>>> G.graph
{"day’: 'Friday’}

Add node attributes using add_node(), add_nodes_from() or G.node

>>> G.add_node (1, time='5pm’)

>>> G.add_nodes_from([3], time=’2pm’)

>>> G.node[1]

{"time’ : ’5pm’}

>>> G.node[l]['room”] = 714

>>> G.nodes (data=True)

[(1, {"room’”: 714, "time’: ’'5Spm’}), (3, {’time’: ’"2pm’})]

Warning: adding a node to G.node does not add it to the graph.
Add edge attributes using add_edge(), add_edges_from(), subscript notation, or G.edge.
>>> G.add_edge (1, 2, weight=4.7)

>>> G.add_edges_from([(3,4), (4,5)], color="red’)
>>> G.add_edges_from([(1,2,{ color’:"blue’}), (2,3,{ weight’:8})1)

>>> G[1][2][0][’'weight’] = 4.7
>>> G.edge[1][2][0]['weight’] = 4
Shortcuts:

Many common graph features allow python syntax to speed reporting.

>>> 1 in G # check if node in graph

True

>>> print [n for n in G if n<3] # iterate through nodes
[1, 2]

>>> print len (G) # number of nodes in graph

5

>>> print G[1l] # adjacency dict keyed by neighbor to edge attributes
C # Note: you should not change this dict manually!
{2: {0: {"weight’: 4}, 1: {’color’: ’"blue’}}}

The fastest way to traverse all edges of a graph is via adjacency_iter(), but the edges() method is often more
convenient.

>>> for n,nbrsdict in G.adjacency_iter():

for nbr,keydict in nbrsdict.iteritems{():
for key,eattr in keydict.iteritems():

if 'weight’ in eattr:

. print (n,nbr,eattr[’weight’])
(1, 2, 4)
(2, 3, 8)
>>> print [(u,v,edata[’weight’]) for u,v,edata in G.edges (data=True) if ’'weight’ in edata]
[(x, 2, 4), (2, 3, 8)]

3.2.

Basic graph types 99

NetworkX Reference, Release 1.2

Reporting:

Simple graph information is obtained using methods. Iterator versions of many reporting methods exist for
efficiency. Methods exist for reporting nodes(), edges(), neighbors() and degree() as well as the number of
nodes and edges.

For details on these and other miscellaneous methods, see below.

Adding and Removing Nodes and Edges

MultiDiGraph._ init__ (**attr[, data, name]) Initialize a graph with edges, name, graph attributes.
MultiDiGraph.add_node(n, **attr[, attr_dict]) Add a single node n and update node attributes.
MultiDiGraph.add_nodes_from(nodes, Add multiple nodes.

**attr)

MultiDiGraph.remove_node(n) Remove node n.

MultiDiGraph.remove_nodes_from(nbunch) Remove multiple nodes.
MultiDiGraph.add_edge(u, v, **attr[, key, ...]) Add an edge between u and v.

MultiDiGraph.add_edges_from(ebunch, Add all the edges in ebunch.

**attr)

MultiDiGraph.add_weighted_edges_ from(ebAudchall the edges in ebunch as weighted edges with
) specified weights.
MultiDiGraph.remove_edge(u, v[, key]) Remove an edge between u and v.
MultiDiGraph.remove_edges_from(ebunch) Remove all edges specified in ebunch.
MultiDiGraph.add_star(nlist, **attr) Add a star.

MultiDiGraph.add_path(nlist, **attr) Add a path.

MultiDiGraph.add_cycle(nlist, **attr) Add a cycle.

MultiDiGraph.clear() Remove all nodes and edges from the graph.

networkx.MultiDiGraph.__init__

__dinit__ (data=None, name=", **attr)
Initialize a graph with edges, name, graph attributes.

Parameters data : input graph

Data to initialize graph. If data=None (default) an empty graph is created. The data can
be an edge list, or any NetworkX graph object. If the corresponding optional Python
packages are installed the data can also be a NumPy matrix or 2d ndarray, a SciPy sparse
matrix, or a PyGraphviz graph.

name : string, optional (default="")
An optional name for the graph.
attr : keyword arguments, optional (default= no attributes)
Attributes to add to graph as key=value pairs.
See Also:

convert

100 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G = nx.Graph(name='my graph’)

>>> e = [(1,2),(2,3),(3,4)] # list of edges

>>> G = nx.Graph(e)

Arbitrary graph attribute pairs (key=value) may be assigned

>>> G=nx.Graph (e, day="Friday")
>>> G.graph
{"day’: 'Friday’}

networkx.MultiDiGraph.add_node

add_node (n, attr_dict=None, **attr)
Add a single node n and update node attributes.

Parameters n : node
A node can be any hashable Python object except None.
attr_dict : dictionary, optional (default= no attributes)

Dictionary of node attributes. Key/value pairs will update existing data associated with
the node.

attr : keyword arguments, optional
Set or change attributes using key=value.

See Also:

add_nodes_from

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_node (1)

>>> G.add_node(’Hello’)

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)1)

>>> G.add_node (K3)

>>> G.number_of_nodes ()

3

Use keywords set/change node attributes:

3.2. Basic graph types 101

NetworkX Reference, Release 1.2

>>>

G.add_node (1l,size=10)

>>> G.add_node (3,weight=0.4,UTM=("13S5",382871,3972649))

networkx.MultiDiGraph.add_nodes_from

add_nodes_ from (nodes, **attr)
Add multiple nodes.

See Also:

add_node

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,
>>> G.add_nodes_from(’Hello’)

>>> K3 = nx.Graph([(0,1), (1,2),(2,0)1)

>>> G.add_nodes_from(K3)

>>> sorted(G.nodes ())

[O’ l’ 2, IHI, Iel, Ill, IOI}

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). OR A container of (node, attribute dict) tuples.

Node attributes are updated using the attribute dict.

attr : keyword arguments, optional (default= no attributes)

Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple

take precedence over attributes specified generally.

Use keywords to update specific node attributes for every node.

>>>
>>>

G.add_nodes_from([1,2],
G.add_nodes_from([3,4],

size=10)
weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>>
>>>
11

>>>
>>>
>>>
11

G.add_nodes_from ([(1,dict (size=11)),
G.node[1l] ["size’]

(2,{"color’

H = nx.Graph()
.add_nodes_from(G.nodes (data=True))
H.node[1]["size’]

jas}

networkx.MultiDiGraph.remove_node

remove_node (n)
Remove node n.

etc

:"blue’ })1)

Removes the node n and all adjacent edges. Attempting to remove a non-existent node will raise an exception.

Parameters n : node

102

Chapter 3. Graph types

NetworkX Reference, Release 1.2

A node in the graph
Raises NetworkXError :
If n is not in the graph.

See Also:

remove_nodes_from
Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> G.edges ()

[(0, 1), (1, 2)]

>>> G.remove_node (1)

>>> G.edges|()

[]

networkx.MultiDiGraph.remove_nodes_from

remove_nodes_from (nbunch)
Remove multiple nodes.

Parameters nodes : iterable container

A container of nodes (list, dict, set, etc.). If a node in the container is not in the graph it
is silently ignored.

See Also:

remove_node
Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> e = G.nodes ()
>>> e
[0, 1, 2]

>>> G.remove_nodes_from(e)

>>> G.nodes ()

networkx.MultiDiGraph.add_edge

add_edge (u, v, key=None, attr_dict=None, **attr)
Add an edge between u and v.

The nodes u and v will be automatically added if they are not already in the graph.

Edge attributes can be specified with keywords or by providing a dictionary with key/value pairs. See examples
below.

3.2. Basic graph types 103

NetworkX Reference, Release 1.2

Parameters u,v : nodes

Nodes can be, for example, strings or numbers. Nodes must be hashable (and not None)
Python objects.

key : hashable identifier, optional (default=lowest unused integer)
Used to distinguish multiedges between a pair of nodes.
attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
the edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edges_from add a collection of edges

Notes

To replace/update edge data, use the optional key argument to identify a unique edge. Otherwise a new edge
will be created.

NetworkX algorithms designed for weighted graphs cannot use multigraphs directly because it is not clear
how to handle multiedge weights. Convert to Graph using edge attribute ‘weight’ to enable weighted graph
algorithms.

Examples

The following all add the edge e=(1,2) to graph G:

>>> G = nx.MultiDiGraph ()

>>> e = (1,2)

>>> G.add_edge (1, 2) # explicit two-node form

>>> G.add_edge (*e) # single edge as tuple of two nodes
>>> G.add_edges_from([(1,2)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge (1, 2, weight=3)
>>> G.add_edge (1, 2, key=0, weight=4) # update data for key=0
>>> G.add_edge (1, 3, weight=7, capacity=15, length=342.7)

networkx.MultiDiGraph.add_edges_from

add_edges_ from (ebunch, attr_dict=None, **attr)
Add all the edges in ebunch.

Parameters ebunch : container of edges
Each edge given in the container will be added to the graph. The edges can be:

* 2-tuples (u,v) or

104 Chapter 3. Graph types

NetworkX Reference, Release 1.2

* 3-tuples (u,v,d) for an edge attribute dict d, or
* 4-tuples (u,v,k,d) for an edge identified by key k
attr_dict : dictionary, optional (default= no attributes)

Dictionary of edge attributes. Key/value pairs will update existing data associated with
each edge.

attr : keyword arguments, optional
Edge data (or labels or objects) can be assigned using keyword arguments.

See Also:

add_edge add a single edge

add_weighted_edges_from convenient way to add weighted edges

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.
Examples

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc

G
>>> G.add_edges_from([(0,1), (1,2)]) # using a list of edge tuples
>>> e = zip(range (0, 3),range(1,4))

G

>>> G.add_edges_from(e) # Add the path graph 0-1-2-3

Associate data to edges

>>> G.add_edges_from([(1,2), (2,3)], weight=3)
>>> G.add_edges_from([(3,4), (1,4)], label="WN2898")

networkx.MultiDiGraph.add_weighted_edges_from

add_weighted_edges_from (ebunch, **attr)
Add all the edges in ebunch as weighted edges with specified weights.

Parameters ebunch : container of edges

Each edge given in the list or container will be added to the graph. The edges must be
given as 3-tuples (u,v,w) where w is a number.

attr : keyword arguments, optional (default= no attributes)
Edge attributes to add/update for all edges.
See Also:

add_edge add a single edge
add_edges_from add multiple edges

3.2. Basic graph types 105

NetworkX Reference, Release 1.2

Notes

Adding the same edge twice has no effect but any edge data will be updated when each duplicate edge is added.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,

>>> G.add_weighted_edges_from([(0,1,3.0), (1,2,7.5)1)

networkx.MultiDiGraph.remove_edge

remove_edge (u, v, key=None)

Remove an edge between u and v.
Parameters u,v: nodes :
Remove an edge between nodes u and v.

key : hashable identifier, optional (default=None)

etc

Used to distinguish multiple edges between a pair of nodes. If None remove a single

(arbitrary) edge between u and v.

Raises NetworkXError :

If there is not an edge between u and v, or if there is no edge with the specified key.

See Also:

remove_edges_from remove a collection of edges
Examples

>>> G = nx.MultiDiGraph ()

>>> G.add_path([0,1,2,3])

>>> G.remove_edge (0, 1)

>>> e = (1,2)

>>> G.remove_edge (xe) # unpacks e from an edge tuple
For multiple edges

>>> G = nx.MultiDiGraph ()
>>> G.add_edges_from([(1,2), (1,2),(1,2)])
>>> G.remove_edge (1l,2) # remove a single (arbitrary) edge

For edges with keys
>>> = nx.MultiDiGraph ()
add_edge (1, 2,key="first’)

G

G.
>>> G.add_edge (1,2, key="second’)
>>> G.remove_edge (1, 2,key="second’)

>>>

106

Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.MultiDiGraph.remove_edges_from

remove_edges_from (ebunch)
Remove all edges specified in ebunch.

Parameters ebunch: list or container of edge tuples :

Each edge given in the list or container will be removed from the graph. The edges can
be:

* 2-tuples (u,v) All edges between u and v are removed.
* 3-tuples (u,v,key) The edge identified by key is removed.
See Also:

remove_edge remove a single edge

Notes

Will fail silently if an edge in ebunch is not in the graph.
Examples

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_path([0,1,2,3])

>>> ebunch=[(1,2), (2,3)]

>>> G.remove_edges_from(ebunch)

Removing multiple copies of edges

>>> G = nx.MultiGraph ()

>>> G.add_edges_from([(1,2), (1,2),(1,2)1)

>>> G.remove_edges_from([(1,2), (1,2)])

>>> print G.edges/()

[(1, 2)]

>>> G.remove_edges_from([(1,2),(1,2)]) # silently ignore extra copy
>>> print G.edges () # now empty graph

[]

networkx.MultiDiGraph.add_star

add_star (nlist, **attr)
Add a star.

The first node in nlist is the middle of the star. It is connected to all other nodes in nlist.
Parameters nlist : list
A list of nodes.
attr : keyword arguments, optional (default= no attributes)

Attributes to add to every edge in star.

3.2. Basic graph types 107

NetworkX Reference, Release 1.2

See Also:

add_path, add_cycle

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_star([0,1,2,3])
>>> G.add_star([10,11,12],weight=2)

networkx.MultiDiGraph.add_path

add_path (nlist, **attr)
Add a path.

Parameters nlist : list

A list of nodes. A path will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in path.
See Also:

add_star,add_cycle
Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.add_path([10,11,12],weight=7)

networkx.MultiDiGraph.add_cycle

add_cycle (nlist, **attr)
Add a cycle.

Parameters nlist : list

A list of nodes. A cycle will be constructed from the nodes (in order) and added to the
graph.

attr : keyword arguments, optional (default= no attributes)
Attributes to add to every edge in cycle.
See Also:

add_path, add_star

108 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_cycle([0,1,2,31)
>>> G.add_cycle([10,11,12],weight=7)

networkx.MultiDiGraph.clear

clear ()
Remove all nodes and edges from the graph.

This also removes the name, and all graph, node, and edge attributes.

Examples

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path ([0,1,2,31)

.clear ()

.nodes ()

[ORI

>>> G.edges ()

3.2. Basic graph types 109

NetworkX Reference, Release 1.2

Iterating over nodes and edges

MultiDiGraph.nodes([data]) Return a list of the nodes in the graph.
MultiDiGraph.nodes_iter([data]) Return an iterator over the nodes.
MultiDiGraph._ _iter_ () Iterate over the nodes.
MultiDiGraph.edges([nbunch, data, keys]) Return a list of edges.
MultiDiGraph.edges_1iter([nbunch, data, Return an iterator over the edges.
keys])

MultiDiGraph.out_edges([nbunch, data]) Return a list of edges.
MultiDiGraph.out_edges_1iter([nbunch, Return an iterator over the edges.

data, keys])

MultiDiGraph.in_edges([nbunch, data]) Return a list of the incoming edges.
MultiDiGraph.in_edges_1iter([nbunch, Return an iterator over the incoming edges.

data, keys])

MultiDiGraph.get_edge_data(u, v[, key, Return the attribute dictionary associated with edge (u,v).
default])

MultiDiGraph.neighbors(n) Return a list of successor nodes of n.
MultiDiGraph.neighbors_iter(n) Return an iterator over successor nodes of n.
MultiDiGraph._ _getitem__ (n) Return a dict of neighbors of node n.
MultiDiGraph.successors(n) Return a list of successor nodes of n.
MultiDiGraph.successors_iter(n) Return an iterator over successor nodes of n.
MultiDiGraph.predecessors(n) Return a list of predecessor nodes of n.
MultiDiGraph.predecessors_iter(n) Return an iterator over predecessor nodes of n.
MultiDiGraph.adjacency_list() Return an adjacency list representation of the graph.
MultiDiGraph.adjacency_iter() Return an iterator of (node, adjacency dict) tuples for all
nodes.
MultiDiGraph.nbunch_iter([nbunch]) Return an iterator of nodes contained in nbunch that are also
in the graph.

networkx.MultiDiGraph.nodes

nodes (data=Fualse)
Return a list of the nodes in the graph.

Parameters data : boolean, optional (default=False)
If False return a list of nodes. If True return a two-tuple of node and node data dictionary
Returns nlist : list

A list of nodes. If data=True a list of two-tuples containing (node, node data dictionary).
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print G.nodes ()

[0, 1, 2]

>>> G.add_node (1, time='5pm’)

>>> print G.nodes (data=True)

[0, {}1), (1, {"time’: ’5pm’}), (2, {})]

110 Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.MultiDiGraph.nodes_iter

nodes_iter (data=False)
Return an iterator over the nodes.

Parameters data : boolean, optional (default=False)

If False the iterator returns nodes. If True return a two-tuple of node and node data
dictionary

Returns niter : iterator

An iterator over nodes. If data=True the iterator gives two-tuples containing (node, node
data, dictionary)

Notes

If the node data is not required it is simpler and equivalent to use the expression ‘for n in G’.

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> for n in G:

print n,

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])
>>> for n in G.nodes_iter () :

Ce print n,

012

>>> for n,d in G.nodes_iter (data=True) :
print d,

{r {r {1}

networkx.MultiDiGraph.__iter___

__diter_ ()
Iterate over the nodes. Use the expression ‘for n in G’.

Returns niter : iterator

An iterator over all nodes in the graph.
Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> for n in G:

3.2. Basic graph types 111

NetworkX Reference, Release 1.2

ce print n,
0123

networkx.MultiDiGraph.edges

edges (nbunch=None, data=False, keys=False)
Return a list of edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
keys : bool, optional (default=False)
Return two tuples (u,v) (False) or three-tuples (u,v,key) (True).
Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not
specified.

See Also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> G.add_path([0,1,2,3])

>>> G.edges ()

[0, 1), (1, 2y, (2, 3)]

>>> G.edges (data=True) # default edge data is {} (empty dictionary)
[0, 1, (), (L, 2, {}H), (2, 3, {}1]

>>> G.edges (keys=True) # default keys are integers

[(o, 1, 0), (1, 2, 0y, (2, 3, 0)1

>>> G.edges (data=True, keys=True) # default keys are integers
[0, 1, O, {}), (X, 2, O, {}), (2, 3, 0, {})]

>>> G.edges ([0,3])

[0, 1), (3, 2)]

>>> G.edges (0)

[(0, 1)1

112 Chapter 3. Graph types

NetworkX Reference, Release 1.2

networkx.MultiDiGraph.edges_iter

edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v.key,d) tuples of edges.
See Also:

edges return a list of edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.MultiDiGraph ()

>>> G.add_path([0,1,2,3])

>>> [e for e in G.edges_iter ()]

[, 1), (1, 2), (2, 3)]

>>> 1list (G.edges_iter (data=True)) # default data is {} (empty dict)
[0, 1, (Y, (L, 2, {}), (2, 3, {}1]

>>> list (G.edges_iter ([0,2]))

[0, 1), (2, 3)]

>>> list (G.edges_iter (0))

[(0, 1)]

networkx.MultiDiGraph.out_edges

out_edges (nbunch=None, data=False)
Return a list of edges.

Edges are returned as tuples with optional data in the order (node, neighbor, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.

data : bool, optional (default=False)

3.2. Basic graph types 113

NetworkX Reference, Release 1.2

Return two tuples (u,v) (False) or three-tuples (u,v,data) (True).
Returns edge_list: list of edge tuples :

Edges that are adjacent to any node in nbunch, or a list of all edges if nbunch is not
specified.

See Also:

edges_iter return an iterator over the edges

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.edges ()

[0, 1), (1, 2y, (2, 3)]

>>> G.edges (data=True) # default edge data is {} (empty dictionary)
[0, 1, (), (L, 2, {bH), (2, 3, {}H]

>>> G.edges ([0,3])

[0, 1), (3, 2)]

>>> G.edges (0)

[(0, 1)]

networkx.MultiDiGraph.out_edges_iter

out_edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the edges.

Edges are returned as tuples with optional data and keys in the order (node, neighbor, key, data).
Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.
See Also:

edges return a list of edges

114 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Notes

Nodes in nbunch that are not in the graph will be (quietly) ignored.
Examples

>>> G = nx.MultiDiGraph ()

>>> G.add_path([0,1,2,3])

>>> [e for e in G.edges_iter ()]

[0, 1), (1, 2), (2, 3)]

>>> 1list (G.edges_iter (data=True)) # default data is {} (empty dict)
[0, 1, (), (L, 2, {}), (2, 3, {}1]

>>> list (G.edges_iter([0,21))

[0, 1), (2, 3)]

>>> list (G.edges_iter (0))

[(0, 1)]

networkx.MultiDiGraph.in_edges

in_edges (nbunch=None, data=False)
Return a list of the incoming edges.

See Also:

edges return a list of edges

networkx.MultiDiGraph.in_edges_iter

in_edges_iter (nbunch=None, data=False, keys=False)
Return an iterator over the incoming edges.

Parameters nbunch : iterable container, optional (default= all nodes)
A container of nodes. The container will be iterated through once.
data : bool, optional (default=False)
If True, return edge attribute dict with each edge.
keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns in_edge_iter : iterator
An iterator of (u,v), (u,v,d) or (u,v,key,d) tuples of edges.
See Also:

edges_iter return an iterator of edges

3.2. Basic graph types 115

NetworkX Reference, Release 1.2

networkx.MultiDiGraph.get_edge_data

get_edge_data (u, v, key=None, default=None)
Return the attribute dictionary associated with edge (u,v).

Parameters u,v : nodes
default: any Python object (default=None) :
Value to return if the edge (u,v) is not found.
key : hashable identifier, optional (default=None)
Return data only for the edge with specified key.
Returns edge_dict : dictionary

The edge attribute dictionary.

Notes

It is faster to use G[u][v][key].

>>> G = nx.MultiGraph() # or MultiDiGraph
>>> G.add_edge (0, 1,key="a’,weight=7)

>>> G[0][1]["a’] # key=’a’

{’weight’: 7}

Warning: Assigning G[u][v][key] corrupts the graph data structure. But it is safe to assign attributes to that
dictionary,

>>> G[0][1]["
>>> G[0][1]["
10

>>> G[1][0]["a"]["weight’]
10

][’ weight’] = 10

a
a’"l["weight’]

Examples

>>> G = nx.MultiGraph() # or MultiDiGraph

>>> G.add_path([0,1,2,3])

>>> G.get_edge_data(0,1)

{0: {}}

>>> e = (0,1)

>>> G.get_edge_data(xe) # tuple form

{0: {}}

>>> G.get_edge_data(’a’,’b’,default=0) # edge not in graph, return 0

networkx.MultiDiGraph.neighbors

neighbors (n)
Return a list of successor nodes of n.

116 Chapter 3. Graph types

NetworkX Reference, Release 1.2

neighbors() and successors() are the same function.

networkx.MultiDiGraph.neighbors_iter

neighbors_iter (n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

networkx.MultiDiGraph.__getitem__

__getitem__ (n)
Return a dict of neighbors of node n. Use the expression ‘G[n]’.

Parameters n : node
A node in the graph.
Returns adj_dict : dictionary

The adjacency dictionary for nodes connected to n.

Notes

Gln] is similar to G.neighbors(n) but the internal data dictionary is returned instead of a list.

Assigning G[n] will corrupt the internal graph data structure. Use G[n] for reading data only.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print G[O0]

{1: {}}

networkx.MultiDiGraph.successors

successors (n)
Return a list of successor nodes of n.

neighbors() and successors() are the same function.

networkx.MultiDiGraph.successors_iter

successors_iter (n)
Return an iterator over successor nodes of n.

neighbors_iter() and successors_iter() are the same.

3.2. Basic graph types

117

NetworkX Reference, Release 1.2

networkx.MultiDiGraph.predecessors

predecessors (n)

Return a list of predecessor nodes of n.

networkx.MultiDiGraph.predecessors_iter

predecessors_iter (n)

Return an iterator over predecessor nodes of n.

networkx.MultiDiGraph.adjacency_list

adjacency_list ()

Return an adjacency list representation of the graph.

The output adjacency list is in the order of G.nodes(). For directed graphs, only outgoing adjacencies are
included.

Returns adj_list : lists of lists
The adjacency structure of the graph as a list of lists.

See Also:

adjacency_iter
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> G.adjacency_list () # in order given by G.nodes()

(rir, o, 21, 11, 31, [21]

networkx.MultiDiGraph.adjacency _iter

adjacency_iter ()

Return an iterator of (node, adjacency dict) tuples for all nodes.
This is the fastest way to look at every edge. For directed graphs, only outgoing adjacencies are included.
Returns adj_iter : iterator
An iterator of (node, adjacency dictionary) for all nodes in the graph.
See Also:

adjacency_list

Examples

118

Chapter 3. Graph types

NetworkX Reference, Release 1.2

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])

>>> [(n,nbrdict) for n,nbrdict in G.adjacency_iter ()]

[0, {1: {}H), (L, {0z {}, 2: {}}), (2, {1: {}, 3: {}}), (3, {2: {}})]

networkx.MultiDiGraph.nbunch_iter

nbunch_iter (nbunch=None)
Return an iterator of nodes contained in nbunch that are also in the graph.

The nodes in nbunch are checked for membership in the graph and if not are silently ignored.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
Returns niter : iterator

An iterator over nodes in nbunch that are also in the graph. If nbunch is None, iterate
over all nodes in the graph.

Raises NetworkXError :
If nbunch is not a node or or sequence of nodes. If a node in nbunch is not hashable.
See Also:

Graph._ _iter_

Notes

When nbunch is an iterator, the returned iterator yields values directly from nbunch, becoming exhausted when
nbunch is exhausted.

To test whether nbunch is a single node, one can use “if nbunch in self:”, even after processing with this routine.

If nbunch is not a node or a (possibly empty) sequence/iterator or None, a NetworkXError is raised. Also, if any
object in nbunch is not hashable, a NetworkXError is raised.

3.2. Basic graph types 119

NetworkX Reference, Release 1.2

Information about graph structure

MultiDiGraph

MultiDiGraph.

.has_node(n)
MultiDiGraph.

_ _contains__ (n)

has_edge(u, v[, key])

Return True if the graph contains the node n.

Return True if n is a node, False otherwise. Use the
expression

Return True if the graph has an edge between nodes u
and v.

MultiDiGraph.order() Return the number of nodes in the graph.
MultiDiGraph.number_of_nodes() Return the number of nodes in the graph.
MultiDiGraph.__len__() Return the number of nodes.
MultiDiGraph.degree([nbunch, weighted]) Return the degree of a node or nodes.
MultiDiGraph.degree_iter([nbunch, Return an iterator for (node, degree).
weighted])

MultiDiGraph.in_degree([nbunch, weighted]) Return the in-degree of a node or nodes.
MultiDiGraph.in_degree_iter([nbunch, Return an iterator for (node, in-degree).
weighted])

MultiDiGraph.out_degree([nbunch, weighted]) Return the out-degree of a node or nodes.
MultiDiGraph.out_degree_iter([nbunch, Return an iterator for (node, out-degree).
weighted])

MultiDiGraph. size([weighted]) Return the number of edges.
MultiDiGraph.number_of_edges([u, v]) Return the number of edges between two nodes.
MultiDiGraph.nodes_with_selfloops() Return a list of nodes with self loops.
MultiDiGraph.selfloop_edges([data, keys]) Return a list of selfloop edges.
MultiDiGraph.number_of_selfloops() Return the number of selfloop edges.

networkx.MultiDiGraph.has_node

has_node (n)
Return True if the graph contains the node n.

Parameters n : node
Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph,
>>> G.add_path([0,1,2])

>>> print G.has_node (0)

True

etc

It is more readable and simpler to use

>>> (0 in G
True

networkx.MultiDiGraph.__contains__

_ _contains__ (n)
Return True if n is a node, False otherwise. Use the expression ‘n in G’.

120 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc

>>> G.add_path([0,1,2,3])
>>> print 1 in G
True

networkx.MultiDiGraph.has_edge

has_edge (u, v, key=None)
Return True if the graph has an edge between nodes u and v.

Parameters u,v : nodes

Nodes can be, for example, strings or numbers.

key : hashable identifier, optional (default=None)

If specified return True only if the edge with key is found.

Returns edge_ind : bool

True if edge is in the graph, False otherwise.

Examples

Can be called either using two nodes u,v, an edge tuple (u,v), or an edge tuple (u,v,key).

>>> G = nx.MultiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])

>>> G.has_edge (0, 1) # using two nodes

True

>>> e = (0,1)

>>> G.has_edge (*e) # e 1is a 2-tuple (u,v)
True

>>> G.add_edge (0, 1,key="a")

>>> G.has_edge (0, 1,key="a’) # specify key
True

>>> e=(0,1,"a")
>>> G.has_edge(*xe) # e is a 3-tuple (u,v,’a’)
True

The following syntax are equivalent:

>>> G.has_edge (0,1)
True

>>> 1 in G[0] # though this gives KeyError if 0 not in G

True

networkx.MultiDiGraph.order

order ()
Return the number of nodes in the graph.

3.2. Basic graph types

121

NetworkX Reference, Release 1.2

Returns nnodes : int
The number of nodes in the graph.
See Also:

number_of_ nodes, len

networkx.MultiDiGraph.number_of _nodes

number_of_nodes ()
Return the number of nodes in the graph.

Returns nnodes : int
The number of nodes in the graph.
See Also:

order, len

Examples

>>> G nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2])

>>> print len (G)

3

networkx.MultiDiGraph.__len__

len__ ()
Return the number of nodes. Use the expression ‘len(G)’.

Returns nnodes : int

The number of nodes in the graph.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> print len (G)

4

networkx.MultiDiGraph.degree

degree (nbunch=None, weighted=False)
Return the degree of a node or nodes.

The node degree is the number of edges adjacent to that node.

Parameters nbunch : iterable container, optional (default=all nodes)

122 Chapter 3. Graph types

NetworkX Reference, Release 1.2

A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd : dictionary, or number

A dictionary with nodes as keys and degree as values or a number if a single node is
specified.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> G.degree (0)

>>> G.degree([0,1])

{0: 1, 1: 2}

>>> G.degree([0,1]) .values()
[1, 2]

networkx.MultiDiGraph.degree _iter

degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, degree).

The node degree is the number of edges adjacent to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, degree).
See Also:

degree
Examples

>>> G = nx.MultiDiGraph ()

>>> G.add_path([0,1,2,3])

>>> list (G.degree_iter(0)) # node 0 with degree 1
[(0, 1)]

>>> list (G.degree_iter ([0,1]))

[0, 1), (1, 2)]

3.2. Basic graph types 123

NetworkX Reference, Release 1.2

networkx.MultiDiGraph.in_degree

in_degree (nbunch=None, weighted=False)
Return the in-degree of a node or nodes.

The node in-degree is the number of edges pointing in to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.

Returns nd : dictionary, or number

A dictionary with nodes as keys and in-degree as values or a number if a single node is

specified.
See Also:

degree, out_degree, in_degree_iter
Examples

>>> G = nx.DiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.in_degree (0)

>>> G.in_degree([0,1])

{0: 0, 1: 1}

>>> G.in_degree ([0,1]) .values()
[0, 1]

networkx.MultiDiGraph.in_degree_iter

in_degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, in-degree).

The node in-degree is the number of edges pointing in to the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd_iter : an iterator
The iterator returns two-tuples of (node, in-degree).
See Also:

degree, in_degree, out_degree, out_degree_iter

124

Chapter 3. Graph types

NetworkX Reference, Release 1.2

Examples

>>> G = nx.MultiDiGraph ()

>>> G.add_path([0,1,2,3])

>>> 1ist (G.in_degree_iter (0)) # node 0 with degree 0
[(0, 0)]

>>> 1list (G.in_degree_iter ([0,1]))

[0, 0), (1, 1)]

networkx.MultiDiGraph.out_degree

out_degree (nbunch=None, weighted=False)
Return the out-degree of a node or nodes.

The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.
Returns nd : dictionary, or number

A dictionary with nodes as keys and out-degree as values or a number if a single node
is specified.

Examples

>>> G = nx.DiGraph () # or MultiDiGraph
>>> G.add_path([0,1,2,3])
>>> G.out_degree (0)

>>> G.out_degree ([0,1])

{0: 1, 1: 1}

>>> G.out_degree ([0,1]) .values()
[1, 1]

networkx.MultiDiGraph.out_degree _iter

out_degree_iter (nbunch=None, weighted=False)
Return an iterator for (node, out-degree).

The node out-degree is the number of edges pointing out of the node.
Parameters nbunch : iterable container, optional (default=all nodes)
A container of nodes. The container will be iterated through once.
weighted : bool, optional (default=False)
If True return the sum of edge weights adjacent to the node.

Returns nd_iter : an iterator

3.2. Basic graph types 125

NetworkX Reference, Release 1.2

The iterator returns two-tuples of (node, out-degree).
See Also:

degree, in_degree, out_degree, in_degree_iter
Examples

>>> G = nx.MultiDiGraph ()

>>> G.add_path([0,1,2,3])

>>> 1list (G.out_degree_iter (0)) # node 0 with degree 1
[(0, 1)]

>>> list (G.out_degree_iter ([0,1]))

[0, 1), (1, 1)]

networkx.MultiDiGraph.size

size (weighted=False)
Return the number of edges.

Parameters weighted : boolean, optional (default=False)
If True return the sum of the edge weights.
Returns nedges : int
The number of edges in the graph.
See Also:

number_of_edges
Examples

>>>

@

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path([0,1,2,3])
.size ()

>>>

@

>>>

(9]

>>> = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_edge ("a’,’'b’,weight=2)
.add_edge ("b’",’c’,weight=4)

.size ()

>>>
>>>

QO 00

>>>

>>> G.size (weighted=True)

networkx.MultiDiGraph.number_of_edges

number_of_edges (u=None, v=None)
Return the number of edges between two nodes.

Parameters u,v : nodes, optional (default=all edges)

126 Chapter 3. Graph types

NetworkX Reference, Release 1.2

If u and v are specified, return the number of edges between u and v. Otherwise return
the total number of all edges.

Returns nedges : int

The number of edges in the graph. If nodes u and v are specified return the number of
edges between those nodes.

See Also:

size
Examples

>>>

(9]

= nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
.add_path([0,1,2,3])
>>> G.number_of_edges|()

>>>

(9}

3

>>> G.number_of_edges (0,1)
1

>>> e = (0,1)

>>> G.number_of_edges (*e)
1

networkx.MultiDiGraph.nodes_with_selfloops

nodes_with_selfloops ()
Return a list of nodes with self loops.

A node with a self loop has an edge with both ends adjacent to that node.
Returns nodelist : list
A list of nodes with self loops.
See Also:

selfloop_edges, number_of_selfloops
Examples

>>> G = nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)
>>> G.add_edge (1, 2)

G.

>>> nodes_with_selfloops ()
networkx.MultiDiGraph.selfloop_edges
selfloop_edges (data=False, keys=False)

Return a list of selfloop edges.

A selfloop edge has the same node at both ends.

3.2. Basic graph types 127

NetworkX Reference, Release 1.2

Parameters data : bool, optional (default=False)

Return selfloop edges as two tuples (u,v) (data=False) or three-tuples (u,v,data)
(data=True)

keys : bool, optional (default=False)
If True, return edge keys with each edge.
Returns edgelist : list of edge tuples
A list of all selfloop edges.
See Also:

selfloop_nodes, number_of_selfloops
Examples

>>> = nx.MultiGraph () # or MultiDiGraph
>>> add_edge (1, 1)

G
G.

>>> G.add_edge (1,2)
G.

>>> selfloop_edges ()

[(1, 1)]

>>> G.selfloop_edges (data=True)

(1, 1, {H1

>>> G.selfloop_edges (keys=True)

[(1, 1, 0)1

>>> G.selfloop_edges (keys=True, data=True)
(1, 1, 0, {H1

networkx.MultiDiGraph.number_of_selfloops

number_of_selfloops ()
Return the number of selfloop edges.

A selfloop edge has the same node at both ends.
Returns nloops : int
The number of selfloops.
See Also:

selfloop_nodes, selfloop_edges

Examples

>>> G=nx.Graph () # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_edge (1,1)

>>> G.add_edge (1,2)

>>> G.number_of_selfloops ()

128 Chapter 3. Graph types

NetworkX Reference, Release 1.2

Making copies and subgraphs

MultiDiGraph.
MultiDiGraph.
MultiDiGraph.
MultiDiGraph.
MultiDiGraph.

copy() Return a copy of the graph.

to_undirected() Return an undirected representation of the digraph.
to_directed() Return a directed copy of the graph.
subgraph(nbunch) Return the subgraph induced on nodes in nbunch.
reverse([copy]) Return the reverse of the graph.

networkx.MultiDiGraph.copy

copy ()

Return a copy of the graph.
Returns G : Graph

See Also:

A copy of the graph.

to_directed return a directed copy of the graph.

Notes

This makes a complete copy of the graph including all of the node or edge attributes.

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])
>>> H = G.copy ()

networkx.MultiDiGraph.to_undirected

to_undirected()
Return an undirected representation of the digraph.

Returns G : MultiGraph

Notes

An undirected graph with the same name and nodes and with edge (u,v,data) if either
(u,v,data) or (v,u,data) is in the digraph. If both edges exist in digraph and their edge
data is different, only one edge is created with an arbitrary choice of which edge data to
use. You must check and correct for this manually if desired.

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar D=DiGraph(G) which returns a shallow copy of the data.

3.2. Basic graph types

129

NetworkX Reference, Release 1.2

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

networkx.MultiDiGraph.to_directed

to_directed()

Return a directed copy of the graph.
Returns G : MultiDiGraph
A deepcopy of the graph.

Notes

If edges in both directions (u,v) and (v,u) exist in the graph, attributes for the new undirected edge will be a
combination of the attributes of the directed edges. The edge data is updated in the (arbitrary) order that the
edges are encountered. For more customized control of the edge attributes use add_edge().

This returns a “deepcopy” of the edge, node, and graph attributes which attempts to completely copy all of the
data and references.

This is in contrast to the similar G=DiGraph(D) which returns a shallow copy of the data.

See the Python copy module for more information on shallow and deep copies,
http://docs.python.org/library/copy.html.

Examples

>>> G = nx.Graph() # or MultiGraph, etc
>>> G.add_path([0,1])

>>> H = G.to_directed()

>>> H.edges ()

[(0, 1), (1, 0)]

If already directed, return a (deep) copy

>>> G = nx.MultiDiGraph ()
>>> G.add_path([0,1])

>>> H = G.to_directed()
>>> H.edges ()

[(0, 1)1

networkx.MultiDiGraph.subgraph

subgraph (nbunch)

Return the subgraph induced on nodes in nbunch.
The induced subgraph of the graph contains the nodes in nbunch and the edges between those nodes.
Parameters nbunch : list, iterable
A container of nodes which will be iterated through once.

Returns G : Graph

130

Chapter 3. Graph types

http://docs.python.org/library/copy.html
http://docs.python.org/library/copy.html

NetworkX Reference, Release 1.2

A subgraph of the graph with the same edge attributes.

Notes

The graph, edge or node attributes just point to the original graph. So changes to the node or edge structure will
not be reflected in the original graph while changes to the attributes will.

To create a subgraph with its own copy of the edge/node attributes use: nx.Graph(G.subgraph(nbunch))
If edge attributes are containers, a deep copy can be obtained using: G.subgraph(nbunch).copy()

For an in-place reduction of a graph to a subgraph you can remove nodes: G.remove_nodes_from([n in G if n
not in set(nbunch)])

Examples

>>> G = nx.Graph() # or DiGraph, MultiGraph, MultiDiGraph, etc
>>> G.add_path([0,1,2,3])

>>> H = G.subgraph([0,1,2])

>>> print H.edges ()

[0, 1), (1, 2)]

networkx.MultiDiGraph.reverse

reverse (copy=True)
Return the reverse of the graph.

The reverse is a graph with the same nodes and edges but with the directions of the edges reversed.
Parameters copy : bool optional (default=True)

If True, return a new DiGraph holding the reversed edges. If False, reverse the reverse
graph is created using the original graph (this changes the original graph).

3.2. Basic graph types 131

NetworkX Reference, Release 1.2

132 Chapter 3. Graph types

CHAPTER
FOUR

ALGORITHMS

4.1 Bipartite

is_bipartite(G) Returns True if graph G is bipartite, False if not.
bipartite_sets(G) Returns bipartite node sets of graph G.
bipartite_color(QG) Returns a two-coloring of the graph.

project(B, nodes[, create_using]) Return the projection of the graph onto a subset of nodes.

4.1.1 networkx.is_bipartite
is_bipartite (G)
Returns True if graph G is bipartite, False if not.
Parameters G : NetworkX graph
See Also:

bipartite_color
Examples

>>> G=nx.path_graph (4)
>>> print nx.is_bipartite (G)
True

4.1.2 networkx.bipartite_sets
bipartite_sets (G)
Returns bipartite node sets of graph G.
Raises an exception if the graph is not bipartite.
Parameters G : NetworkX graph
Returns (X,Y) : two-tuple of sets
One set of nodes for each part of the bipartite graph.
See Also:

bipartite_color

133

NetworkX Reference, Release 1.2

Examples

>>> G=nx.path_graph (4)
>>> X,Y¥=nx.bipartite_sets (G)
>>> print X

set ([0, 2])
>>> print Y
set ([1, 31)

4.1.3 networkx.bipartite_color
bipartite_color (G)
Returns a two-coloring of the graph.
Raises an exception if the graph is not bipartite.
Parameters G : NetworkX graph
Returns color : dictionary

A dictionary keyed by node with a 1 or O as data for each node color.
Examples

>>> G=nx.path_graph (4)

>>> c=nx.bipartite_color (G)
>>> print c

{0: 1, 1: 0, 2: 1, 3: 0}

4.1.4 networkx.project
project (B, nodes, create_using=None)
Return the projection of the graph onto a subset of nodes.

The nodes retain their names and are connected in the resulting graph if have an edge to a common node in the
original graph.

Parameters B : NetworkX graph
The input graph should be bipartite.
nodes : list or iterable
Nodes to project onto.
Returns Graph : NetworkX graph
A graph that is the projection onto the given nodes.
See Also:

is_bipartite,bipartite_sets

134 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Notes

Returns a graph that is the projection of the bipartite graph B onto the set of nodes given in list nodes. No
attempt is made to verify that the input graph B is bipartite.

Examples

>>> B=nx.path_graph (4)
>>> G=nx.project (B, [1,3])
>>> print G.nodes ()

[1, 31

>>> print G.edges ()

[(1, 3)]

4.2 Blockmodeling

Functions for creating network blockmodels from node partitions.

Created by Drew Conway <drew.conway @nyu.edu> Copyright (c) 2010. All rights reserved.

blockmodel(G, partitions|, Returns a reduced graph constructed using the generalized block
multigraph]) modeling technique.

4.2.1 networkx.blockmodel

blockmodel (G, partitions, multigraph=False)

Returns a reduced graph constructed using the generalized block modeling technique.

The blockmodel technique collapses nodes into blocks based on a given partitioning of the node set. Each
partition of nodes (block) is represented as a single node in the reduced graph.

Edges between nodes in the block graph are added according to the edges in the original graph. If the parameter
multigraph is False (the default) a single edge is added with a weight equal to the sum of the edge weights
between nodes in the original graph The default is a weight of 1 if weights are not specified. If the parameter
multigraph is True then multiple edges are added each with the edge data from the original graph.

Parameters G : graph
A networkx Graph or DiGraph
partitions : list of lists or list of sets
The partition of the nodes. Must be non-overlapping.
multigraph: bool (optional) :

If True return a MultiGraph with the edge data of the original graph applied to each
corresponding edge in the new graph. If False return a Graph with the sum of the edge
weights, or a count of the edges if the original graph is unweighted.

Returns blockmodel : a Networkx graph object

4.2,

Blockmodeling 135

mailto:drew.conway@nyu.edu

NetworkX Reference, Release 1.2

References

[R46]
Examples

>>> G=nx.path_graph (6)
>>> partition=[[0,1],[2,3],[4,5]]
>>> M=nx.blockmodel (G,partition)

4.3 Boundary

Routines to find the boundary of a set of nodes.
Edge boundaries are edges that have only one end in the set of nodes.

Node boundaries are nodes outside the set of nodes that have an edge to a node in the set.

edge_boundary(G, nbunchl[, nbunch2]) Return the edge boundary.
node_boundary(G, nbunchl[, nbunch2]) Return the node boundary.

4.3.1 networkx.edge_boundary
edge_boundary (G, nbunchl, nbunch2=None)
Return the edge boundary.
Edge boundaries are edges that have only one end in the given set of nodes.
Parameters G : graph
A networkx graph
nbunchl : list, container
Interior node set
nbunch? : list, container
Exterior node set. If None then it is set to all of the nodes in G not in nbunchl.
Returns elist : list

List of edges

Notes

Nodes in nbunchl and nbunch? that are not in G are ignored.

nbunchl and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not
required here.

136 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.3.2 networkx.node_boundary
node_boundary (G, nbunchl, nbunch2=None)
Return the node boundary.
The node boundary is all nodes in the edge boundary of a given set of nodes that are in the set.
Parameters G : graph
A networkx graph
nbunchl : list, container
Interior node set
nbunch? : list, container
Exterior node set. If None then it is set to all of the nodes in G not in nbunch1.
Returns nlist : list

List of nodes.

Notes

Nodes in nbunchl and nbunch?2 that are not in G are ignored.

nbunchl and nbunch2 are usually meant to be disjoint, but in the interest of speed and generality, that is not
required here.

4.4 Centrality

4.4.1 Degree

degree_centrality(G) Compute the degree centrality for nodes.
in_degree_centrality(G) Compute the in-degree centrality for nodes.
out_degree_centrality(G) Compute the out-degree centrality for nodes.

networkx.degree_centrality
degree_centrality (G)
Compute the degree centrality for nodes.
The degree centrality for a node v is the fraction of nodes it is connected to.
Parameters G : graph
A networkx graph
Returns nodes : dictionary
Dictionary of nodes with degree centrality as the value.
See Also:

betweenness_centrality, load_centrality, eigenvector_centrality

4.4. Centrality 137

NetworkX Reference, Release 1.2

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

networkx.in_degree_centrality
in_degree_centrality (G)
Compute the in-degree centrality for nodes.
The in-degree centrality for a node v is the fraction of nodes its incoming edges are connected to.
Parameters G : graph
A NetworkX graph
Returns nodes : dictionary
Dictionary of nodes with in-degree centrality as values.
See Also:

degree_centrality, out_degree_centrality, Notes, ————— , The, possible, For, be, are

networkx.out_degree_centrality
out_degree_centrality (G)
Compute the out-degree centrality for nodes.
The out-degree centrality for a node v is the fraction of nodes its outgoing edges are connected to.
Parameters G : graph
A NetworkX graph
Returns nodes : dictionary
Dictionary of nodes with out-degree centrality as values.
See Also:

degree_centrality,in_degree_centrality

Notes

The degree centrality values are normalized by dividing by the maximum possible degree in a simple graph n-1
where n is the number of nodes in G.

For multigraphs or graphs with self loops the maximum degree might be higher than n-1 and values of degree
centrality greater than 1 are possible.

4.4.2 Closeness

Closeness centrality measures.

closeness_centrality(Gl, v, weighted_edges, ...]) Compute closeness centrality for nodes.

138 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

networkx.closeness_centrality
closeness_centrality (G, v=None, weighted_edges=False, normalized=True)
Compute closeness centrality for nodes.
Closeness centrality at a node is 1/average distance to all other nodes.
Parameters G : graph
A networkx graph
v : node, optional
Return only the value for node v.
weighted_edges : bool, optional

Consider the edge weights in determining the shortest paths. If False, all edge weights
are considered equal.

normalized : bool, optional
If True normalize the values to the size of the connected compoenent containing v.
Returns nodes : dictionary
Dictionary of nodes with closeness centrality as the value.
See Also:

betweenness_centrality, load_centrality, eigenvector_centrality,
degree_centrality

Notes

The closeness centrality is normalized to to n-1 / size(G)-1 where n is the number of nodes in the connected part
of graph containing the node. If the graph is not completely connected, this algorithm computes the closeness
centrality for each connected part separately.

4.4.3 Betweenness

Betweenness centrality measures.

betweenness_centrality(G[, normalized, ...]) Compute betweenness centrality for nodes.
edge_betweenness_centrality(G[, normalized, ...]) Compute betweenness centrality for edges.

networkx.algorithms.centrality.betweenness.betweenness_centrality
betweenness_centrality (G, normalized=True, weighted_edges=False, endpoints=False)
Compute betweenness centrality for nodes.
Betweenness centrality of a node is the fraction of all shortest paths that pass through that node.
Parameters G : graph
A networkx graph
normalized : bool, optional

If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number
of nodes in G.

4.4. Centrality 139

NetworkX Reference, Release 1.2

weighted_edges : bool, optional

Consider the edge weights in determining the shortest paths. The edge weights must be
greater than zero. If False, all edge weights are considered equal.

Returns nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.
See Also:

edge_betweenness_centrality, load_centrality

Notes

The algorithm is from Ulrik Brandes [R35].

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

References

[R35]

networkx.algorithms.centrality.betweenness.edge_betweenness_centrality
edge_betweenness_centrality (G, normalized=True, weighted_edges=False)
Compute betweenness centrality for edges.
Betweenness centrality of an edge is the fraction of all shortest paths that pass through that edge.
Parameters G : graph
A networkx graph
normalized : bool, optional

If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number
of nodes in G.

weighted_edges : bool, optional

Consider the edge weights in determining the shortest paths. The edge weights must be
greater than zero. If False, all edge weights are considered equal.

Returns edges : dictionary
Dictionary of edges with betweenness centrality as the value.
See Also:

betweenness_centrality, edge_load

Notes

The algorithm is from Ulrik Brandes [R36].

For weighted graphs the edge weights must be greater than zero. Zero edge weights can produce an infinite
number of equal length paths between pairs of nodes.

140 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

References

[R36]

4.4.4 Current Flow Closeness

Current-flow closeness centrality measures.

current_flow_closeness_centrality(G[,..]) Compute current-flow closeness centrality for nodes.

networkx.current_flow_closeness_centrality
current_flow_closeness_centrality (G, normalized=True)
Compute current-flow closeness centrality for nodes.

A variant of closeness centrality based on effective resistance between nodes in a network. This metric is also
known as information centrality.

Parameters G : graph
A networkx graph
normalized : bool, optional
If True the values are normalized by 1/(n-1) where n is the number of nodes in G.
Returns nodes : dictionary
Dictionary of nodes with current flow closeness centrality as the value.
See Also:

closeness_centrality

Notes

The algorithm is from Brandes [R47].

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

See also [R48] for the original definition of information centrality.

References

[R47], [R48]

4.4.5 Current-Flow Betweenness

Current-flow betweenness centrality measures.

current_flow_betweenness_centrality(G], Compute current-flow betweenness centrality for

)] nodes.

edge_current_flow_betweenness_centrality(GQFompute current-flow betweenness centrality for
edges.

4.4. Centrality 141

NetworkX Reference, Release 1.2

networkx.algorithms.centrality.current_flow_betweenness.current_flow_betweenness_centrality
current_flow_betweenness_centrality (G, normalized=True)
Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality [R38].
Parameters G : graph
A networkx graph
normalized : bool, optional

If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number
of nodes in G.

Returns nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.

See Also:

betweenness_centrality,edge_betweenness_centrality,edge_current_flow_betweenness_centre

Notes

The algorithm is from Brandes [R37].

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

[R37], [R38]

networkx.algorithms.centrality.current_flow_betweenness.edge_current_flow_betweenness_centrality
edge_current_flow_betweenness_centrality (G, normalized=True)
Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current model for information spreading in contrast to
betweenness centrality which uses shortest paths.

Current-flow betweenness centrality is also known as random-walk betweenness centrality [R40].
Parameters G : graph
A networkx graph
normalized : bool, optional

If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number
of nodes in G.

Returns nodes : dictionary

Dictionary of edge tuples with betweenness centrality as the value.

142 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

See Also:

betweenness_centrality,edge_betweenness_centrality,current_flow_betweenness_centrality

Notes

The algorithm is from Brandes [R39].

If the edges have a ‘weight’ attribute they will be used as weights in this algorithm. Unspecified weights are set
to 1.

References

[R39], [R40]

4.4.6 Eigenvector

Eigenvector centrality.

eigenvector_centrality(G[, max_iter, tol, ...]) Compute the eigenvector centrality for the graph G.
eigenvector_centrality_numpy(G) Compute the eigenvector centrality for the graph G.

networkx.eigenvector_centrality
eigenvector_centrality (G, max_iter=100, t0l=9.9999999999999995¢-07, nstart=None)
Compute the eigenvector centrality for the graph G.
Uses the power method to find the eigenvector for the largest eigenvalue of the adjacency matrix of G.
Parameters G : graph
A networkx graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of eigenvector iteration for each node.
Returns nodes : dictionary
Dictionary of nodes with eigenvector centrality as the value.
See Also:

eigenvector_centrality_numpy, pagerank, hits

4.4. Centrality 143

NetworkX Reference, Release 1.2

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

For directed graphs this is “right” eigevector centrality. For “left” eigenvector centrality, first reverse the graph
with G.reverse().

Examples

>>> G=nx.path_graph (4)

>>> centrality=nx.eigenvector_centrality (G)

>>> print ([’ "% (node, centrality[node]) for node in centrality])
[0 0.37", 1 0.60", "2 0.60", '3 0.37"]

networkx.eigenvector_centrality_numpy
eigenvector_centrality_ numpy (G)
Compute the eigenvector centrality for the graph G.
Parameters G : graph
A networkx graph
Returns nodes : dictionary
Dictionary of nodes with eigenvector centrality as the value.
See Also:

eigenvector_centrality, pagerank,hits

Notes

This algorithm uses the NumPy eigenvalue solver.

For directed graphs this is “right” eigevector centrality. For “left” eigenvector centrality, first reverse the graph
with G.reverse().

Examples

>>> G=nx.path_graph (4)

>>> centrality=nx.eigenvector_centrality_numpy (G)

>>> print ([’ "% (node, centrality[node]) for node in centrality])
[0 0.37", 1 0.60", 72 0.60", "3 0.37"]

4.4.7 Load

Load centrality.

load_centrality(Gl[, v, cutoff, normalized, ...]) Compute load centrality for nodes.
edge_1oad(GI, nodes, cutoff]) Compute edge load.

144 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

networkx.algorithms.centrality.load.load_centrality
load_centrality (G, v=None, cutoff=None, normalized=True, weighted_edges=False)
Compute load centrality for nodes.
The load centrality of a node is the fraction of all shortest paths that pass through that node.
Parameters G : graph
A networkx graph
normalized : bool, optional

If True the betweenness values are normalized by b=b/(n-1)(n-2) where n is the number
of nodes in G.

weighted_edges : bool, optional

Consider the edge weights in determining the shortest paths. If False, all edge weights
are considered equal.

cutoff : bool, optional
If specified, only consider paths of length <= cutoff.
Returns nodes : dictionary
Dictionary of nodes with centrality as the value.
See Also:

betweenness_centrality

Notes

Load centrality is slightly different than betweenness. For this load algorithm see the reference Scientific col-
laboration networks: II. Shortest paths, weighted networks, and centrality, M. E. J. Newman, Phys. Rev. E 64,
016132 (2001).

networkx.algorithms.centrality.load.edge_load
edge_load (G, nodes=None, cutoff=False)
Compute edge load.
WARNING:

This module is for demonstration and testing purposes.

4.5 Clique

Find and manipulate cliques of graphs.

Note that finding the largest clique of a graph has been shown to be an NP-complete problem; the algorithms here
could take a long time to run.

http://en.wikipedia.org/wiki/Clique_problem

4.5. Clique 145

http://en.wikipedia.org/wiki/Cliqueprotect T1	extunderscore problem

NetworkX Reference, Release 1.2

find_cliques(G) Search for all maximal cliques in a graph.
make_max_clique_graph(G[, Create the maximal clique graph of a graph.

create_using, name])

make_clique_bipartite(Gl, fpos, ...]) Create a bipartite clique graph from a graph G.
graph_clique_number(G[, cliques]) Return the clique number (size of the largest clique) for G.

graph_number_of_cliques(G[, cliques]) Returns the number of maximal cliques in G.
node_clique_number(G[, nodes, cliques]) Returns the size of the largest maximal clique containing each

given node.
number_of_cliques(G[, nodes, cliques]) Returns the number of maximal cliques for each node.
cliques_containing_node(GI, nodes, Returns a list of cliques containing the given node.

cliques])

4.5.1 networkx.find_cliques
find_cliques (G)
Search for all maximal cliques in a graph.

This algorithm searches for maximal cliques in a graph. maximal cliques are the largest complete subgraph
containing a given point. The largest maximal clique is sometimes called the maximum clique.

This implementation is a generator of lists each of which contains the members of a maximal clique. To obtain
a list of cliques, use list(find_cliques(G)). The method essentially unrolls the recursion used in the references to
avoid issues of recursion stack depth.

See Also:

find_cliques_recursive, A

References

Based on the algorithm published by Bron & Kerbosch (1973) http://doi.acm.org/10.1145/362342.362367
as adapated by Tomita, Tanaka and Takahashi (2006) http://dx.doi.org/10.1016/j.tcs.2006.06.015
and discussed in Cazals and Karande (2008) http://dx.doi.org/10.1016/].tcs.2008.05.010

4.5.2 networkx.make_max_clique_graph

make_max_clique_graph (G, create_using=None, name=None)
Create the maximal clique graph of a graph.

Finds the maximal cliques and treats these as nodes. The nodes are connected if they have common members in
the original graph. Theory has done a lot with clique graphs, but I haven’t seen much on maximal clique graphs.

Notes

This should be the same as make_clique_bipartite followed by project_up, but it saves all the intermediate steps.

4.5.3 networkx.make_clique_bipartite

make_clique_bipartite (G, fpos=None, create_using=None, name=None)
Create a bipartite clique graph from a graph G.

146 Chapter 4. Algorithms

http://doi.acm.org/10.1145/362342.362367
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1016/j.tcs.2008.05.010

NetworkX Reference, Release 1.2

Nodes of G are retained as the “bottom nodes” of B and cliques of G become “top nodes” of B. Edges are
present if a bottom node belongs to the clique represented by the top node.

Returns a Graph with additional attribute dict B.node_type which is keyed by nodes to “Bottom” or “Top”
appropriately.

if fpos is not None, a second additional attribute dict B.pos is created to hold the position tuple of each node for
viewing the bipartite graph.

4.5.4 networkx.graph_clique_number

graph_clique_number (G, cligues=None)
Return the clique number (size of the largest clique) for G.

An optional list of cliques can be input if already computed.

4.5.5 networkx.graph_number_of_cliques

graph_number_ of_cliques (G, cliques=None)
Returns the number of maximal cliques in G.

An optional list of cliques can be input if already computed.

4.5.6 networkx.node_clique_number

node_clique_number (G, nodes=None, cliques=None)
Returns the size of the largest maximal clique containing each given node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.5.7 networkx.number_of_cliques

number_ of_ cliques (G, nodes=None, cligues=None)
Returns the number of maximal cliques for each node.

Returns a single or list depending on input nodes. Optional list of cliques can be input if already computed.

4.5.8 networkx.cliques_containing_node

cliques_containing_node (G, nodes=None, cliqgues=None)
Returns a list of cliques containing the given node.

Returns a single list or list of lists depending on input nodes. Optional list of cliques can be input if already
computed.

4.6 Clustering

Algorithms to characterize the number of triangles in a graph.

4.6. Clustering 147

NetworkX Reference, Release 1.2

triangles(G[, nbunch]) Compute the number of triangles.
transitivity(G) Compute transitivity.

clustering(G[, nbunch, weights]) Compute the clustering coefficient for nodes.
average_clustering(QG) Compute average clustering coefficient.

4.6.1 networkx.triangles
triangles (G, nbunch=None)
Compute the number of triangles.
Finds the number of triangles that include a node as one of the vertices.
Parameters G : graph
A networkx graph
nbunch : container of nodes, optional
Compute triangles for nodes in nbunch. The default is all nodes in G.
Returns out : dictionary

Number of trianges keyed by node label.

Notes

When computing triangles for the entire graph each triangle is counted three times, once at each node.

Self loops are ignored.

Examples

>>> G=nx.complete_graph (5)
>>> print nx.triangles (G, 0)

>>> print nx.triangles (G)

{0: 6, 1: 6, 2: 6, 3: 6, 4: 6}

>>> print nx.triangles (G, (0,1)) .values()
[6, 6]

4.6.2 networkx.transitivity
transitivity (G)
Compute transitivity.

Finds the fraction of all possible triangles which are in fact triangles. Possible triangles are identified by the
number of “triads” (two edges with a shared vertex).

T = 3*triangles/triads
Parameters G : graph
A networkx graph
Returns out : float

Transitivity

148 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Examples

>>> G=nx.complete_graph (5)
>>> print nx.transitivity (G)
1.0

4.6.3 networkx.clustering

clustering (G, nbunch=None, weights=False)
Compute the clustering coefficient for nodes.
For each node find the fraction of possible triangles that exist,
B 2T (v)
deg(v)(deg(v) — 1)

where T'(v) is the number of triangles through node v.

Cy

Parameters G : graph
A networkx graph
nbunch : container of nodes, optional
Limit to specified nodes. Default is entire graph.
weights : bool, optional
If True return fraction of connected triples as dictionary
Returns out : float, dictionary or tuple of dictionaries

Clustering coefficient at specified nodes

Notes

The weights are the fraction of connected triples in the graph which include the keyed node. Ths is useful for
computing transitivity.

Self loops are ignored.
Examples

>>> G=nx.complete_graph (5)

>>> print nx.clustering (G, 0)

1.0

>>> print nx.clustering(G)

{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}

4.6.4 networkx.average_clustering

average_clustering (G)
Compute average clustering coefficient.

4.6. Clustering 149

NetworkX Reference, Release 1.2

A clustering coefficient for the whole graph is the average,
1
C=- v; Cu,
where 7 is the number of nodes in G.
Parameters G : graph
A networkx graph
Returns out : float

Average clustering

Notes

This is a space saving routine; it might be faster to use clustering to get a list and then take the average.

Self loops are ignored.
Examples

>>> G=nx.complete_graph (5)
>>> print nx.average_clustering(G)
1.0

4.7 Components

4.7.1 Connectivity

Connected components.

is_connected(G) Test graph connectivity
number_connected_components(G) Return number of connected components in graph.
connected_components(G) Return nodes in connected components of graph.
connected_component_subgraphs(G) Return connected components as subgraphs.
node_connected_component(G, n) Return nodes in connected components of graph containing node n.

networkx.algorithms.components.connected.is_connected
is_connected (G)
Test graph connectivity
Parameters G : NetworkX Graph
An undirected graph.
Returns connected : bool
True if the graph is connected, false otherwise.
See Also:

connected_components

150 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Notes

For undirected graphs only.
Examples

>>> G=nx.path_graph (4)
>>> print nx.is_connected(G)
True

networkx.algorithms.components.connected.number_connected_components
number_connected_components (G)
Return number of connected components in graph.
Parameters G : NetworkX Graph
An undirected graph.
Returns n: integer
Number of connected components
See Also:

connected_components

Notes

For undirected graphs only.

networkx.algorithms.components.connected.connected_components
connected_components (G)
Return nodes in connected components of graph.
Parameters G : NetworkX Graph
An undirected graph.
Returns comp : list of lists
A list of nodes for each component of G.
See Also:

strongly_connected_components

Notes

The list is ordered from largest connected component to smallest. For undirected graphs only.

4.7. Components 151

NetworkX Reference, Release 1.2

networkx.algorithms.components.connected.connected_component_subgraphs
connected_component_subgraphs (G)
Return connected components as subgraphs.
Parameters G : NetworkX Graph
An undirected graph.
Returns glist : list
A list of graphs, one for each connected component of G.
See Also:

connected_components

Notes

The list is ordered from largest connected component to smallest. For undirected graphs only.

Examples

Get largest connected component as subgraph

>>> G=nx.path_graph (4)
>>> G.add_edge (5, 6)
>>> H=nx.connected_component_subgraphs (G) [0]

networkx.algorithms.components.connected.node_connected_component
node_connected_component (G, n)
Return nodes in connected components of graph containing node n.
Parameters G : NetworkX Graph
An undirected graph.
n : node label
A node in G
Returns comp : lists
A list of nodes in component of G containing node n.
See Also:

connected_components

Notes

For undirected graphs only.

152 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.7.2 Strong connectivity

Strongly connected components.

is_strongly_connected(G) Test directed graph for strong connectivity.

number_strongly_connected_components(G) Return number of strongly connected components in
graph.

strongly_connected_components(G) Return nodes in strongly connected components of
graph.

strongly_connected_component_subgraphs(G) Return strongly connected components as subgraphs.
strongly_connected_components_recursive(GReturn nodes in strongly connected components of

graph.
kosaraju_strongly_connected_component s(G[,Return nodes in strongly connected components of
) graph.
condensation(G) Returns the condensation of G.

networkx.algorithms.components.strongly_connected.is_strongly_connected
is_strongly_connected (G)
Test directed graph for strong connectivity.
Parameters G : NetworkX Graph
A directed graph.
Returns connected : bool
True if the graph is strongly connected, False otherwise.
See Also:

strongly_connected_components

Notes

For directed graphs only.

networkx.algorithms.components.strongly_connected.number_strongly_connected_components
number_strongly connected_components (G)
Return number of strongly connected components in graph.
Parameters G : NetworkX graph
A directed graph.
Returns n: integer
Number of strongly connected components
See Also:

connected_components

Notes

For directed graphs only.

4.7. Components 153

NetworkX Reference, Release 1.2

networkx.algorithms.components.strongly_connected.strongly_connected_components

strongly_connected_components (G)
Return nodes in strongly connected components of graph.
Parameters G : NetworkX Graph
An directed graph.

Returns comp : list of lists

A list of nodes for each component of G. The list is ordered from largest connected
component to smallest.

See Also:

connected_components

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications. Nonrecursive version of algorithm.

References

[R41], [R42]

networkx.algorithms.components.strongly_connected.strongly connected_component_subgraphs
strongly_ connected_component_subgraphs (G)
Return strongly connected components as subgraphs.
Parameters G : NetworkX Graph
A graph.
Returns glist : list

A list of graphs, one for each strongly connected component of G.

See Also:

connected_component_subgraphs

Notes

The list is ordered from largest strongly connected component to smallest.

networkx.algorithms.components.strongly_connected.strongly_connected_components_recursive
strongly connected_components_recursive (G)
Return nodes in strongly connected components of graph.
Recursive version of algorithm.
Parameters G : NetworkX Graph
An directed graph.

154 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Returns comp : list of lists

A list of nodes for each component of G. The list is ordered from largest connected
component to smallest.

See Also:

connected_components

Notes

Uses Tarjan’s algorithm with Nuutila’s modifications.

References

[R43], [R44]

networkx.algorithms.components.strongly_connected.kosaraju_strongly connected_components
kosaraju_strongly_ connected_components (G, source=None)
Return nodes in strongly connected components of graph.
Parameters G : NetworkX Graph
An directed graph.

Returns comp : list of lists

A list of nodes for each component of G. The list is ordered from largest connected
component to smallest.

See Also:

connected_components

Notes

Uses Kosaraju’s algorithm.

networkx.algorithms.components.strongly_connected.condensation
condensation (G)
Returns the condensation of G.

The condensation of G is the graph with each of the strongly connected components contracted into a single
node.

Parameters G : NetworkX Graph
A directed graph.
Returns ¢G : NetworkX DiGraph

The condensation of G.

4.7. Components 155

NetworkX Reference, Release 1.2

Notes

After contracting all strongly connected components to a single node, the resulting graph is a directed acyclic
graph.

4.7.3 Weak connectivity

Weakly connected components.

is_weakly_connected(G) Test directed graph for weak connectivity.
number_weakly_connected_components(G) Return the number of connected components in G.
weakly_connected_components(G) Return weakly connected components of G.

weakly_connected_component_subgraphs(G) Return weakly connected components as subgraphs.

networkx.algorithms.components.weakly_connected.is_weakly connected

is_weakly_ connected (G)
Test directed graph for weak connectivity.

Parameters G : NetworkX Graph
A directed graph.
Returns connected : bool
True if the graph is weakly connected, False otherwise.
See Also:

strongly_connected_components

Notes

For directed graphs only.

networkx.algorithms.components.weakly_connected.number_weakly_connected_components

number_weakly_connected_components (G)
Return the number of connected components in G. For directed graphs only.

networkx.algorithms.components.weakly _connected.weakly_connected_components

weakly_ connected_components (G)
Return weakly connected components of G.

networkx.algorithms.components.weakly_connected.weakly connected_component_subgraphs

weakly connected_component_subgraphs (G)
Return weakly connected components as subgraphs.

156 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.7.4 Atrracting components

Attracting components.

is_attracting_component(G) Returns True if G consists of a single attracting component.
number_attracting_components(G) Returns the number of attracting components in G.
attracting_components(G) Returns a list of attracting components in G.

attracting_component_subgraphs(G) Returns a list of attracting component subgraphs from G.

networkx.algorithms.components.attracting.is_attracting_component
is_attracting component (G)
Returns True if G consists of a single attracting component.
Parameters G : DiGraph, MultiDiGraph
The graph to be analyzed.
Returns attracting : bool
True if G has a single attracting component. Otherwise, False.
See Also:

attracting_components,number_attracting_components,attracting_component_subgraphs

networkx.algorithms.components.attracting.number_attracting_components
number_attracting components (G)
Returns the number of attracting components in G.
Parameters G : DiGraph, MultiDiGraph
The graph to be analyzed.
Returns n: int
The number of attracting components in G.
See Also:

attracting_components,is_attracting_component,attracting_component_subgraphs

networkx.algorithms.components.attracting.attracting_components
attracting_components (G)
Returns a list of attracting components in G.

An attracting component in a directed graph G is a strongly connected component with the property that a
random walker on the graph will never leave the component, once it enters the component.

The nodes in attracting components can also be thought of as recurrent nodes. If a random walker enters the
attractor containing the node, then the node will be visited infinitely often.

Parameters G : DiGraph, MultiDiGraph
The graph to be analyzed.

Returns attractors : list

4.7. Components 157

NetworkX Reference, Release 1.2

The list of attracting components, sorted from largest attracting component to smallest
attracting component.

See Also:

number_attracting_components, is_attracting_component,
attracting_component_subgraphs

networkx.algorithms.components.attracting.attracting_component_subgraphs
attracting component_subgraphs (G)
Returns a list of attracting component subgraphs from G.
Parameters G : DiGraph, MultiDiGraph
The graph to be analyzed.
Returns subgraphs : list
A list of node-induced subgraphs of the attracting components of G.
See Also:

attracting_components, number_attracting_components, is_attracting_component

4.8 Cores

Find the k-cores of a graph. The k-core is found by recursively pruning nodes with degrees less than k.

find_cores(G) Return the core number for each vertex.

4.8.1 networkx.find_cores

find cores (G)
Return the core number for each vertex.
Parameters G : NetworkX graph
A graph
Returns core_number : dictionary

A ditionary keyed by node to the core number.

References

[R53]

4.9 Cycles

cycle_basis(G[, root]) Returns a list of cycles which form a basis for cycles of G.

158 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.9.1 networkx.cycle_basis
cycle_basis (G, root=None)
Returns a list of cycles which form a basis for cycles of G.

A basis for cycles of a network is a minimal collection of cycles such that any cycle in the network can be written
as a sum of cycles in the basis. Here summation of cycles is defined as “exclusive or” of the edges. Cycle bases
are useful, e.g. when deriving equations for electric circuits using Kirchhoff’s Laws.

Parameters G : NetworkX Graph
root : node of G, optional (default=arbitrary choice from G)
Returns A list of cycle lists. Each cycle list is a list of nodes :

which forms a cycle (loop) in G. :

Notes

This algorithm is adapted from algorithm CACM 491 published: Paton, K. An algorithm for finding a funda-
mental set of cycles of a graph. Comm. ACM 12, 9 (Sept 1969), 514-518.

Examples

>>> G=nx.Graph ()

>>> G.add_cycle([0,1,2,3])
>>> G.add_cycle([0,3,4,5])
>>> print nx.cycle_basis (G,0)
[r3, 4, 5, o1, 11, 2, 3, 0]]

4.10 Directed Acyclic Graphs

Algorithms for directed acyclic graphs (DAGsS).

topological_sort(G[, nbunch]) Return a list of nodes in topological sort order.
topological_sort_recursive(G[, nbunch]) Return a list of nodes in topological sort order.
is_directed_acyclic_graph(G) Return True if the graph G is a directed acyclic graph (DAG)

4.10.1 networkx.topological_sort
topological_sort (G, nbunch=None)
Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears
before v in the topological sort order.

Parameters G : NetworkX digraph
A directed graph
nbunch : container of nodes (optional)

Explore graph in specified order given in nbunch

4.10. Directed Acyclic Graphs 159

NetworkX Reference, Release 1.2

See Also:

is_directed_acyclic_graph

Notes

If G is not a directed acyclic graph (DAG) no topological sort exists and the Python keyword None is returned.

This algorithm is based on a description and proof in The Algorithm Design Manual [R95] .

References

[R95]

4.10.2 networkx.topological_sort_recursive
topological_sort_recursive (G, nbunch=None)
Return a list of nodes in topological sort order.

A topological sort is a nonunique permutation of the nodes such that an edge from u to v implies that u appears
before v in the topological sort order.

Parameters G : NetworkX digraph
nbunch : container of nodes (optional)
Explore graph in specified order given in nbunch

See Also:

topological_sort,is_directed_acyclic_graph

Notes

If G is not a directed acyclic graph (DAG) no topological sort exists and the Python keyword None is returned.

This is a recursive version of topological sort.

4.10.3 networkx.is_directed_acyclic_graph
is_directed_acyclic_graph (G)
Return True if the graph G is a directed acyclic graph (DAG) or False if not.
Parameters G : NetworkX graph
A graph
Returns is_dag : bool

True if G is a DAG, false otherwise

160 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.11 Distance Measures

Graph diameter, radius, eccentricity and other properties.

center(Gl,e]) Return the periphery of the graph G.
diameter(Gl,e]) Return the diameter of the graph G.
eccentricity(G[, v, sp]) Return the eccentricity of nodes in G.
periphery(Gl,e]) Return the periphery of the graph G.
radius(GI,e]) Return the radius of the graph G.

4.11.1 networkx.center
center (G, e=None)
Return the periphery of the graph G.
The center is the set of nodes with eccentricity equal to radius.
Parameters G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns c: list

List of nodes in center

4.11.2 networkx.diameter
diameter (G, e=None)
Return the diameter of the graph G.
The diameter is the maximum eccentricity.
Parameters G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns d : integer
Diameter of graph
See Also:

eccentricity

4.11.3 networkx.eccentricity
eccentricity (G, v=None, sp=None)
Return the eccentricity of nodes in G.
The eccentricity of a node v is the maximum distance from v to all other nodes in G.

Parameters G : NetworkX graph

4.11. Distance Measures

161

NetworkX Reference, Release 1.2

A graph
v : node, optional
Return value of specified node
sp : dict of dicts, optional
All pairs shortest path lenghts as a dictionary of dictionaries
Returns ecc : dictionary

A dictionary of eccentricity values keyed by node.

4.11.4 networkx.periphery
periphery (G, e=None)
Return the periphery of the graph G.
The periphery is the set of nodes with eccentricity equal to the diameter.
Parameters G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns p : list

List of nodes in periphery

4.11.5 networkx.radius
radius (G, e=None)
Return the radius of the graph G.
The radius is the minimum eccentricity.
Parameters G : NetworkX graph
A graph
e : eccentricity dictionary, optional
A precomputed dictionary of eccentricities.
Returns r: integer

Radius of graph

4.12 Eulerian

Eulerian circuits and graphs.

is_eulerian(QG) Return True if G is an Eulerian graph, False otherwise.
eulerian_circuit(Gl, source]) Return the edges of an Eulerian circuit in G.

162 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.12.1 networkx.is_eulerian

is_eulerian (G)
Return True if G is an Eulerian graph, False otherwise.
An Eulerian graph is a graph with an Eulerian circuit.

Parameters G : NetworkX graph

Notes

This implementation requires the graph to be connected (or strongly connected for directed graphs).

Examples

>>> is_eulerian (nx.DiGraph ({0:[3], 1:[2]1, 2:[3], 3:[0, 111}))
True

>>> is_eulerian (nx.complete_graph(5))

True

>>> is_eulerian (nx.petersen_graph())

False

4.12.2 networkx.eulerian_circuit

eulerian_circuit (G, source=None)
Return the edges of an Eulerian circuit in G.
An Eulerian circuit is a path that crosses every edge in G exactly once and finishes at the starting node.
Parameters G : NetworkX graph
source : node, optional
Starting node for circuit.
Returns edges : generator

A generator that produces edges in the Eulerian circuit.

Notes

Uses Fleury’s algorithm [R51],[R52]_

References

[R51], [R52]

Examples

4.12. Eulerian 163

NetworkX Reference, Release 1.2

>>> G=nx.complete_graph (3)

>>> list(eulerian_circuilt (G))

[0, 1), (1, 2y, (2, 0)]

>>> list (eulerian_circuit (G, source=1))

[, 0), (0, 2), (2, 1)]

>>> [u for u,v in eulerian_circuit (G)] # nodes in circuit
[0, 1, 2]

4.13 Flows

4.13.1 Ford-Fulkerson

max_flow(G,s,t) Find a maximum single-commodity flow using the Ford-Fulkerson
min_cut(G,s,t) Compute the value of a minimum (s, t)-cut.
ford_fulkerson(G,s,t) Find a maximum single-commodity flow using the Ford-Fulkerson

networkx.max_flow
max_flow (G, s,)
Find a maximum single-commodity flow using the Ford-Fulkerson algorithm.
This algorithm uses Edmond-Karp-Dinitz path selection rule which guarantees a running time of O(IVIIEI**2).
Parameters G : NetworkX graph

Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is
not present, the edge is considered to have infinite capacity.

s : node
Source node for the flow.
t : node
Sink node for the flow.
Returns flowValue : integer, float
Value of the maximum flow, i.e., net outflow from the source.
flowGraph : NetworkX graph

Graph with V(flowGraph) = V(G) and in which each edge has an attribute ‘flow’ which
gives the flow on the edge.

Raises NetworkXError :

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is
unbounded above and the function raises a NetworkXError.

Examples

>>> import networkx as nx
>>> G = nx.DiGraph ()
>>> G.add_edge('x’,’a’, capacity = 3.0)

164 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

>>> G.add_edge ('x’,’b’, capacity = 1.0)
>>> G.add_edge(’a’,’c’, capacity = 3.0)
>>> G.add_edge('b’,’c’, capacity = 5.0)
>>> G.add_edge('b’,’d’, capacity = 4.0)
>>> G.add_edge(’d’,’e’, capacity = 2.0)
>>> G.add_edge(’'c’,’y’, capacity = 2.0)
>>> G.add_edge('e’,’y’, capacity = 3.0)
>>> flow,F=nx.ford_fulkerson(G, 'x’, ’'y’)

>>> flow
3.0

networkx.min_cut
min_cut (G, s, 1)
Compute the value of a minimum (s, t)-cut.

Use the max-flow min-cut theorem, i.e., the capacity of a minimum capacity cut is equal to the flow value of a
maximum flow.

Parameters G : NetworkX graph

Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is
not present, the edge is considered to have infinite capacity.

s : node
Source node for the flow.
t : node
Sink node for the flow.
Returns cutValue : integer, float
Value of the minimum cut.
Raises NetworkXError :

If the graph has a path of infinite capacity, all cuts have infinite capacity and the function
raises a NetworkXError.

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge('x’,’a’, capacity = 3.0)
>>> G.add_edge ('x’,’b’, capacity = 1.0)
>>> G.add_edge(’a’,’c’, capacity = 3.0)
>>> G.add_edge('b’,’c’, capacity = 5.0)
>>> G.add_edge('b’,’d’, capacity = 4.0)
>>> G.add_edge(’d’,’e’, capacity = 2.0)
>>> G.add_edge('c’,’y’, capacity = 2.0)
>>> G.add_edge('e’,’y’, capacity = 3.0)

(’ 4

>>> nx.min_cut (G,
3.0

X "y")

4.13. Flows 165

NetworkX Reference, Release 1.2

networkx.ford_fulkerson
ford_ fulkerson (G, s, t)
Find a maximum single-commodity flow using the Ford-Fulkerson algorithm.
This algorithm uses Edmond-Karp-Dinitz path selection rule which guarantees a running time of O(IVIIEI**2).
Parameters G : NetworkX graph

Edges of the graph are expected to have an attribute called ‘capacity’. If this attribute is
not present, the edge is considered to have infinite capacity.

s : node
Source node for the flow.
t : node
Sink node for the flow.
Returns flowValue : integer, float
Value of the maximum flow, i.e., net outflow from the source.
flowGraph : NetworkX graph

Graph with V(flowGraph) = V(G) and in which each edge has an attribute ‘flow’ which
gives the flow on the edge.

Raises NetworkXError :

If the graph has a path of infinite capacity, the value of a feasible flow on the graph is
unbounded above and the function raises a NetworkXError.

Examples

>>> import networkx as nx

>>> G = nx.DiGraph ()

>>> G.add_edge('x’,"a’, capacity = 3.0)
>>> G.add_edge(’x’,’b’, capacity = 1.0)
>>> G.add_edge(’a’,’c’, capacity = 3.0)
>>> G.add_edge('b’,’c’, capacity = 5.0)
>>> G.add_edge('b’,’d’, capacity = 4.0)
>>> G.add_edge('d’,’e’, capacity = 2.0)
>>> G.add_edge(’c’,’y’, capacity = 2.0)
>>> G.add_edge('e’,’y’, capacity = 3.0)
>>> flow,F=nx.ford_fulkerson(G, "x', "vy’)

>>> flow
3.0

4.14 Isolates

Functions for identifying isolate (degree zero) nodes.

is_isolate(G,n) Determine of node n is an isolate (degree zero).
isolates(G) Return list of isolates in the graph.

166 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.14.1 networkx.is_isolate
is_isolate (G, n)
Determine of node n is an isolate (degree zero).
Parameters G : graph
A networkx graph
n : node
A node in G
Returns isolate : bool

True if n has no neighbors, False otherwise.
Examples

>>> G=nx.Graph ()

>>> G.add_edge (1,2)
>>> G.add_node (3)

>>> nx.is_isolate (G, 2)
False

>>> nx.is_isolate (G, 3)
True

4.14.2 networkx.isolates
isolates (G)
Return list of isolates in the graph.
Isolates are nodes with no neighbors (degree zero).
Parameters G : graph
A networkx graph
Returns isolates : list

List of isolate nodes.
Examples

>>> G=nx.Graph

()
>>> G.add_edge (1, 2)
>>> G.add_node (3)
>>> nx.isolates (G)

[31]

To remove all isolates in the graph use >>> G.remove_nodes_from(nx.isolates(G)) >>> G.nodes() [1, 2]

4.14. lIsolates

167

NetworkX Reference, Release 1.2

4.15 Isomorphism

is_isomorphic(Gl, G2[, weighted, rtol, Returns True if the graphs G1 and G2 are isomorphic and False

atol]) otherwise.

could_be_isomorphic(Gl, G2) Returns False if graphs are definitely not isomorphic.
fast_could_be_isomorphic(Gl, Returns False if graphs are definitely not isomorphic.
G2)

faster_could_be_isomorphic(Gl, Returns False if graphs are definitely not isomorphic.
G2)

4.15.1 networkx.is_isomorphic
is_isomorphic (GI, G2, weighted=False, rtol=9.9999999999999995¢-07, atol=1.0000000000000001¢-09)
Returns True if the graphs G1 and G2 are isomorphic and False otherwise.
Parameters G1, G2: NetworkX graph instances :
The two graphs G1 and G2 must be the same type.
weighted: bool, optional :

Optionally check isomorphism for weighted graphs. G1 and G2 must be valid weighted
graphs.

rtol: float, optional :
The relative error tolerance when checking weighted edges
atol: float, optional :
The absolute error tolerance when checking weighted edges
See Also:

isomorphvf2

Notes

Uses the vf2 algorithm. Works for Graph, DiGraph, MultiGraph, and MultiDiGraph

4.15.2 networkx.could_be_isomorphic

could_be_isomorphic (Gl, G2)
Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.

Parameters G1, G2 : NetworkX graph instances

The two graphs G1 and G2 must be the same type.

Notes

Checks for matching degree, triangle, and number of cliques sequences.

168 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.15.3 networkx.fast_could_be_isomorphic

fast_could_be_isomorphic (Gl, G2)
Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.

Parameters G1, G2 : NetworkX graph instances

Notes

The two graphs G1 and G2 must be the same type.

Checks for matching degree and triangle sequences.

4.15.4 networkx.faster_could_be_isomorphic

faster_could_be_isomorphic (GI, G2)
Returns False if graphs are definitely not isomorphic. True does NOT guarantee isomorphism.

Parameters G1, G2 : NetworkX graph instances

Notes

The two graphs G1 and G2 must be the same type.

Checks for matching degree sequences.

4.15.5 Advanced Interface to VF2 Algorithm

VF2 Algorithm

Graph Matcher

GraphMatcher

GraphMatcher.
GraphMatcher.
GraphMatcher.

)

GraphMatcher.

)

.__init__ (Gl1,G2)
GraphMatcher.
GraphMatcher.
GraphMatcher.
GraphMatcher.
GraphMatcher.

Initialize GraphMatcher.

Reinitializes the state of the algorithm.

Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isomorphic() Returns True if a subgraph of G1 is isomorphic to G2.

isomorphisms_iter() Generator over isomorphisms between G1 and G2.

subgraph_isomorphisms_ite@GeEnerator over isomorphisms between a subgraph of G1
and G2.

candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2.

match() Extends the isomorphism mapping.

semantic_feasibility(Gl_noReturns True if adding (G1_node, G2_node) is
symantically feasible.

syntactic_feasibility(Gl_nRdairns True if adding (G1_node, G2_node) is

syntactically feasible.

initialize()
is_isomorphic()

networkx.GraphMatcher.__init__
__dinit__ (GI, G2)
Initialize GraphMatcher.

Parameters G1,G2: NetworkX Graph or MultiGraph instances. :

4.15. Isomorphism

169

NetworkX Reference, Release 1.2

The two graphs to check for isomorphism.

Examples

To create a GraphMatcher which checks for syntactic feasibility:

>>> Gl = nx.path_graph (4)
>>> G2 = nx.path_graph (4)
>>> GM = nx.GraphMatcher (G1,G2)

networkx.GraphMatcher.initialize
initialize()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a
redefinition is not necessary.

networkx.GraphMatcher.is_isomorphic
is_isomorphic ()
Returns True if G1 and G2 are isomorphic graphs.

networkx.GraphMatcher.subgraph_is_isomorphic
subgraph_is_isomorphic ()
Returns True if a subgraph of G1 is isomorphic to G2.

networkx.GraphMatcher.isomorphisms_iter
isomorphisms_iter ()
Generator over isomorphisms between G1 and G2.

networkx.GraphMatcher.subgraph_isomorphisms_iter
subgraph_isomorphisms_iter ()
Generator over isomorphisms between a subgraph of G1 and G2.

networkx.GraphMatcher.candidate_pairs_iter
candidate_pairs_iter ()
Iterator over candidate pairs of nodes in G1 and G2.

networkx.GraphMatcher.match
match ()
Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

170 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

networkx.GraphMatcher.semantic_feasibility
semantic_feasibility (GI_node, G2_node)

Returns True if adding (G1_node, G2_node) is symantically feasible.

The semantic feasibility function should return True if it is acceptable to add the candidate pair (G1_node,
G2_node) to the current partial isomorphism mapping. The logic should focus on semantic information con-
tained in the edge data or a formalized node class.

By acceptable, we mean that the subsequent mapping can still become a complete isomorphism mapping. Thus,
if adding the candidate pair definitely makes it so that the subsequent mapping cannot become a complete
isomorphism mapping, then this function must return False.

The default semantic feasibility function always returns True. The effect is that semantics are not considered in
the matching of G1 and G2.

The semantic checks might differ based on the what type of test is being performed. A keyword description of
the test is stored in self.test. Here is a quick description of the currently implemented tests:

test="graph’ Indicates that the graph matcher is looking for a graph-graph isomorphism.

test="subgraph’ Indicates that the graph matcher is looking for a subgraph-graph isomorphism such
that a subgraph of G1 is isomorphic to G2.

Any subclass which redefines semantic_feasibility() must maintain the above form to keep the match() method
functional. Implementations should consider multigraphs.

networkx.GraphMatcher.syntactic_feasibility
syntactic_feasibility (GI_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

DiGraph Matcher

DiGraphMatcher.__init_ (Gl, G2) Initialize DiGraphMatcher.
DiGraphMatcher.initialize() Reinitializes the state of the algorithm.
DiGraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.
DiGraphMatcher.subgraph_is_isomorphic()Returns True if a subgraph of G1 is isomorphic to G2.
DiGraphMatcher.isomorphisms_iter() Generator over isomorphisms between G1 and G2.
DiGraphMatcher.subgraph_isomorphisms_ itGengrator over isomorphisms between a subgraph of G1
and G2.
DiGraphMatcher.candidate_pairs_iter() Iterator over candidate pairs of nodes in G1 and G2.
DiGraphMatcher.match() Extends the isomorphism mapping.
DiGraphMatcher.semantic_feasibility(Gl_Reterns True if adding (G1_node, G2_node) is
) symantically feasible.
DiGraphMatcher.syntactic_feasibility(...)Returns True if adding (G1_node, G2_node) is

syntactically feasible.

networkx.DiGraphMatcher.__init__

__init_ (Gl G2)

Initialize DiGraphMatcher.

G1 and G2 should be nx.Graph or nx.MultiGraph instances.

4.15. Isomorphism

171

NetworkX Reference, Release 1.2

Examples

To create a GraphMatcher which checks for syntactic feasibility:

>>> Gl = nx.DiGraph(nx.path_graph (4, create_using=nx.DiGraph()))
>>> G2 = nx.DiGraph(nx.path_graph (4, create_using=nx.DiGraph()))
>>> DiGM = nx.DiGraphMatcher (G1,G2)

networkx.DiGraphMatcher.initialize
initialize ()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher,
a redefinition is not necessary.

networkx.DiGraphMatcher.is_isomorphic
is_isomorphic ()
Returns True if G1 and G2 are isomorphic graphs.

networkx.DiGraphMatcher.subgraph_is_isomorphic
subgraph_is_isomorphic ()
Returns True if a subgraph of G1 is isomorphic to G2.

networkx.DiGraphMatcher.isomorphisms_iter
isomorphisms_iter ()
Generator over isomorphisms between G1 and G2.

networkx.DiGraphMatcher.subgraph_isomorphisms_iter
subgraph_isomorphisms_iter ()
Generator over isomorphisms between a subgraph of G1 and G2.

networkx.DiGraphMatcher.candidate_pairs_iter
candidate_pairs_iter ()
Iterator over candidate pairs of nodes in G1 and G2.

networkx.DiGraphMatcher.match
match ()
Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

networkx.DiGraphMatcher.semantic_feasibility
semantic_feasibility (GI/_node, G2_node)
Returns True if adding (G1_node, G2_node) is symantically feasible.

The semantic feasibility function should return True if it is acceptable to add the candidate pair (G1_node,
G2_node) to the current partial isomorphism mapping. The logic should focus on semantic information con-
tained in the edge data or a formalized node class.

172 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

By acceptable, we mean that the subsequent mapping can still become a complete isomorphism mapping. Thus,
if adding the candidate pair definitely makes it so that the subsequent mapping cannot become a complete
isomorphism mapping, then this function must return False.

The default semantic feasibility function always returns True. The effect is that semantics are not considered in
the matching of G1 and G2.

The semantic checks might differ based on the what type of test is being performed. A keyword description of
the test is stored in self.test. Here is a quick description of the currently implemented tests:

test="graph’ Indicates that the graph matcher is looking for a graph-graph isomorphism.

test="subgraph’ Indicates that the graph matcher is looking for a subgraph-graph isomorphism such
that a subgraph of Gl is isomorphic to G2.

Any subclass which redefines semantic_feasibility() must maintain the above form to keep the match() method
functional. Implementations should consider multigraphs.

networkx.DiGraphMatcher.syntactic_feasibility
syntactic_feasibility (GI_node, G2_node)

Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

Weighted Graph Matcher

WeightedGraphMatcher.__init_ (Gl, G2[, Initialize WeightedGraphMatcher.

)

WeightedGraphMatcher.initialize() Reinitializes the state of the algorithm.
WeightedGraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.

WeightedGraphMatcher.subgraph_is_isomorRetur@s True if a subgraph of Gl is isomorphic to G2.
WeightedGraphMatcher.isomorphisms_iter()Generator over isomorphisms between G1 and G2.
WeightedGraphMatcher.subgraph_isomorphi Generatoroyer isomorphisms between a subgraph of

G1 and G2.

WeightedGraphMatcher.candidate_pairs_itdtefator over candidate pairs of nodes in G1 and G2.
WeightedGraphMatcher.match() Extends the isomorphism mapping.
WeightedGraphMatcher.semantic_feasibiliitRetums True if mapping G1_node to G2_node is

semantically feasible.

WeightedGraphMatcher.syntactic_feasibil Retfrny True if adding (G1_node, G2_node) is

syntactically feasible.

networkx.WeightedGraphMatcher.__init__
__dinit__ (GI, G2, rt0l=9.9999999999999995¢-07, atol=1.0000000000000001 e-09)

Initialize WeightedGraphMatcher.
Parameters G1, G2 : nx.Graph instances
G1 and G2 must be weighted graphs.
rtol : float, optional
The relative tolerance used to compare weights.

atol : float, optional

4.15.

Isomorphism 173

NetworkX Reference, Release 1.2

The absolute tolerance used to compare weights.

networkx.WeightedGraphMatcher.initialize
initialize()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a
redefinition is not necessary.

networkx.WeightedGraphMatcher.is_isomorphic
is_isomorphic ()
Returns True if G1 and G2 are isomorphic graphs.

networkx.WeightedGraphMatcher.subgraph_is_isomorphic
subgraph_is_isomorphic ()
Returns True if a subgraph of G1 is isomorphic to G2.

networkx.WeightedGraphMatcher.isomorphisms_iter
isomorphisms_iter ()
Generator over isomorphisms between G1 and G2.

networkx.WeightedGraphMatcher.subgraph_isomorphisms_iter
subgraph_isomorphisms_iter ()
Generator over isomorphisms between a subgraph of G1 and G2.

networkx.WeightedGraphMatcher.candidate_pairs_iter
candidate_pairs_iter ()
Iterator over candidate pairs of nodes in G1 and G2.

networkx.WeightedGraphMatcher.match
match ()
Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

networkx.WeightedGraphMatcher.semantic_feasibility
semantic_feasibility (GI_node, G2_node)
Returns True if mapping G1_node to G2_node is semantically feasible.

networkx.WeightedGraphMatcher.syntactic_feasibility
syntactic_feasibility (GI_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

174 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Weighted DiGraph Matcher

WeightedDiGraphMatcher._ _init_ (Gl,G2[, Initialize WeightedGraphMatcher.

]

WeightedDiGraphMatcher.initialize() Reinitializes the state of the algorithm.
WeightedDiGraphMatcher.is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.
WeightedDiGraphMatcher.subgraph_is_isomoReturn()[rue if a subgraph of G1 is isomorphic to G2.
WeightedDiGraphMatcher.isomorphisms_iter(enerator over isomorphisms between G1 and G2.
WeightedDiGraphMatcher.subgraph_isomorphGenerator ovéy isomorphisms between a subgraph of

Gl and G2.
WeightedDiGraphMatcher.candidate_pairs_ ilterafpr over candidate pairs of nodes in G1 and G2.
WeightedDiGraphMatcher.match() Extends the isomorphism mapping.

WeightedDiGraphMatcher.semantic_feasibilRetugny True if mapping G1_node to G2_node is
semantically feasible.

WeightedDiGraphMatcher.syntactic_feasibiRetuys. True if adding (G1_node, G2_node) is
syntactically feasible.

networkx.WeightedDiGraphMatcher.__init__
__init_ (Gl, G2, rt0l=9.9999999999999995¢-07, atol=1.0000000000000001e-09)
Initialize WeightedGraphMatcher.

Parameters G1, G2 : nx.DiGraph instances
G1 and G2 must be weighted graphs.
rtol : float, optional
The relative tolerance used to compare weights.
atol : float, optional

The absolute tolerance used to compare weights.

networkx.WeightedDiGraphMatcher.initialize
initialize()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher,
a redefinition is not necessary.

networkx.WeightedDiGraphMatcher.is_isomorphic
is_isomorphic ()
Returns True if G1 and G2 are isomorphic graphs.

networkx.WeightedDiGraphMatcher.subgraph_is_isomorphic
subgraph_is_isomorphic ()
Returns True if a subgraph of G1 is isomorphic to G2.

networkx.WeightedDiGraphMatcher.isomorphisms_iter
isomorphisms_iter ()
Generator over isomorphisms between G1 and G2.

4.15. Isomorphism 175

NetworkX Reference, Release 1.2

networkx.WeightedDiGraphMatcher.subgraph_isomorphisms_iter
subgraph_isomorphisms_iter ()
Generator over isomorphisms between a subgraph of G1 and G2.

networkx.WeightedDiGraphMatcher.candidate_pairs_iter

candidate_pairs_iter ()

Iterator over candidate pairs of nodes in G1 and G2.

networkx.WeightedDiGraphMatcher.match

match ()

Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

networkx.WeightedDiGraphMatcher.semantic_feasibility
semantic_feasibility (GI_node, G2_node)
Returns True if mapping G1_node to G2_node is semantically feasible.

networkx.WeightedDiGraphMatcher.syntactic_feasibility
syntactic_feasibility (GI_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an

isomorphism to be found.

Weighted MultiGraph Matcher

WeightedMultiGraphMatcher
G2[, ...

WeightedMultiGraphMatcher.
WeightedMultiGraphMatcher.
WeightedMultiGraphMatcher.

WeightedMultiGraphMatcher.
WeightedMultiGraphMatcher.

WeightedMultiGraphMatcher

WeightedMultiGraphMatcher.
WeightedMultiGraphMatcher.
WeightedMultiGraphMatcher.

.__init_ (GI1,

Initialize WeightedGraphMatcher.

initialize() Reinitializes the state of the algorithm.

is_isomorphic() Returns True if G1 and G2 are isomorphic graphs.

subgraph_is_isonRetninsd@mue if a subgraph of G1 is isomorphic to
G2.

isomorphisms_ ite@énerator over isomorphisms between G1 and G2.

subgraph_ isomorpGénenator dver (fomorphisms between a subgraph
of G1 and G2.

.candidate_pairs_lteratof)over candidate pairs of nodes in G1 and G2.

match() Extends the isomorphism mapping.

semantic_feasibility(..)

syntactic_feasibRéturng(Trpe if adding (G1_node, G2_node) is
syntactically feasible.

networkx.WeightedMultiGraphMatcher.__init__
__dnit__ (GI, G2, rt0l=9.9999999999999995¢-07, atol=1.0000000000000001 e-09)

Initialize WeightedGraphMatcher.

Parameters G1, G2 : nx.MultiGraph instances

G1 and G2 must be weighted graphs.

176

Chapter 4. Algorithms

NetworkX Reference, Release 1.2

rtol : float, optional
The relative tolerance used to compare weights.
atol : float, optional

The absolute tolerance used to compare weights.

networkx.WeightedMultiGraphMatcher.initialize
initialize ()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than GMState. If only subclassing GraphMatcher, a
redefinition is not necessary.

networkx.WeightedMultiGraphMatcher.is_isomorphic
is_isomorphic ()
Returns True if G1 and G2 are isomorphic graphs.

networkx.WeightedMultiGraphMatcher.subgraph_is_isomorphic
subgraph_is_isomorphic ()
Returns True if a subgraph of G1 is isomorphic to G2.

networkx. WeightedMultiGraphMatcher.isomorphisms_iter
isomorphisms_iter ()
Generator over isomorphisms between G1 and G2.

networkx.WeightedMultiGraphMatcher.subgraph_isomorphisms_iter
subgraph_isomorphisms_iter ()
Generator over isomorphisms between a subgraph of G1 and G2.

networkx. WeightedMultiGraphMatcher.candidate_pairs_iter
candidate_pairs_iter ()
Iterator over candidate pairs of nodes in G1 and G2.

networkx.WeightedMultiGraphMatcher.match
match ()
Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

networkx.WeightedMultiGraphMatcher.semantic_feasibility
semantic_feasibility (GI_node, G2_node)

networkx. WeightedMultiGraphMatcher.syntactic_feasibility
syntactic_feasibility (G/_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.

4.15. Isomorphism 177

NetworkX Reference, Release 1.2

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

Weighted MultiDiGraph Matcher

WeightedMultiDiGraphMatcher._ init_ (GI, Initialize WeightedGraphMatcher.

G2)

WeightedMultiDiGraphMatcher.initialize() Reinitializes the state of the algorithm.

WeightedMultiDiGraphMatcher.is_isomorphic(Returns True if G1 and G2 are isomorphic graphs.

WeightedMultiDiGraphMatcher.subgraph_is_ isReturnsiTrud)if a subgraph of G1 is isomorphic to
G2.

WeightedMultiDiGraphMatcher.isomorphisms_ iGendpator over isomorphisms between G1 and G2.

WeightedMultiDiGraphMatcher.subgraph_ isomo@Geheratosover ésofnorphisms between a subgraph

of G1 and G2.
WeightedMultiDiGraphMatcher.candidate_pai rkeratos oger candidate pairs of nodes in G1 and G2.
WeightedMultiDiGraphMatcher.match() Extends the isomorphism mapping.

WeightedMultiDiGraphMatcher.semantic_feasiRetimsylrug if mapping G1_node to G2_node is
semantically feasible.

WeightedMultiDiGraphMatcher.syntactic_feasRetiinstErae)f adding (G1_node, G2_node) is
syntactically feasible.

networkx.WeightedMultiDiGraphMatcher.__init__
dinit (GI, G2, rt0l=9.9999999999999995¢-07, atol=1.0000000000000001e-09)
Initialize WeightedGraphMatcher.

Parameters G1, G2 : nx.MultiDiGraph instances
G1 and G2 must be weighted graphs.
rtol : float, optional
The relative tolerance used to compare weights.
atol : float, optional

The absolute tolerance used to compare weights.

networkx.WeightedMultiDiGraphMatcher.initialize
initialize()
Reinitializes the state of the algorithm.

This method should be redefined if using something other than DiGMState. If only subclassing GraphMatcher,
a redefinition is not necessary.

networkx. WeightedMultiDiGraphMatcher.is_isomorphic
is_isomorphic ()
Returns True if G1 and G2 are isomorphic graphs.

networkx.WeightedMultiDiGraphMatcher.subgraph_is_isomorphic
subgraph_is_isomorphic ()
Returns True if a subgraph of G1 is isomorphic to G2.

178 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

networkx.WeightedMultiDiGraphMatcher.isomorphisms_iter
isomorphisms_iter ()
Generator over isomorphisms between G1 and G2.

networkx. WeightedMultiDiGraphMatcher.subgraph_isomorphisms_iter
subgraph_isomorphisms_iter ()
Generator over isomorphisms between a subgraph of G1 and G2.

networkx.WeightedMultiDiGraphMatcher.candidate_pairs_iter
candidate_pairs_iter ()
Iterator over candidate pairs of nodes in G1 and G2.

networkx.WeightedMultiDiGraphMatcher.match
match ()
Extends the isomorphism mapping.

This function is called recursively to determine if a complete isomorphism can be found between G1 and G2. It
cleans up the class variables after each recursive call. If an isomorphism is found, we yield the mapping.

networkx.WeightedMultiDiGraphMatcher.semantic_feasibility
semantic_feasibility (GI_node, G2_node)
Returns True if mapping G1_node to G2_node is semantically feasible.

networkx. WeightedMultiDiGraphMatcher.syntactic_feasibility
syntactic_feasibility (GI_node, G2_node)
Returns True if adding (G1_node, G2_node) is syntactically feasible.

This function returns True if it is adding the candidate pair to the current partial isomorphism mapping is
allowable. The addition is allowable if the inclusion of the candidate pair does not make it impossible for an
isomorphism to be found.

4.16 Link Analysis

4.16.1 PageRank

PageRank analysis of graph structure.

pagerank(G[, alpha, max_iter, tol, nstart]) Return the PageRank of the nodes in the graph.
pagerank_numpy(G[, alpha]) Return the PageRank of the nodes in the graph.
pagerank_scipy(GI, alpha, max_iter, tol, ...]) Return the PageRank of the nodes in the graph.
google_matrix(G[, alpha, nodelist]) Return the Google matrix of the graph.

networkx.pagerank
pagerank (G, alpha=0.84999999999999998, max_iter=100, tol=1e-08, nstart=None)
Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was
originally designed as an algorithm to rank web pages.

4.16. Link Analysis 179

NetworkX Reference, Release 1.2

Parameters G : graph
A NetworkX graph
alpha : float, optional
Damping parameter for PageRank, default=0.85
max_iter : integer, optional
Maximum number of iterations in power method eigenvalue solver.
tol : float, optional
Error tolerance used to check convergence in power method solver.
nstart : dictionary, optional
Starting value of PageRank iteration for each node.
Returns nodes : dictionary

Dictionary of nodes with value as PageRank

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The PageRank algorithm was designed for directed graphs but this algorithm does not check if the input graph
is directed and will execute on undirected graphs by converting each oriented edge in the directed graph to two
edges.

References

[R89], [R90]
Examples

>>> G=nx.DiGraph (nx.path_graph (4))
>>> pr=nx.pagerank (G, alpha=0.9)

networkx.pagerank_numpy
pagerank_numpy (G, alpha=0.84999999999999998)
Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was
originally designed as an algorithm to rank web pages.

Parameters G : graph
A NetworkX graph
alpha : float, optional

Damping parameter for PageRank, default=0.85

180 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Returns nodes : dictionary

Dictionary of nodes with value as PageRank

Notes

The eigenvector calculation uses NumPy’s interface to the LAPACK eigenvalue solvers.

This implementation works with Multi(Di)Graphs.

References

[RI1], [R92]

Examples

>>> G=nx.DiGraph (nx.path_graph (4))
>>> pr=nx.pagerank_numpy (G, alpha=0.9)

networkx.pagerank_scipy

pagerank_scipy (G, alpha=0.84999999999999998, max_iter=100, 101=9.9999999999999995¢-07,

nodelist=None)
Return the PageRank of the nodes in the graph.

PageRank computes a ranking of the nodes in the graph G based on the structure of the incoming links. It was
originally designed as an algorithm to rank web pages.

Parameters G : graph
A NetworkX graph
alpha : float, optional
Damping parameter for PageRank, default=0.85
Returns nodes : dictionary

Dictionary of nodes with value as PageRank

Notes

The eigenvector calculation uses power iteration with a SciPy sparse matrix representation.

References

[R93], [R94]

4.16. Link Analysis 181

NetworkX Reference, Release 1.2

Examples

>>> G=nx.DiGraph (nx.path_graph (4))
>>> pr=nx.pagerank_numpy (G, alpha=0.9)

networkx.google_matrix
google_matrix (G, alpha=0.84999999999999998, nodelist=None)
Return the Google matrix of the graph.
Parameters G : graph
A NetworkX graph
alpha : float
The damping factor
nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is
None, then the ordering is produced by G.nodes().

Returns A : NumPy matrix

Google matrix of the graph

4.16.2 Hits

Hubs and authorities analysis of graph structure.
hit s(G[, max_iter, tol, nstart]) Return HITS hubs and authorities values for nodes.
hits_numpy(G) Return HITS hubs and authorities values for nodes.
hits_scipy(G[, max_iter, tol]) Return HITS hubs and authorities values for nodes.
hub_mat rix(GJ[, nodelist]) Return the HITS hub matrix.

authority_matrix(G[, nodelist]) Return the HITS authority matrix.

networkx.hits
hits (G, max_iter=100, tol=1e-08, nstart=None)
Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the
incoming links. Hubs estimates the node value based on outgoing links.

Parameters G : graph
A NetworkX graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.

nstart : dictionary, optional

182 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Starting value of each node for power method iteration.
Returns (hubs,authorities) : two-tuple of dictionaries

Two dictionaries keyed by node containing the hub and authority values.

Notes

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is
directed and will execute on undirected graphs.

References

[R80], [R81]
Examples

>>> G=nx.path_graph (4)
>>> h,a=nx.hits (G)

networkx.hits_numpy
hits_numpy (G)
Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the
incoming links. Hubs estimates the node value based on outgoing links.

Parameters G : graph
A NetworkX graph
Returns (hubs,authorities) : two-tuple of dictionaries

Two dictionaries keyed by node containing the hub and authority values.

Notes

The eigenvector calculation uses NumPy’s interface to LAPACK.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is
directed and will execute on undirected graphs.

References

[R82], [R83]

4.16. Link Analysis 183

NetworkX Reference, Release 1.2

Examples

>>> G=nx.path_graph (4)
>>> h,a=nx.hits (G)

networkx.hits_scipy
hits_scipy (G, max_iter=100, t01=9.9999999999999995¢-07)
Return HITS hubs and authorities values for nodes.

The HITS algorithm computes two numbers for a node. Authorities estimates the node value based on the
incoming links. Hubs estimates the node value based on outgoing links.

Parameters G : graph
A NetworkX graph
max_iter : interger, optional
Maximum number of iterations in power method.
tol : float, optional
Error tolerance used to check convergence in power method iteration.
nstart : dictionary, optional
Starting value of each node for power method iteration.
Returns (hubs,authorities) : two-tuple of dictionaries

Two dictionaries keyed by node containing the hub and authority values.

Notes

This implementation uses SciPy sparse matrices.

The eigenvector calculation is done by the power iteration method and has no guarantee of convergence. The
iteration will stop after max_iter iterations or an error tolerance of number_of_nodes(G)*tol has been reached.

The HITS algorithm was designed for directed graphs but this algorithm does not check if the input graph is
directed and will execute on undirected graphs.

References

[R84], [R85]
Examples

>>> G=nx.path_graph (4)
>>> h,a=nx.hits (G)

184 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

networkx.hub_matrix

hub_matrix (G, nodelist=None)
Return the HITS hub matrix.

networkx.authority_matrix

authority matrix (G, nodelist=None)
Return the HITS authority matrix.

4.17 Matching

The algorithm is taken from “Efficient Algorithms for Finding Maximum Matching in Graphs” by Zvi Galil, ACM
Computing Surveys, 1986. It is based on the “blossom” method for finding augmenting paths and the “primal-dual”
method for finding a matching of maximum weight, both methods invented by Jack Edmonds.

max_weight_matching(G[, maxcardinality]) Compute a maximum-weighted matching of G.

4.17.1 networkx.max_weight_matching
max_weight_matching (G, maxcardinality=False)
Compute a maximum-weighted matching of G.

A matching is a subset of edges in which no node occurs more than once. The cardinality of a matching is the
number of matched edges. The weight of a matching is the sum of the weights of its edges.

Parameters G : NetworkX graph
Undirected graph
maxcardinality: bool, optional :

If maxcardinality is True, compute the maximum-cardinality matching with maximum
weight among all maximum-cardinality matchings.

Returns mate : dictionary

The matching is returned as a dictionary, mate, such that mate[v] == w if node v is
matched to node w. Unmatched nodes do not occur as a key in mate.

Notes

If G has edges with ‘weight’ attribute the edge data are used as weight values else the weights are assumed to
be 1.

This function takes time O(number_of_nodes ** 3).

If all edge weights are integers, the algorithm uses only integer computations. If floating point weights are used,
the algorithm could return a slightly suboptimal matching due to numeric precision errors.

References

[R87]

4.17. Matching 185

NetworkX Reference, Release 1.2

4.18 Mixing Patterns

Mixing matrices and assortativity coefficients.

4.18.1 Assortativity

degree_assortativity(Q) Compute degree assortativity of graph.
attribute_assortativity(G, attribute) Compute assortativity for node attributes.
numeric_assortativity(G, attribute) Compute assortativity for numerical node attributes.
neighbor_connectivity(G) Compute neighbor connectivity of graph.
degree_pearsonr(G) Compute degree assortativity of graph.

networkx.degree_assortativity
degree_assortativity (G)
Compute degree assortativity of graph.
Assortativity measures the similarity of connections in the graph with respect to the node degree.
Parameters G : NetworkX graph
Returns r : float
Assortativity of graph by degree.
See Also:

attribute_assortativity, numeric_assortativity, neighbor_connectivity,
degree_mixing_dict,degree_mixing matrix

Notes

This computes Eq. (21) in Ref. [R49] , where e is the joint probability distribution (mixing matrix) of the
degrees. If G is directed than the matrix e is the joint probability of out-degree and in-degree.

References

[R49]

Examples

>>> G=nx.path_graph (4)

>>> r=nx.degree_assortativity (G)
>>> print " "Sr

-0.5

186 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

networkx.attribute_assortativity
attribute_assortativity (G, attribute)
Compute assortativity for node attributes.
Assortativity measures the similarity of connections in the graph with respect to the given attribute.
Parameters G : NetworkX graph
attribute : string
Node attribute key
Returns a: float :

Assortativity of given attribute

Notes

This computes Eq. (2) in Ref. [R45], (trace(e)-sum(e))/(1-sum(e)), where e is the joint probability distribution
(mixing matrix) of the specified attribute.

References

[R45]
Examples

>>> G=nx.Graph ()

>>> G.add_nodes_from([0,1],color="red’)

>>> G.add_nodes_from([2,3],color="blue’)

>>> G.add_edges_from([(0,1), (2,3)1)

>>> print nx.attribute_assortativity (G, ' color’)
1.0

networkx.numeric_assortativity
numeric_assortativity (G, attribute)
Compute assortativity for numerical node attributes.
Assortativity measures the similarity of connections in the graph with respect to the given numeric attribute.
Parameters G : NetworkX graph
attribute : string
Node attribute key
Returns a: float :

Assortativity of given attribute

4.18. Mixing Patterns 187

NetworkX Reference, Release 1.2

Notes

This computes Eq. (21) in Ref. [R88] , where e is the joint probability distribution (mixing matrix) of the
specified attribute.

References

[R88]
Examples

>>> G=nx.Graph ()

>>> G.add_nodes_from([0,1],size=2)

>>> G.add_nodes_from([2,3],size=3)

>>> G.add_edges_from([(0,1), (2,3)])

>>> print nx.numeric_assortativity (G, ’size’)
1.0

networkx.neighbor_connectivity
neighbor_ connectivity (G)
Compute neighbor connectivity of graph.
The neighbor connectivity is the average nearest neighbor degree of a node of degree k.
Parameters G : NetworkX graph
Returns d: dictionary :

A dictionary keyed by degree k with the value of average neighbor degree.

Examples

>>> G=nx.cycle_graph (4)
>>> nx.neighbor_connectivity (G)
{2: 2.0}

>>> G=nx.complete_graph (4)
>>> nx.neighbor_connectivity (G)
{3: 3.0}

networkx.degree_pearsonr
degree_pearsonr (G)
Compute degree assortativity of graph.
Assortativity measures the similarity of connections in the graph with respect to the node degree.
Parameters G : NetworkX graph

Returns r : float

188 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Assortativity of graph by degree.

Notes

This calls scipy.stats.pearsonr().

References

[R50]
Examples

>>> G=nx.path_graph (4)
>>> r=nx.degree_pearsonr (G) # r=-0.5

4.18.2 Mixing

attribute_mixing_matrix(G, attribute[, ...]) Return mixing matrix for attribute.

degree_mixing_ matrix(G[, normalized]) Return mixing matrix for attribute.

degree_mixing_dict(G[, normalized]) Return dictionary representation of mixing matrix for
degree.

attribute_mixing_dict(G, attribute[, Return dictionary representation of mixing matrix for

normalized]) attribute.

networkx.attribute_mixing_matrix
attribute_mixing matrix (G, attribute, mapping=None, normalized=True)
Return mixing matrix for attribute.
Parameters G : graph
NetworkX graph object.
attribute : string
Node attribute key.
mapping : dictionary, optional

Mapping from node attribute to integer index in matrix. If not specified, an arbitrary
ordering will be used.

normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns m: numpy array :

Counts or joint probability of occurrence of attribute pairs.

4.18. Mixing Patterns 189

NetworkX Reference, Release 1.2

networkx.degree_mixing_matrix
degree_mixing_matrix (G, normalized=True)
Return mixing matrix for attribute.
Parameters G : graph
NetworkX graph object.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns m: numpy array :

Counts, or joint probability, of occurrence of node degree.

networkx.degree_mixing_dict
degree_mixing_dict (G, normalized=False)
Return dictionary representation of mixing matrix for degree.
Parameters G : graph
NetworkX graph object.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns d: dictionary :

Counts or joint probability of occurrence of degree pairs.

networkx.attribute_mixing_dict
attribute_mixing_dict (G, attribute, normalized=False)
Return dictionary representation of mixing matrix for attribute.
Parameters G : graph
NetworkX graph object.
attribute : string
Node attribute key.
normalized : bool (default=False)
Return counts if False or probabilities if True.
Returns d : dictionary

Counts or joint probability of occurrence of attribute pairs.

Examples

>>> G=nx.Graph ()

>>> G.add_nodes_from([0,1],color="red’)
>>> G.add_nodes_from([2,3],color="blue’)
>>> G.add_edge (1, 3)

190 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

>>> d=nx.attribute_mixing_dict (G,’color’)

>>> print d[’red’]['blue’]

1

>>> print d[’blue’][’red’] # d symmetric for undirected graphs
1

4.19 Minimum Spanning Tree

Computes minimum spanning tree of a weighted graph.

minimum_spanning_tree(G) Generate a minimum spanning tree of an undirected weighted graph.

4.19.1 networkx.minimum_spanning_tree

minimum spanning tree (G)
Generate a minimum spanning tree of an undirected weighted graph.

A minimum spanning tree is a subgraph of the graph (a tree) with the minimum sum of edge weights.

Parameters G : NetworkX Graph

Returns edges : iterator

A generator that produces edges in the minimum spanning tree. The edges are three-

tuples (u,v,w) where w is the weight.

Notes

Uses Kruskal’s algorithm.

If the graph edges do not have a weight attribute a default weight of 1 will be assigned.

Modified code from David Eppstein, April 2006 http://www.ics.uci.edu/~eppstein/PADS/

Examples

>>> G=nx.cycle_graph (4)

>>> G.add_edge (0, 3,weight=2) # assign weight 2 to edge 0-3

>>> mst=nx.minimum_spanning_tree(G) # a generator of MST edges
>>> edgelist=1list (mst) # make a list of the edges

>>> print sorted(edgelist)

[(0, 1, {’weight’: 1}), (1, 2, {’weight’: 1}), (2, 3, {’weight’:

>>> T=nx.Graph(edgelist) # build a graph of the MST.
>>> print sorted(T.edges (data=True))

[(0, 1, {’weight’: 1}), (1, 2, {’weight’: 1}), (2, 3, {’weight’:

4.20 Operators

Operations on graphs including union, intersection, difference, complement, subgraph.

1)1

1)1

4.19. Minimum Spanning Tree

191

http://www.ics.uci.edu/~eppstein/PADS/

NetworkX Reference, Release 1.2

cartesian_product(G, H[, create_using]) Return the Cartesian product of G and H.

compose(G, H[, create_using, name]) Return a new graph of G composed with H.

complement(G[, create_using, name]) Return graph complement of G.

union(G, H[, create_using, rename, name]) Return the union of graphs G and H.

disjoint_union(G, H) Return the disjoint union of graphs G and H, forcing distinct
integer

intersection(G, H[, create_using]) Return a new graph that contains only the edges that exist in

difference(G, H[, create_using]) Return a new graph that contains the edges that exist in

symmetric_difference(G, HJ, Return new graph with edges that exist in in either G or H but

create_using])

4.20.1 networkx.cartesian_product
cartesian_product (G, H, create_using=None)
Return the Cartesian product of G and H.

Parameters G,H : graph
A NetworkX graph
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created with the same type as
G.

Notes

Only tested with Graph class. Graph, node, and edge attributes are not copied to the new graph.

4.20.2 networkx.compose
compose (G, H, create_using=None, name=None)
Return a new graph of G composed with H.
Composition is the simple union of the node sets and edge sets. The node sets of G and H need not be disjoint.
Parameters G,H : graph
A NetworkX graph
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created with the same type as
G

name : string

Specify name for new graph

Notes

A new graph is returned, of the same class as G. It is recommended that G and H be either both directed or both
undirected. Attributes from G take precedent over attributes from H.

192 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

4.20.3 networkx.complement
complement (G, create_using=None, name=None)
Return graph complement of G.
Parameters G : graph
A NetworkX graph
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.
name : string

Specify name for new graph

Notes

Note that complement() does not create self-loops and also does not produce parallel edges for MultiGraphs.

Graph, node, and edge data are not propagated to the new graph.

4.20.4 networkx.union
union (G, H, create_using=None, rename=False, name=None)
Return the union of graphs G and H.
Graphs G and H must be disjoint, otherwise an exception is raised.
Parameters G,H : graph
A NetworkX graph
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created with the same type as
G.

rename : bool (default=False)

Node names of G and H can be changed be specifying the tuple rename=(‘G-*,"H-°) (for
example). Node u in G is then renamed “G-u” and v in H is renamed “H-v”.

name : string
Specify the name for the union graph
See Also:

disjoint_union

Notes

To force a disjoint union with node relabeling, use disjoint_union(G,H) or convert_node_labels_to integers().

Graph, edge, and node attributes are propagated from G and H to the union graph. If a graph attribute is present
in both G and H the value from G is used.

4.20. Operators 193

NetworkX Reference, Release 1.2

4.20.5 networkx.disjoint_union
disjoint_union (G, H)
Return the disjoint union of graphs G and H, forcing distinct integer node labels.
Parameters G,H : graph
A NetworkX graph

Notes

A new graph is created, of the same class as G. It is recommended that G and H be either both directed or both
undirected.

4.20.6 networkx.intersection
intersection (G, H, create_using=None)
Return a new graph that contains only the edges that exist in both G and H.
The node sets of H and G must be the same.
Parameters G,H : graph
A NetworkX graph. G and H must have the same node sets.
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created with the same type as
G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the
intersection of G and H with the attributes (including edge data) from G use remove_nodes_from() as follows

>>> G=nx.path_graph (3)

>>> H=nx.path_graph (5)

>>> R=G.copy ()

>>> R.remove_nodes_from(n for n in G if n not in H)

4.20.7 networkx.difference
difference (G, H, create_using=None)
Return a new graph that contains the edges that exist in in G but not in H.
The node sets of H and G must be the same.
Parameters G,H : graph
A NetworkX graph. G and H must have the same node sets.
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created with the same type as
G.

194 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph. If you want a new graph of the
difference of G and H with with the attributes (including edge data) from G use remove_nodes_from() as follows

>>> G=nx.path_graph (3)

>>> H=nx.path_graph (5)

>>> R=G.copy ()

>>> R.remove_nodes_from(n for n in G if n in H)

4.20.8 networkx.symmetric_difference
symmetric_difference (G, H, create_using=None)
Return new graph with edges that exist in in either G or H but not both.
The node sets of H and G must be the same.
Parameters G,H : graph
A NetworkX graph. G and H must have the same node sets.
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created with the same type as
G.

Notes

Attributes from the graph, nodes, and edges are not copied to the new graph.

4.21 Shortest Paths

Compute the shortest paths and path lengths between nodes in the graph.
These algorithms work with undirected and directed graphs.

For directed graphs the paths can be computed in the reverse order by first flipping the edge orientation using
R=G.reverse(copy=False).

shortest_path(Gl[, source, target, weighted]) Compute shortest paths in the graph.
shortest_path_length(Gl, source, target, ...]) Compute shortest path lengths in the graph.
average_shortest_path_length(G[, weighted]) Return the average shortest path length.

4.21.1 networkx.shortest_path
shortest_path (G, source=None, target=None, weighted=False)
Compute shortest paths in the graph.
Parameters G : NetworkX graph
source : node, optional

Starting node for path. If not specified compute shortest paths for all connected node
pairs.

4.21. Shortest Paths 195

NetworkX Reference, Release 1.2

target : node, optional

Ending node for path. If not specified compute shortest paths for every node reachable
from the source.

weighted : bool, optional
If True consider weighted edges when finding shortest path.
Returns path: list or dictionary :

If the source and target are both specified return a single list of nodes in a shortest
path. If only the source is specified return a dictionary keyed by targets with a list of
nodes in a shortest path. If neither the source or target is specified return a dictionary of
dictionaries with path[source][target]=[list of nodes in path].

Notes

There may be more than one shortest path between a source and target. This returns only one of them.
If weighted=True and the graph has no ‘weight’ edge attribute the value 1 will be used.

For digraphs this returns a shortest directed path. To find paths in the reverse direction use G.reverse(copy=False)
first to flip the edge orientation.

Examples

>>> G=nx.path_graph (5)

>>> print nx.shortest_path (G, source=0,target=4)

[0, 1, 2, 3, 4]

>>> p=nx.shortest_path (G, source=0) # target not specified
>>> pl4]

[0, 1, 2, 3, 4]

>>> p=nx.shortest_path(G) # source,target not specified
>>> pl0][4]

[0, 1, 2, 3, 4]

4.21.2 networkx.shortest_path_length

shortest_path_length (G, source=None, target=None, weighted=False)
Compute shortest path lengths in the graph.

This function can compute the single source shortest path lengths by specifying only the source or all pairs
shortest path lengths by specifying neither the source or target.

Parameters G : NetworkX graph
source : node, optional

Starting node for path. If not specified compute shortest pats lenghts for all connected
node pairs.

target : node, optional

Ending node for path. If not specified compute shortest path lenghts for every node
reachable from the source.

weighted : bool, optional

196 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

If True consider weighted edges when finding shortest path length.
Returns length : number, or container of numbers

If the source and target are both specified return a single number for the shortest path. If
only the source is specified return a dictionary keyed by targets with a the shortest path
as keys. If neither the source or target is specified return a dictionary of dictionaries
with length[source][target]=value.

Raises NetworkXError :

If no path exists between source and target.

Notes

If weighted=True and the graph has no ‘weight’ edge attribute the value 1 will be used.

For digraphs this returns the shortest directed path. To find path lengths in the reverse direction use
G.reverse(copy=False) first to flip the edge orientation.

Examples

>>> G=nx.path_graph (5)
>>> print nx.shortest_path_length (G, source=0,target=4)
4

>>> p=nx.shortest_path_length (G, source=0) # target not specified
>>> pl4]

>>> p=nx.shortest_path_length(G) # source,target not specified
>>> p[0][4]

4.21.3 networkx.average_shortest_path_length
average_shortest_path_length (G, weighted=False)
Return the average shortest path length.

The average shortest path length is the sum of path lengths d(u,v) between all pairs of nodes (assuming the
length is zero if v is not reachable from v) normalized by n*(n-1) where n is the number of nodes in G.

Parameters G : NetworkX graph
weighted : bool, optional, default=False

If True use edge weights on path.

Notes

If weighted=True and the graph has no ‘weight’ edge attribute the value 1 will be used.

4.21. Shortest Paths 197

NetworkX Reference, Release 1.2

Examples

>>> G=nx.path_graph (5)
>>> print nx.average_shortest_path_length (G)
2.0

4.21.4 Advanced Interface

Shortest path algorithms for unweighted graphs.

single_source_shortest_path(G, Compute shortest path between source and all other nodes
source[, cutoff]) reachable from source.
single_source_shortest_path_lengthmpute the shortest path lengths from source to all reachable
source) nodes.

all _pairs_shortest_path(G], cutoff]) Compute shortest paths between all nodes.
all_pairs_shortest_path_length(G[, Compute the shortest path lengths between all nodes in G.

cutoff])

predecessor(G, source[, target, cutoff, ...]) Returns dictionary of predecessors for the path from source to
all

floyd_warshall(G) The Floyd-Warshall algorithm for all pairs shortest paths.

networkx.single_source_shortest_path
single_source_shortest_path (G, source, cutoff=None)
Compute shortest path between source and all other nodes reachable from source.
Parameters G : NetworkX graph
source : node label
Starting node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns lengths : dictionary
Dictionary, keyed by target, of shortest paths.
See Also:

shortest_path

Notes

There may be more than one shortest path between the source and target nodes. This function returns only one
of them.

Examples

198 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

>>> G=nx.path_graph(5)

>>> path=nx.single_source_shortest_path (G, 0)
>>> path[4]

(o, 1, 2, 3, 4]

networkx.single_source_shortest_path_length
single_source_shortest_path_length (G, source, cutoff=None)
Compute the shortest path lengths from source to all reachable nodes.
Parameters G : NetworkX graph
source : node
Starting node for path
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns lengths : dictionary
Dictionary of shortest path lengths keyed by target.
See Also:

shortest_path_length
Examples

>>> G=nx.path_graph (5)

>>> length=nx.single_source_shortest_path_length (G, 0)
>>> length[4]

4

>>> print length

{0: O, 1: 1, 2: 2, 3: 3, 4: 4}

networkx.all_pairs_shortest_path
all_pairs_shortest_path (G, cutoff=None)
Compute shortest paths between all nodes.
Parameters G : NetworkX graph
cutoff : integer, optional
Depth to stop the search. Only paths of length <= cutoff are returned.
Returns lengths : dictionary
Dictionary, keyed by source and target, of shortest paths.
See Also:

floyd_warshall

4.21. Shortest Paths 199

NetworkX Reference, Release 1.2

Examples

>>> G=nx.path_graph (5)

>>> path=nx.all_pairs_shortest_path (G)
>>> print path[0] [4]

[o, 1, 2, 3, 4]

networkx.all_pairs_shortest_path_length
all_pairs_shortest_path_length (G, cutoff=None)
Compute the shortest path lengths between all nodes in G.
Parameters G : NetworkX graph
cutoff : integer, optional
depth to stop the search. Only paths of length <= cutoff are returned.
Returns lengths : dictionary

Dictionary of shortest path lengths keyed by source and target.

Notes

The dictionary returned only has keys for reachable node pairs.
Examples

>>> G=nx.path_graph (5)

>>> length=nx.all_pairs_shortest_path_length (G)
>>> print length([1][4]

3

>>> length[1]

{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

networkx.predecessor
predecessor (G, source, target=None, cutoff=None, return_seen=None)
Returns dictionary of predecessors for the path from source to all nodes in G.
Parameters G : NetworkX graph
source : node label
Starting node for path
target : node label, optional

Ending node for path. If provided only predecessors between source and target are
returned

cutoff : integer, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

200 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Returns pred : dictionary

Dictionary, keyed by node, of predecessors in the shortest path.
Examples

>>> G=nx.path_graph (4)
>>> print G.nodes ()

[o, 1, 2, 3]
>>> nx.predecessor (G, 0)
{0: [1, 1: [01, 2: [1], 3: [2]}

networkx.floyd_warshall
floyd warshall (G)
The Floyd-Warshall algorithm for all pairs shortest paths.
Parameters G : NetworkX graph
Returns distance,pred : dictionaries

A dictionary, keyed by source and target, of shortest path distance and predecessors in
the shortest path.

See Also:

all_pairs_shortest_path,all_pairs_shortest_path_length

Notes

This algorithm is most appropriate for dense graphs. The running time is O(n”3), and running space is O(n”2)
where n is the number of nodes in G.

Shortest path algorithms for weighed graphs.

dijkstra_path(G, source, target[, Returns the shortest path from source to target in a weighted
weight])
dijkstra_path_length(G, source, Returns the shortest path length from source to target in a weighted

target[, weight])
single_source_dijkstra_path(G, Compute shortest path between source and all other reachable

source[, weight]) nodes for a weighted graph.
single_source_dijkstra_path_lenGomfute shortest path length between source and all other
source) reachable nodes for a weighted graph.
all_pairs_dijkstra_path(Gl, Compute shortest paths between all nodes in a weighted graph.
weight])

all_pairs_dijkstra_path_length(@ompute shortest path lengths between all nodes in a weighted
weight]) graph.

single_source_dijkstra(G, Compute shortest paths and lengths in a weighted graph G.
source[, target, ...])

bidirectional_dijkstra(G, Dijkstra’s algorithm for shortest paths using bidirectional search.

source, target[, ...])

bidirectional_shortest_path(G, Return alistof nodes in a shortest path between source and target.
source, target)

dijkstra_predecessor_and_distanCeffipute shorest path length and predecessors on shortest paths in
source) weighted graphs.

4.21. Shortest Paths 201

NetworkX Reference, Release 1.2

networkx.dijkstra_path
dijkstra_path (G, source, target, weight="weight’)
Returns the shortest path from source to target in a weighted graph G.
Parameters G : NetworkX graph
source : node
Starting node
target : node
Ending node
weight: string, optional :
Edge data key corresponding to the edge weight
Returns path : list
List of nodes in a shortest path.
See Also:

bidirectional_dijkstra

Notes

Uses a bidirectional version of Dijkstra’s algorithm. Edge weight attributes must be numerical.
Examples

>>> G=nx.path_graph (5)
>>> print nx.dijkstra_path(G,0,4)
(o, 1, 2, 3, 4]

networkx.dijkstra_path_length
dijkstra_path_length (G, source, target, weight="weight’)
Returns the shortest path length from source to target in a weighted graph G.
Parameters G : NetworkX graph, weighted
source : node label
starting node for path
target : node label
ending node for path
weight: string, optional :
Edge data key corresponding to the edge weight
Returns length : number
Shortest path length.

Raises NetworkXError :

202 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

If no path exists between source and target.
See Also:

bidirectional_dijkstra

Notes

Edge weight attributes must be numerical.
Examples

>>> G=nx.path_graph(5) # a weighted graph by default
>>> print nx.dijkstra_path_length(G,0,4)
4

networkx.single_source_dijkstra_path
single_source_dijkstra_ path (G, source, weight="weight’)
Compute shortest path between source and all other reachable nodes for a weighted graph.
Parameters G : NetworkX graph
source : node
Starting node for path.
weight: string, optional :
Edge data key corresponding to the edge weight
Returns paths : dictionary
Dictionary of shortest path lengths keyed by target.
See Also:

single_source_dijkstra

Notes

Edge weight attributes must be numerical.
Examples

>>> G=nx.path_graph (5)

>>> path=nx.single_source_dijkstra_path (G, 0)
>>> path[4]

[o, 1, 2, 3, 4]

4.21. Shortest Paths 203

NetworkX Reference, Release 1.2

networkx.single_source_dijkstra_path_length
single_source_dijkstra_path_length (G, source, weight="weight’)
Compute shortest path length between source and all other reachable nodes for a weighted graph.
Parameters G : NetworkX graph
source : node label
Starting node for path
weight: string, optional :
Edge data key corresponding to the edge weight
Returns paths : dictionary
Dictionary of shortest paths keyed by target.
See Also:

single_source_dijkstra

Notes

Edge data must be numerical values for XGraph and XDiGraphs.

Examples

>>> G=nx.path_graph (5)

>>> length=nx.single_source_dijkstra_path_length (G, 0)
>>> length[4]

4

>>> print length

{0: O, 1: 1, 2: 2, 3: 3, 4: 4}

networkx.all_pairs_dijkstra_path
all_pairs_dijkstra_path (G, weight="weight’)
Compute shortest paths between all nodes in a weighted graph.
Parameters G : NetworkX graph
weight: string, optional :
Edge data key corresponding to the edge weight
Returns distance : dictionary

Dictionary, keyed by source and target, of shortest paths.
See Also:

floyd warshall

204 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Examples

>>> G=nx.path_graph (5)

>>> path=nx.all_pairs_dijkstra_path (G)
>>> print path[0] [4]

[o, 1, 2, 3, 4]

networkx.all_pairs_dijkstra_path_length
all_pairs_dijkstra_path_length (G, weight="weight’)
Compute shortest path lengths between all nodes in a weighted graph.
Parameters G : NetworkX graph
weight: string, optional :
Edge data key corresponding to the edge weight
Returns distance : dictionary

Dictionary, keyed by source and target, of shortest path lengths.

Notes

The dictionary returned only has keys for reachable node pairs.
Examples

>>> G=nx.path_graph (5)

>>> length=nx.all_pairs_dijkstra_path_length (G)
>>> print length[1][4]

3

>>> length[1]

{0: 1, 1: 0, 2: 1, 3: 2, 4: 3}

networkx.single_source_dijkstra
single_source_dijkstra (G, source, target=None, cutoff=None, weight="weight’)
Compute shortest paths and lengths in a weighted graph G.
Uses Dijkstra’s algorithm for shortest paths.
Parameters G : NetworkX graph
source : node label
Starting node for path
target : node label, optional
Ending node for path
cutoff : integer or float, optional

Depth to stop the search. Only paths of length <= cutoff are returned.

4.21. Shortest Paths 205

NetworkX Reference, Release 1.2

Returns distance,path : dictionaries

Returns a tuple of two dictionaries keyed by node. The first dictionary stores distance
from the source. The second stores the path from the source to that node.

See Also:

single_source_dijkstra_path, single_source_dijkstra_path_length

Notes

Distances are calculated as sums of weighted edges traversed. Edges must hold numerical values for Graph and
DiGraphs.

Based on the Python cookbook recipe (119466) at http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows
and roundoff errors can cause problems).

Examples

>>> G=nx.path_graph (5)

>>> length,path=nx.single_source_dijkstra (G, 0)
>>> print length(4]

4

>>> print length

{0: O, 1: 1, 2: 2, 3: 3, 4: 4}

>>> path[4]

[0, 1, 2, 3, 4]

networkx.bidirectional_dijkstra

bidirectional_ dijkstra (G, source, target, weight="weight’)

Dijkstra’s algorithm for shortest paths using bidirectional search.
Parameters G : NetworkX graph
source : node
Starting node.
target : node
Ending node.
weight: string, optional :
Edge data key corresponding to the edge weight
Returns length : number
Shortest path length.
Returns a tuple of two dictionaries keyed by node. :
The first dicdtionary stores distance from the source. :
The second stores the path from the source to that node. :

Raise an exception if no path exists. :

206

Chapter 4. Algorithms

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466

NetworkX Reference, Release 1.2

Raises NetworkXError :
If no path exists between source and target.
See Also:

shortest_path, shortest_path_length

Notes

Edge weight attributes must be numerical. Distances are calculated as sums of weighted edges traversed.
In practice bidirectional Dijkstra is much more than twice as fast as ordinary Dijkstra.

Ordinary Dijkstra expands nodes in a sphere-like manner from the source. The radius of this sphere will even-
tually be the length of the shortest path. Bidirectional Dijkstra will expand nodes from both the source and
the target, making two spheres of half this radius. Volume of the first sphere is pi*r*r while the others are
2*pi*r/2*r/2, making up half the volume.

This algorithm is not guaranteed to work if edge weights are negative or are floating point numbers (overflows
and roundoff errors can cause problems).

Examples

>>> G=nx.path_graph (5)

>>> length,path=nx.bidirectional_dijkstra(G,0,4)
>>> print length

4

>>> print path

[0, 1, 2, 3, 4]

networkx.bidirectional_shortest_path
bidirectional_shortest_path (G, source, target)
Return a list of nodes in a shortest path between source and target.
Parameters G : NetworkX graph
source : node label
starting node for path
target : node label
ending node for path
Returns path: list :
List of nodes in a path from source to target.
See Also:

shortest_path

Notes

This algorithm is used by shortest_path(G,source,target).

4.21. Shortest Paths 207

NetworkX Reference, Release 1.2

networkx.dijkstra_predecessor_and_distance
dijkstra_predecessor_and_distance (G, source, weight="weight’)
Compute shorest path length and predecessors on shortest paths in weighted graphs.
Parameters G : NetworkX graph
source : node label
Starting node for path
weight: string, optional :
Edge data key corresponding to the edge weight
Returns pred,distance : dictionaries

Returns two dictionaries representing a list of predecessors of a node and the distance
to each node.

Notes

The list of predecessors contains more than one element only when there are more than one shortest paths to the
key node.

4.21.5 A* Algorithm

Shortest paths and path lengths using A* (“A star”) algorithm.

astar_path(G, source, target[, heuristic]) Return a list of nodes in a shortest path between source and
target

astar_path_length(G, source, target[, Return a list of nodes in a shortest path between source and

heuristic]) target

networkx.astar_path
astar_path (G, source, target, heuristic=None)
Return a list of nodes in a shortest path between source and target using the A* (“A-star”) algorithm.
There may be more than one shortest path. This returns only one.
Parameters G : NetworkX graph
source : node
Starting node for path
target : node
Ending node for path
heuristic : function

A function to evaluate the estimate of the distance from the a node to the target. The
function takes two nodes arguments and must return a number.

See Also:

shortest_path, dijkstra_path

208 Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Examples

>>> G=nx.path_graph (5)

>>> print nx.astar_path(G,0,4)
(o, 1, 2, 3, 4]

>>> G=nx.grid_graph (dim=[3,3])
>>> def dist ((x1, yl), (x2,
. return ((x1 - x2)
>>> print nx.astar_path(G, (0,0
[¢o, 0y, (0, 1), (1, 1), (1, 2

*x 2+

)
)

networkx.astar_path_length

nodes are two-tuples (x,y)
y2)):

(vl - v2)
, (2,2),dist)

% 2) *% 0.5

(2, 2)]

astar_path_length (G, source, target, heuristic=None)
Return a list of nodes in a shortest path between source and target using the A* (“A-star”’) algorithm.

Parameters G : NetworkX graph
source : node
Starting node for path
target : node
Ending node for path

heuristic : function

A function to evaluate the estimate of the distance from the a node to the target. The
function takes two nodes arguments and must return a number.

See Also:

astar_path

4.22 Traversal

4.22.1 Depth First Search

Search algorithms.

dfs_preorder(Gl, source, reverse_graph])

dfs_postorder(G[, source,
reverse_graph])
dfs_predecessor(G[, source,
reverse_graph])

dfs_successor(G[, source,
reverse_graph])

dfs_tree(Gl, source, reverse_graph])

Return list of nodes connected to source in depth-first-search
preorder.

Return list of nodes connected to source in depth-first-search
postorder.

Return predecessors of depth-first-search with root at source.

Return succesors of depth-first-search with root at source.

Return directed graph (tree) of depth-first-search with root at
source.

4.22. Traversal

209

NetworkX Reference, Release 1.2

networkx.dfs_preorder

dfs_preorder (G, source=None, reverse_graph=False)
Return list of nodes connected to source in depth-first-search preorder.

Traverse the graph G with depth-first-search from source. Non-recursive algorithm.

networkx.dfs_postorder

dfs_postorder (G, source=None, reverse_graph=~False)
Return list of nodes connected to source in depth-first-search postorder.

Traverse the graph G with depth-first-search from source. Non-recursive algorithm.

networkx.dfs_predecessor

dfs_predecessor (G, source=None, reverse_graph=False)
Return predecessors of depth-first-search with root at source.

networkx.dfs _successor

dfs_successor (G, source=None, reverse_graph=False)
Return succesors of depth-first-search with root at source.

networkx.dfs_tree

dfs_tree (G, source=None, reverse_graph=False)
Return directed graph (tree) of depth-first-search with root at source.

If the graph is disconnected, return a disconnected graph (forest).

4.23 Vitality

Vitality measures.

closeness_vitality(Gl, v, weighted_edges]) Compute closeness vitality for nodes.

4.23.1 networkx.closeness_vitality

closeness_vitality (G, v=None, weighted_edges=False)
Compute closeness vitality for nodes.

Closeness vitality at a node is the change in the sum of distances between all node pairs when excluding a that

node.
Parameters G : graph
A networkx graph
v : node, optional
Return only the value for node v.

weighted_edges : bool, optional

210

Chapter 4. Algorithms

NetworkX Reference, Release 1.2

Consider the edge weights in determining the shortest paths. If False, all edge weights
are considered equal.

Returns nodes : dictionary
Dictionary with nodes as keys and closeness vitality as the value.

See Also:

closeness_centrality
Examples

>>> G=nx.cycle_graph(3)
>>> nx.closeness_vitality (G)
{0: 4.0, 1: 4.0, 2: 4.0}

4.23. Vitality 211

NetworkX Reference, Release 1.2

212 Chapter 4. Algorithms

CHAPTER
FIVE

FUNCTIONS

Functional interface to graph methods and assorted utilities.

5.1 Graph functions

density(G) Return the density of a graph.

info(Gl, n, output_to_file]) Print short summary of information for graph G or node n.
degree_histogram(G) Return a list of the frequency of each degree value.
freeze(Q) Modify graph to prevent addition of nodes or edges.
is_frozen(G) Return True if graph is frozen.

create_empty_copy(G[, with_nodes]) Return a copy of the graph G with all of the edges removed.

5.1.1 networkx.density

density (G)
Return the density of a graph.

The density for undirected graphs is

and for directed graphs is

n(n—1)’
where n is the number of nodes and m is the number of edges in G.

Notes

The density is O for an graph without edges and 1.0 for a complete graph.
The density of multigraphs can be higher than 1.

5.1.2 networkx.info

info (G, n=None, output_to_file=None)
Print short summary of information for graph G or node n.

213

NetworkX Reference, Release 1.2

Parameters G : Networkx graph
A graph
n : node (any hashable)
A node from the graph G
output_to_file: filehandle, optional (default= standard output) :

5.1.3 networkx.degree_histogram
degree_histogram (G)
Return a list of the frequency of each degree value.
Parameters G : Networkx graph
A graph
Returns hist : list

A list of frequencies of degrees. The degree values are the index in the list.

Notes

Note: the bins are width one, hence len(list) can be large (Order(number_of_edges))

5.1.4 networkx.freeze

freeze (G)
Modify graph to prevent addition of nodes or edges.
Parameters G : graph
A NetworkX graph
See Also:

is_frozen

Notes

This does not prevent modification of edge data.

To “unfreeze” a graph you must make a copy.
Examples

>>> G=nx.path_graph (4)
>>> G=nx.freeze (G)
>>> G.add_edge (4,5)

NetworkXError: Frozen graph can’t be modified

214 Chapter 5. Functions

NetworkX Reference, Release 1.2

5.1.5 networkx.is_frozen
is_frozen (G)
Return True if graph is frozen.
Parameters G : graph
A NetworkX graph
See Also:

freeze

5.1.6 networkx.create_empty_copy
create_empty_copy (G, with_nodes=True)
Return a copy of the graph G with all of the edges removed.
Parameters G : graph
A NetworkX graph
with_nodes : bool (default=True)

Include nodes.

Notes

Graph, node, and edge data is not propagated to the new graph.

5.1. Graph functions

215

NetworkX Reference, Release 1.2

216 Chapter 5. Functions

CHAPTER
SIX

GRAPH GENERATORS

6.1 Atlas

Generators for the small graph atlas.
See “An Atlas of Graphs” by Ronald C. Read and Robin J. Wilson, Oxford University Press, 1998.

Because of its size, this module is not imported by default.

graph_atlas_g() Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas.

6.1.1 networkx.generators.atlas.graph_atlas_g

graph_atlas_g/()
Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas. G0,G1,...,G1252 are all graphs with
up to 7 nodes.

The graphs are listed:
1. in increasing order of number of nodes;
2. for a fixed number of nodes, in increasing order of the number of edges;

3. for fixed numbers of nodes and edges, in increasing order of the degree sequence, for example 111223
< 112222,

4. for fixed degree sequence, in increasing number of automorphisms.

Note that indexing is set up so that for GAG=graph_atlas_g(), then G123=GAG[123] and G[0]=empty_graph(0)

6.2 Classic

Generators for some classic graphs.

The typical graph generator is called as follows:
>>> G=nx.complete_graph(100)

returning the complete graph on n nodes labeled 0,..,99 as a simple graph. Except for empty_graph, all the generators
in this module return a Graph class (i.e. a simple, undirected graph).

217

NetworkX Reference, Release 1.2

balanced_tree(r, h[, create_using]) Return the perfectly balanced r-tree of height h.

barbell_graph(ml, m2][, Return the Barbell Graph: two complete graphs connected by a path.
create_using])

complete_graph(n[, create_using]) Return the Complete graph K_n with n nodes.
complete_bipartite_graph(nl, Return the complete bipartite graph K_{nl_n2}.

n2[, create_using])

circular_ladder_graph(n], Return the circular ladder graph CL_n of length n.

create_using])

cycle_graph(n[, create_using]) Return the cycle graph C_n over n nodes.
dorogovtsev_goltsev_mendes_gralRetnfn the hierarchically constructed Dorogovtsev-Goltsev-Mendes
)] graph.

empty_graph([n, create_using]) Return the empty graph with n nodes and zero edges.
grid_2d_graph(m, n[, periodic, Return the 2d grid graph of mxn nodes, each connected to its nearest
create_using]) neighbors.

grid_graph(dim[, periodic, Return the n-dimensional grid graph.

create_using])
hypercube_graph(n[, create_using]) Return the n-dimensional hypercube.

ladder_graph(n[, create_using]) Return the Ladder graph of length n.

lollipop_graph(m, n[, Return the Lollipop Graph; K_m connected to P_n.

create_using])

null_graph([create_using]) Return the Null graph with no nodes or edges.

path_graph(n[, create_using]) Return the Path graph P_n of n nodes linearly connected
star_graph(n[, create_using]) Return the Star graph with n+1 nodes:
trivial_graph([create_using]) Return the Trivial graph with one node (with integer label 0)

wheel graph(n[, create_using]) Return the wheel graph: a single hub node connected to each node of

the (n-1)-node cycle graph.

6.2.1 networkx.generators.classic.balanced_tree

balanced_tree (1, h, create_using=None)

Return the perfectly balanced r-tree of height h.

For r>=2, h>=1, this is the rooted tree where all leaves are at distance h from the root. The root has degree r and
all other internal nodes have degree r+1.

number_of_nodes = 1+r+r**2+...+r**h = (r**(h+1)-1)/(r-1), number_of_edges = number_of_nodes - 1.

Node labels are the integers O (the root) up to number_of_nodes - 1.

6.2.2 networkx.generators.classic.barbell_graph

barbell_graph (ml, m2, create_using=None)

Return the Barbell Graph: two complete graphs connected by a path.
For m1 > 1 and m2 >= 0.
Two identical complete graphs K_{m1} form the left and right bells, and are connected by a path P_{m?2}.

The 2*m1+m2 nodes are numbered 0,...,m1-1 for the left barbell, ml,...ml4+m2-1 for the path, and
ml+m?2,...,2*m1+m?2-1 for the right barbell.

The 3 subgraphs are joined via the edges (ml-1,m1) and (ml+m2-1,m1+m2). If m2=0, this is merely two
complete graphs joined together.

This graph is an extremal example in David Aldous and Jim Fill’s etext on Random Walks on Graphs.

218

Chapter 6. Graph generators

NetworkX Reference, Release 1.2

6.2.3 networkx.generators.classic.complete_graph
complete_graph (n, create_using=None)
Return the Complete graph K_n with n nodes.

Node labels are the integers O to n-1.

6.2.4 networkx.generators.classic.complete_bipartite_graph
complete_bipartite_graph (nl, n2, create_using=None)
Return the complete bipartite graph K_{nl_n2}.

Composed of two partitions with nl nodes in the first and n2 nodes in the second. Each node in the first is
connected to each node in the second.

Node labels are the integers O to n1+n2-1

6.2.5 networkx.generators.classic.circular_ladder_graph
circular_ladder_ graph (n, create_using=None)
Return the circular ladder graph CL_n of length n.
CL_n consists of two concentric n-cycles in which each of the n pairs of concentric nodes are joined by an edge.

Node labels are the integers 0 to n-1

6.2.6 networkx.generators.classic.cycle_graph
cycle_graph (n, create_using=None)

Return the cycle graph C_n over n nodes.

C_n is the n-path with two end-nodes connected.

Node labels are the integers O to n-1 If create_using is a DiGraph, the direction is in increasing order.

6.2.7 networkx.generators.classic.dorogovtsev_goltsev_mendes_graph
dorogovtsev_goltsev_mendes_graph (n, create_using=None)
Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph.

n is the generation. See: arXiv:/cond-mat/0112143 by Dorogovtsev, Goltsev and Mendes.

6.2.8 networkx.generators.classic.empty_graph
empty_graph (n=0, create_using=None)
Return the empty graph with n nodes and zero edges.
Node labels are the integers 0 to n-1
For example: >>> G=nx.empty_graph(10) >>> G.number_of_nodes() 10 >>> G.number_of_edges() 0

The variable create_using should point to a “graph”-like object that will be cleaned (nodes and edges will
be removed) and refitted as an empty “graph” with n nodes with integer labels. This capability is useful for
specifying the class-nature of the resulting empty “graph” (i.e. Graph, DiGraph, MyWeirdGraphClass, etc.).

6.2. Classic 219

NetworkX Reference, Release 1.2

The variable create_using has two main uses: Firstly, the variable create_using can be used to create an empty
digraph, network,etc. For example,

>>> n=10
>>> G=nx.empty_graph (n,create_using=nx.DiGraph())

will create an empty digraph on n nodes.

Secondly, one can pass an existing graph (digraph, pseudograph, etc.) via create_using. For example, if G is
an existing graph (resp. digraph, pseudograph, etc.), then empty_graph(n,create_using=G) will empty G (i.e.
delete all nodes and edges using G.clear() in base) and then add n nodes and zero edges, and return the modified
graph (resp. digraph, pseudograph, etc.).

See also create_empty_copy(G).

6.2.9 networkx.generators.classic.grid_2d_graph

grid_2d_graph (m, n, periodic=False, create_using=None)
Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors. Optional argument peri-
odic=True will connect boundary nodes via periodic boundary conditions.

6.2.10 networkx.generators.classic.grid_graph

grid_graph (dim, periodic=False, create_using=None)
Return the n-dimensional grid graph.
The dimension is the length of the list ‘dim’ and the size in each dimension is the value of the list element.
E.g. G=grid_graph(dim=[2,3]) produces a 2x3 grid graph.

If periodic=True then join grid edges with periodic boundary conditions.

6.2.11 networkx.generators.classic.hypercube_graph
hypercube_graph (n, create_using=None)
Return the n-dimensional hypercube.

Node labels are the integers 0 to 2**n - 1.

6.2.12 networkx.generators.classic.ladder_graph
ladder_graph (n, create_using=None)

Return the Ladder graph of length n.

This is two rows of n nodes, with each pair connected by a single edge.

Node labels are the integers 0 to 2*n - 1.

6.2.13 networkx.generators.classic.lollipop_graph

lollipop_graph (m, n, create_using=None)
Return the Lollipop Graph; K_m connected to P_n.

This is the Barbell Graph without the right barbell.

220 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

For m>1 and n>=0, the complete graph K_m is connected to the path P_n. The resulting m+n nodes are labelled
0,...,m-1 for the complete graph and m,...,m+n-1 for the path. The 2 subgraphs are joined via the edge (m-1,m).
If n=0, this is merely a complete graph.

Node labels are the integers 0 to number_of_nodes - 1.

(This graph is an extremal example in David Aldous and Jim Fill’s etext on Random Walks on Graphs.)

6.2.14 networkx.generators.classic.null_graph

null_graph (create_using=None)
Return the Null graph with no nodes or edges.

See empty_graph for the use of create_using.

6.2.15 networkx.generators.classic.path_graph

path_graph (n, create_using=None)
Return the Path graph P_n of n nodes linearly connected by n-1 edges.

Node labels are the integers O to n - 1. If create_using is a DiGraph then the edges are directed in increasing
order.

6.2.16 networkx.generators.classic.star_graph

star_graph (n, create_using=None)
Return the Star graph with n+1 nodes: one center node, connected to n outer nodes.
Node labels are the integers 0 to n.

6.2.17 networkx.generators.classic.trivial_graph

trivial_graph (create_using=None)
Return the Trivial graph with one node (with integer label 0) and no edges.

6.2.18 networkx.generators.classic.wheel_graph

wheel_graph (n, create_using=None)
Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph.

Node labels are the integers O ton - 1.

6.3 Small

Various small and named graphs, together with some compact generators.

6.3. Small 221

NetworkX Reference, Release 1.2

make_small_graph(graph_description], ...])
LCF_graph(n, shift_list, repeats[, create_using])
bull_graph([create_using])
chvatal_graph([create_using])
cubical_graph([create_using])
desargues_graph([create_using])
diamond_graph([create_using])
dodecahedral_graph([create_using])
frucht_graph([create_using])
heawood_graph([create_using])
house_graph([create_using])
house_x_graph([create_using])
icosahedral_graph([create_using])
krackhardt_kite_graph([create_using])
moebius_kantor_graph([create_using])
octahedral_graph([create_using])
pappus_graph()
petersen_graph([create_using])
sedgewick_maze_graph([create_using])
tetrahedral_graph([create_using])
truncated_cube_graph([create_using])
truncated_tetrahedron_graph([create_using])
tutte_graph([create_using])

Return the small graph described by graph_description.
Return the cubic graph specified in LCF notation.
Return the Bull graph.

Return the Chvatal graph.

Return the 3-regular Platonic Cubical graph.

Return the Desargues graph.

Return the Diamond graph.

Return the Platonic Dodecahedral graph.

Return the Frucht Graph.

Return the Heawood graph, a (3,6) cage.

Return the House graph (square with triangle on top).

Return the House graph with a cross inside the house square.

Return the Platonic Icosahedral graph.

Return the Krackhardt Kite Social Network.
Return the Moebius-Kantor graph.

Return the Platonic Octahedral graph.

Return the Pappus graph.

Return the Petersen graph.

Return a small maze with a cycle.

Return the 3-regular Platonic Tetrahedral graph.
Return the skeleton of the truncated cube.
Return the skeleton of the truncated Platonic tetrahedron.
Return the Tutte graph.

6.3.1 networkx.generators.small.make_small_graph

make_small_graph (graph_description, create_using=None)
Return the small graph described by graph_description.

graph_description is a list of the form [Itype,name,n,xlist]

Here lItype is one of “adjacencylist” or “edgelist”’, name is the name of the graph and n the number of nodes.
This constructs a graph of n nodes with integer labels 0...,n-1.

If Itype="adjacencylist” then xlist is an adjacency list with exactly n entries, in with the j’th entry (which can be
empty) specifies the nodes connected to vertex j. e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,41,[1,31,12,41,[1,3111)

or, since we do not need to add edges twice,

>>> G=nx.make_small_graph(["adjacencylist","C_4",4,[[2,41,[31,141,10111)

If Itype="edgelist” then xlist is an edge list written as [[vl,w2],[v2,w2],...,[vk,wk]], where vj and wj integers in
the range 1,..,n e.g. the “square” graph C_4 can be obtained by

>>> G=nx.make_small_graph(["edgelist","C_4",4,[[1,2]1,1[3,4]1,12,31,104,1111)

Use the create_using argument to choose the graph class/type.

6.3.2 networkx.generators.small.LCF_graph

LCF_graph (n, shift_list, repeats, create_using=None)
Return the cubic graph specified in LCF notation.

222 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

LCF notation (LCF=Lederberg-Coxeter-Fruchte) is a compressed notation used in the generation of various
cubic Hamiltonian graphs of high symmetry. See, for example, dodecahedral_graph, desargues_graph, hea-
wood_graph and pappus_graph below.

n (number of nodes) The starting graph is the n-cycle with nodes 0,...,n-1. (The null graph is returned if n <
0.)

shift_list = [s1,s2,..,sk], a list of integer shifts mod n,

repeats integer specifying the number of times that shifts in shift_list are successively applied to each v_current
in the n-cycle to generate an edge between v_current and v_current+shift mod n.

For v1 cycling through the n-cycle a total of k*repeats with shift cycling through shiftlist repeats times connect
v1 with v1+shift mod n

The utility graph K_{3,3}

>>> G=nx.LCF_graph (6, [3,-3],3)
The Heawood graph

>>> G=nx.LCF_graph (14, [5,-5],7)

See http://mathworld.wolfram.com/LCFNotation.html for a description and references.

6.3.3 networkx.generators.small.bull_graph

bull_graph (create_using=None)
Return the Bull graph.

6.3.4 networkx.generators.small.chvatal_graph

chvatal_graph (create_using=None)
Return the Chvatal graph.

6.3.5 networkx.generators.small.cubical_graph

cubical_graph (create_using=None)
Return the 3-regular Platonic Cubical graph.

6.3.6 networkx.generators.small.desargues_graph

desargues_graph (create_using=None)
Return the Desargues graph.

6.3.7 networkx.generators.small.diamond_graph

diamond_graph (create_using=None)
Return the Diamond graph.

6.3. Small 223

http://mathworld.wolfram.com/LCFNotation.html

NetworkX Reference, Release 1.2

6.3.8 networkx.generators.small.dodecahedral_graph

dodecahedral_graph (create_using=None)
Return the Platonic Dodecahedral graph.

6.3.9 networkx.generators.small.frucht_graph

frucht_graph (create_using=None)
Return the Frucht Graph.

The Frucht Graph is the smallest cubical graph whose automorphism group consists only of the identity element.

6.3.10 networkx.generators.small.heawood_graph

heawood_graph (create_using=None)
Return the Heawood graph, a (3,6) cage.

6.3.11 networkx.generators.small.house_graph

house_graph (create_using=None)
Return the House graph (square with triangle on top).

6.3.12 networkx.generators.small.house_x_graph

house_x_graph (create_using=None)
Return the House graph with a cross inside the house square.

6.3.13 networkx.generators.small.icosahedral_graph

icosahedral_graph (create_using=None)
Return the Platonic Icosahedral graph.

6.3.14 networkx.generators.small.krackhardt_kite_graph
krackhardt_kite_graph (create_using=None)
Return the Krackhardt Kite Social Network.

A 10 actor social network introduced by David Krackhardt to illustrate: degree, betweenness, centrality, close-
ness, etc. The traditional labeling is: Andre=1, Beverley=2, Carol=3, Diane=4, Ed=5, Fernando=6, Garth=7,
Heather=8, Ike=9, Jane=10.

6.3.15 networkx.generators.small.moebius_kantor_graph

moebius_kantor_graph (create_using=None)
Return the Moebius-Kantor graph.

224 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

6.3.16 networkx.generators.small.octahedral_graph

octahedral_graph (create_using=None)
Return the Platonic Octahedral graph.

6.3.17 networkx.generators.small.pappus_graph

pappus_graph ()
Return the Pappus graph.

6.3.18 networkx.generators.small.petersen_graph

petersen_graph (create_using=None)
Return the Petersen graph.

6.3.19 networkx.generators.small.sedgewick_maze_graph

sedgewick_maze_graph (create_using=None)
Return a small maze with a cycle.

This is the maze used in Sedgewick,3rd Edition, Part 5, Graph Algorithms, Chapter 18, e.g. Figure 18.2 and
following. Nodes are numbered 0,..,7

6.3.20 networkx.generators.small.tetrahedral_graph

tetrahedral_graph (create_using=None)
Return the 3-regular Platonic Tetrahedral graph.

6.3.21 networkx.generators.small.truncated_cube_graph

truncated_cube_graph (create_using=None)
Return the skeleton of the truncated cube.

6.3.22 networkx.generators.small.truncated_tetrahedron_graph

truncated_tetrahedron_graph (create_using=None)
Return the skeleton of the truncated Platonic tetrahedron.

6.3.23 networkx.generators.small.tutte_graph

tutte_graph (create_using=None)
Return the Tutte graph.

6.3. Small 225

NetworkX Reference, Release 1.2

6.4 Random Graphs

Generators for random graphs.

fast_gnp_random_graph(n, pl,
create_using, seed])

gnp_random_graph(n, p[, create_using,
seed])

directed_gnp_random_graph(n, p[, ...])
dense_gnm_random_graph(n, m[,
create_using, ...])

gnm_random_graph(n, m[, create_using,
seed])

erdos_renyi_graph(n, p[, create_using,
seed])

binomial_graph(n, p[, create_using, seed])
newman_watts_strogatz_graph(n,k, pl[,
)

watts_strogatz_graph(nXk, p[, ...])
connected_watts_strogatz_graph(n,
k,pL. ...])

random_regular_graph(d, n[,
create_using, seed])
barabasi_albert_graph(n, m[,
create_using, seed])
powerlaw_cluster_graph(n, m,pl, ...])
random_lobster(n, pl, p2[, create_using,
seed])

random_shell_graph(constructor|, ...])
random_powerlaw_tree(n[, gamma, ...])
random_powerlaw_tree_sequence(n],
gamma, ...])

Return a random graph G_{n,p}.
Return a random graph G_{n,p}.

Return a directed random graph.
Return the random graph G_{n,m}.

Return the random graph G_{n,m}.
Return a random graph G_{n,p}.

Return a random graph G_{n,p}.
Return a Newman-Watts-Strogatz small world graph.

Return a Watts-Strogatz small-world graph.
Return a connected Watts-Strogatz small-world graph.

Return a random regular graph of n nodes each with degree d.

Return random graph using Barabdsi-Albert preferential
attachment model.

Holme and Kim algorithm for growing graphs with powerlaw
Return a random lobster.

Return a random shell graph for the constructor given.
Return a tree with a powerlaw degree distribution.
Return a degree sequence for a tree with a powerlaw
distribution.

6.4.1 networkx.generators.random_graphs.fast_gnp_random_graph

fast_gnp_random_graph (n, p, create_using=None, seed=None)

Return a random graph G_{n,p}.

The G_{n,p} graph choses each of the possible [n(n-1)]/2 edges with probability p.

Sometimes called Erd6s-Rényi graph, or binomial graph.

Parameters n : int
The number of nodes.
p : float

Probability for edge creation.

create_using : graph, optional (default Graph)

Use specified graph as a container.

seed : int, optional

Seed for random number generator (default=None).

226

Chapter 6. Graph generators

NetworkX Reference, Release 1.2

Notes

This algorithm is O(n+m) where m is the expected number of edges m=p*n*(n-1)/2.

It should be faster than gnp_random_graph when p is small, and the expected number of edges is small, (sparse
graph).

References

[R72]

6.4.2 networkx.generators.random_graphs.gnp_random_graph
gnp_random_graph (n, p, create_using=None, seed=None)
Return a random graph G_{n,p}.

Choses each of the possible [n(n-1)]/2 edges with probability p. This is the same as binomial_graph and er-
dos_renyi_graph.

Sometimes called Erd6s-Rényi graph, or binomial graph.
Parameters n : int
The number of nodes.
p : float
Probability for edge creation.
create_using : graph, optional (default Graph)
Use specified graph as a container.
seed : int, optional
Seed for random number generator (default=None).
See Also:

fast_gnp_random_graph

Notes

This is an O(n”2) algorithm. For sparse graphs (small p) see fast_gnp_random_graph.

References

[R73], [R74]

6.4.3 networkx.generators.random_graphs.directed_gnp_random_graph

directed_gnp_random_graph (n, p, create_using=None, seed=None)
Return a directed random graph.

Chooses each of the possible n(n-1) edges with probability p.

6.4. Random Graphs 227

NetworkX Reference, Release 1.2

This is a directed version of G_np.
Parameters n : int
The number of nodes.
p : float
Probability for edge creation.
create_using : graph, optional (default DiGraph)
Use specified graph as a container.
seed : int, optional
Seed for random number generator (default=None).
See Also:

gnp_random_graph, fast_gnp_random_graph

Notes

This is an O(n”2) algorithm.

References

[R68], [R69]

6.4.4 networkx.generators.random_graphs.dense_gnm_random_graph
dense_gnm_random_graph (n, m, create_using=None, seed=None)
Return the random graph G_{n,m}.

Gives a graph picked randomly out of the set of all graphs with n nodes and m edges. This algorithm should be
faster than gnm_random_graph for dense graphs.

Parameters n : int

The number of nodes.

m : int
The number of edges.

create_using : graph, optional (default Graph)
Use specified graph as a container.

seed : int, optional
Seed for random number generator (default=None).

See Also:

gnm_random_graph

228 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

Notes

Algorithm by Keith M. Briggs Mar 31, 2006. Inspired by Knuth’s Algorithm S (Selection sampling technique),
in section 3.4.2 of

References

[R67]

6.4.5 networkx.generators.random_graphs.gnm_random_graph
gnm_random_graph (n, m, create_using=None, seed=None)
Return the random graph G_{n,m}.
Gives a graph picked randomly out of the set of all graphs with n nodes and m edges.
Parameters n: int
The number of nodes.
m : int
The number of edges.
create_using : graph, optional (default Graph)
Use specified graph as a container.
seed : int, optional

Seed for random number generator (default=None).

6.4.6 networkx.generators.random_graphs.erdos_renyi_graph
erdos_renyi_graph (n, p, create_using=None, seed=None)
Return a random graph G_{n,p}.

Choses each of the possible [n(n-1)]/2 edges with probability p. This is the same as binomial_graph and er-
dos_renyi_graph.

Sometimes called Erd6s-Rényi graph, or binomial graph.
Parameters n : int
The number of nodes.
p : float
Probability for edge creation.
create_using : graph, optional (default Graph)
Use specified graph as a container.
seed : int, optional
Seed for random number generator (default=None).
See Also:

fast_gnp_random_graph

6.4. Random Graphs 229

NetworkX Reference, Release 1.2

Notes

This is an O(n”2) algorithm. For sparse graphs (small p) see fast_gnp_random_graph.

References

[R70], [R71]

6.4.7 networkx.generators.random_graphs.binomial_graph
binomial_graph (n, p, create_using=None, seed=None)
Return a random graph G_{n,p}.

Choses each of the possible [n(n-1)]/2 edges with probability p. This is the same as binomial_graph and er-
dos_renyi_graph.

Sometimes called Erd6s-Rényi graph, or binomial graph.
Parameters n : int
The number of nodes.
p : float
Probability for edge creation.
create_using : graph, optional (default Graph)
Use specified graph as a container.
seed : int, optional
Seed for random number generator (default=None).
See Also:

fast_gnp_random_graph

Notes

This is an O(n"2) algorithm. For sparse graphs (small p) see fast_gnp_random_graph.

References

[R65], [R66]

6.4.8 networkx.generators.random_graphs.newman_watts_strogatz_graph
newman_watts_strogatz_graph (n, k, p, create_using=None, seed=None)
Return a Newman-Watts-Strogatz small world graph.
Parameters n : int
The number of nodes

Kk :int

230 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

Each node is connected to k nearest neighbors in ring topology
p : float

The probability of adding a new edge for each edge
create_using : graph, optional (default Graph)

The graph instance used to build the graph.
seed : int, optional

seed for random number generator (default=None)

See Also:

watts_strogatz_graph

Notes

First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors (k-1
neighbors if k is odd). Then shortcuts are created by adding new edges as follows: for each edge u-v in the
underlying “n-ring with k nearest neighbors” with probability p add a new edge u-w with randomly-chosen
existing node w. In contrast with watts_strogatz_graph(), no edges are removed.

References

[R75]

6.4.9 networkx.generators.random_graphs.watts_strogatz_graph
watts_strogatz_graph (n, k p, create_using=None, seed=None)
Return a Watts-Strogatz small-world graph.
Parameters n: int
The number of nodes
k : int
Each node is connected to k nearest neighbors in ring topology
p : float
The probability of rewiring each edge
create_using : graph, optional (default Graph)
The graph instance used to build the graph.
seed : int, optional
Seed for random number generator (default=None)
See Also:

newman_watts_strogatz_graph, connected_watts_strogatz_graph

6.4. Random Graphs 231

NetworkX Reference, Release 1.2

Notes

First create a ring over n nodes. Then each node in the ring is connected with its k nearest neighbors (k-1
neighbors if k is odd). Then shortcuts are created by replacing some edges as follows: for each edge u-v in the
underlying “n-ring with k nearest neighbors” with probability p replace it with a new edge u-w with uniformly
random choice of existing node w.

In contrast with newman_watts_strogatz_graph(), the random rewiring does not increase the number of edges.
The rewired graph is not guaranteed to be connected as in connected_watts_strogatz_graph().

References

[R79]

6.4.10 networkx.generators.random_graphs.connected_watts_strogatz_graph
connected_watts_strogatz_graph (n k, p, tries=100, create_using=None, seed=None)
Return a connected Watts-Strogatz small-world graph.

Attempt to generate a connected realization by repeated generation of Watts-Strogatz small-world graphs. An
exception is raised if the maximum number of tries is exceeded.

Parameters n: int
The number of nodes
k : int
Each node is connected to k nearest neighbors in ring topology
p : float
The probability of rewiring each edge
tries : int
Number of attempts to generate a connected graph.
create_using : graph, optional (default Graph)
The graph instance used to build the graph.
seed : int, optional
The seed for random number generator.
See Also:

newman_watts_strogatz_graph,watts_strogatz_graph

6.4.11 networkx.generators.random_graphs.random_regular_graph
random_regular_graph (d, n, create_using=None, seed=None)
Return a random regular graph of n nodes each with degree d.
The resulting graph G has no self-loops or parallel edges.
Parameters d : int

Degree

232 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

n : integer

Number of nodes. The value of n*d must be even.
create_using : graph, optional (default Graph)

The graph instance used to build the graph.
seed : hashable object

The seed for random number generator.

Notes

The nodes are numbered form O to n-1.

Kim and Vu’s paper [R78] shows that this algorithm samples in an asymptotically uniform way from the space
of random graphs when d = O(n**(1/3-epsilon)).

References

[R77], [R78]

6.4.12 networkx.generators.random_graphs.barabasi_albert_graph
barabasi_albert_graph (n, m, create_using=None, seed=None)
Return random graph using Barabdsi-Albert preferential attachment model.

A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially attached to
existing nodes with high degree.

Parameters n : int
Number of nodes
m : int
Number of edges to attach from a new node to existing nodes
create_using : graph, optional (default Graph)
The graph instance used to build the graph.
seed : int, optional
Seed for random number generator (default=None).

Returns G : Graph

Notes

The initialization is a graph with with m nodes and no edges.

References

[R64]

6.4. Random Graphs 233

NetworkX Reference, Release 1.2

6.4.13 networkx.generators.random_graphs.powerlaw_cluster_graph

powerlaw_cluster_graph (n, m, p, create_using=None, seed=None)
Holme and Kim algorithm for growing graphs with powerlaw degree distribution and approximate average
clustering.

Parameters n : int
the number of nodes
m : int
the number of random edges to add for each new node
p : float,
Probability of adding a triangle after adding a random edge
create_using : graph, optional (default Graph)
The graph instance used to build the graph.
seed : int, optional

Seed for random number generator (default=None).

Notes

The average clustering has a hard time getting above a certain cutoff that depends on m. This cutoff is often
quite low. Note that the transitivity (fraction of triangles to possible triangles) seems to go down with network
size.

It is essentially the Barabdasi-Albert (B-A) growth model with an extra step that each random edge is followed
by a chance of making an edge to one of its neighbors too (and thus a triangle).

This algorithm improves on B-A in the sense that it enables a higher average clustering to be attained if desired.

It seems possible to have a disconnected graph with this algorithm since the initial m nodes may not be all linked
to a new node on the first iteration like the B-A model.

References

[R76]

6.4.14 networkx.generators.random_graphs.random_lobster
random_lobster (n, pl, p2, create_using=None, seed=None)
Return a random lobster.
A lobster is a tree that reduces to a caterpillar when pruning all leaf nodes.

A caterpillar is a tree that reduces to a path graph when pruning all leaf nodes (p2=0).

Parameters n : int
The expected number of nodes in the backbone
pl : float
Probability of adding an edge to the backbone

234 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

p2 : float

Probability of adding an edge one level beyond backbone
create_using : graph, optional (default Graph)

The graph instance used to build the graph.
seed : int, optional

Seed for random number generator (default=None).

6.4.15 networkx.generators.random_graphs.random_shell_graph
random_shell_graph (constructor, create_using=None, seed=None)
Return a random shell graph for the constructor given.
Parameters constructor: a list of three-tuples :
(n,m,d) for each shell starting at the center shell.
n: int
The number of nodes in the shell
m : int
The number or edges in the shell
d : float

The ratio of inter-shell (next) edges to intra-shell edges. d=0 means no intra shell edges,
d=1 for the last shell

create_using : graph, optional (default Graph)
The graph instance used to build the graph.
seed : int, optional

Seed for random number generator (default=None).
Examples

>>> constructor=[(10,20,0.8), (20,40,0.8)]
>>> G=nx.random_shell_graph (constructor)

6.4.16 networkx.generators.random_graphs.random_powerlaw_tree
random_powerlaw_tree (n, gamma=3, create_using=None, seed=None, tries=100)
Return a tree with a powerlaw degree distribution.
Parameters n : int,
The number of nodes
gamma : float
Exponent of the power-law

create_using : graph, optional (default Graph)

6.4. Random Graphs 235

NetworkX Reference, Release 1.2

The graph instance used to build the graph.
seed : int, optional

Seed for random number generator (default=None).
tries : int

Number of attempts to adjust sequence to make a tree

Notes

A trial powerlaw degree sequence is chosen and then elements are swapped with new elements from a powerlaw
distribution until the sequence makes a tree (#edges=#nodes-1).

6.4.17 networkx.generators.random_graphs.random_powerlaw_tree_sequence
random_powerlaw_tree_sequence (n, gamma=3, seed=None, tries=100)
Return a degree sequence for a tree with a powerlaw distribution.
Parameters n : int,
The number of nodes
gamma : float
Exponent of the power-law
seed : int, optional
Seed for random number generator (default=None).
tries : int

Number of attempts to adjust sequence to make a tree

Notes

A trial powerlaw degree sequence is chosen and then elements are swapped with new elements from a powerlaw
distribution until the sequence makes a tree (#edges=#nodes-1).

6.5 Degree Sequence

Generate graphs with a given degree sequence or expected degree sequence.

236 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

configuration_model(deg_sequence[Return a random graph with the given degree sequence.

)

directed_configuration_model(..Return a directed_random graph with the given degree sequences.
)

expected_degree_graph(w[, Return a random graph G(w) with expected degrees given by w.
create_using, seed])

havel_hakimi_graph(deg_sequence[, Return a simple graph with given degree sequence, constructed using

create_using]) the

degree_sequence_tree(deg_sequencdylake a tree for the given degree sequence.

)

is_valid_degree_sequence(deg_sedqtemen)True if deg_sequence is a valid sequence of integer degrees
create_degree_sequence(n, Attempt to create a valid degree sequence of length n using specified
kwds|, ...]) function sfunction(n,kwds).

double_edge_swap(G[, nswap]) Attempt nswap double-edge swaps on the graph G.
connected_double_edge_swap(G[, Attempt nswap double-edge swaps on the graph G.

nswap])

1i_smax_graph(degree_seq|, Generates a graph based with a given degree sequence and
create_using]) maximizing the s-metric.

6.5.1 networkx.generators.degree_seq.configuration_model
configuration_model (deg_sequence, create_using=None, seed=None)
Return a random graph with the given degree sequence.

The configuration model generates a random pseudograph (graph with parallel edges and self loops) by ran-
domly assigning edges to match the given degree sequence.

Parameters deg_sequence : list of integers
Each list entry corresponds to the degree of a node.
create_using : graph, optional (default MultiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
Seed for random number generator.
Returns G : MultiGraph

A graph with the specified degree sequence. Nodes are labeled starting at 0 with an
index corresponding to the position in deg_sequence.

Raises NetworkXError :
If the degree sequence does not have an even sum.
See Also:

is_valid_degree_sequence

Notes

As described by Newman [R54].

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns
graphs with self loops and parallel edges. An exception is raised if the degree sequence does not have an even
sum.

6.5. Degree Sequence 237

NetworkX Reference, Release 1.2

This configuration model construction process can lead to duplicate edges and loops. You can remove the
self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree
sequence specified. This “finite-size effect” decreases as the size of the graph increases.

References

[R54]

Examples

>>> from networkx.utils import powerlaw_sequence
>>> z=nx.create_degree_sequence (100, powerlaw_segquence)
>>> G=nx.configuration_model (z)

To remove parallel edges:
>>> G=nx.Graph (G)
To remove self loops:

>>> G.remove_edges_from(G.selfloop_edges())

6.5.2 networkx.generators.degree_seq.directed_configuration_model

directed_configuration_model (in_degree_sequence, out_degree_sequence, create_using=None,

seed=None)
Return a directed_random graph with the given degree sequences.

The configuration model generates a random directed pseudograph (graph with parallel edges and self loops) by
randomly assigning edges to match the given degree sequences.

Parameters in_degree_sequence : list of integers
Each list entry corresponds to the in-degree of a node.
out_degree_sequence : list of integers
Each list entry corresponds to the out-degree of a node.
create_using : graph, optional (default MultiDiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional
Seed for random number generator.
Returns G : MultiDiGraph

A graph with the specified degree sequences. Nodes are labeled starting at 0 with an
index corresponding to the position in deg_sequence.

Raises NetworkXError :

If the degree sequences do not have the same sum.

238 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

See Also:

configuration_model

Notes

Algorithm as described by Newman [R56].

A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns
graphs with self loops and parallel edges. An exception is raised if the degree sequences does not have the same
sum.

This configuration model construction process can lead to duplicate edges and loops. You can remove the
self-loops and parallel edges (see below) which will likely result in a graph that doesn’t have the exact degree
sequence specified. This “finite-size effect” decreases as the size of the graph increases.

References

[R56]

Examples

>>> D=nx.DiGraph([(0,1), (1,2), (2,3)]) # directed path graph
>>> din=D.in_degree () .values ()

>>> dout=D.out_degree () .values ()

>>> din.append (1)

>>> dout [0]=2

>>> D=nx.directed_configuration_model (din, dout)

To remove parallel edges:
>>> D=nx.DiGraph (D)
To remove self loops:

>>> D.remove_edges_from(D.selfloop_edges())

6.5.3 networkx.generators.degree_seq.expected_degree_graph
expected_degree_graph (w, create_using=None, seed=None)
Return a random graph G(w) with expected degrees given by w.
Parameters w : list
The list of expected degrees.
create_using : graph, optional (default Graph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional

The seed for the random number generator.

6.5. Degree Sequence 239

NetworkX Reference, Release 1.2

References

[R57]
Examples

>>> z=[10 for i in range (100)]
>>> G=nx.expected_degree_graph(z)

6.5.4 networkx.generators.degree_seq.havel_hakimi_graph

havel_hakimi_graph (deg_sequence, create_using=None)

Return a simple graph with given degree sequence, constructed using the Havel-Hakimi algorithm.
Parameters deg_sequence: list of integers :
Each integer corresponds to the degree of a node (need not be sorted).
create_using : graph, optional (default Graph)

Return graph of this type. The instance will be cleared. Multigraphs and directed graphs
are not allowed.

Raises NetworkXException :

For a non-graphical degree sequence (i.e. one not realizable by some simple graph).

Notes

The Havel-Hakimi algorithm constructs a simple graph by successively connecting the node of highest degree
to other nodes of highest degree, resorting remaining nodes by degree, and repeating the process. The resulting
graph has a high degree-associativity. Nodes are labeled 1,.., len(deg_sequence), corresponding to their position
in deg_sequence.

See Theorem 1.4 in [chartrand-graphs-1996]. This algorithm is also used in the function
is_valid_degree_sequence.

References

[R58]

6.5.5 networkx.generators.degree_seq.degree_sequence_tree

degree_sequence_tree (deg_sequence, create_using=None)

Make a tree for the given degree sequence.

A tree has #nodes-#edges=1 so the degree sequence must have len(deg_sequence)-sum(deg_sequence)/2=1

240

Chapter 6. Graph generators

NetworkX Reference, Release 1.2

6.5.6 networkx.generators.degree_seq.is_valid_degree_sequence

is_valid_degree_sequence (deg_sequence)
Return True if deg_sequence is a valid sequence of integer degrees equal to the degree sequence of some simple
graph.

°deg_sequence: degree sequence, a list of integers with each entry corresponding to the degree of a
node (need not be sorted). A non-graphical degree sequence (i.e. one not realizable by some sim-
ple graph) will raise an exception.

See Theorem 1.4 in [R59]. This algorithm is also used in havel_hakimi_graph()

References

[R59]

6.5.7 networkx.generators.degree_seq.create_degree_sequence
create_degree_sequence (n, sfunction=None, max_tries=50, **kwds)
Attempt to create a valid degree sequence of length n using specified function sfunction(n,**kwds).
Parameters n : int
Length of degree sequence = number of nodes
sfunction: function :

Function which returns a list of n real or integer values. Called as “sfunc-
tion(n,**kwds)”.

max_tries: int :

Max number of attempts at creating valid degree sequence.

Notes

Repeatedly create a degree sequence by calling sfunction(n,**kwds) until achieving a valid degree sequence. If
unsuccessful after max_tries attempts, raise an exception.

For examples of sfunctions that return sequences of random numbers, see networkx.Utils.
Examples

>>> from networkx.utils import uniform_sequence
>>> seg=nx.create_degree_sequence (10,uniform_sequence)

6.5.8 networkx.generators.degree_seq.double_edge_swap
double_edge_swap (G, nswap=1)
Attempt nswap double-edge swaps on the graph G.

Return count of successful swaps. The graph G is modified in place. A double-edge swap removes two randomly
choseen edges u-v and x-y and creates the new edges u-x and v-y:

6.5. Degree Sequence 241

NetworkX Reference, Release 1.2

u-—-v u v
becomes | |
X=-y Xy

If either the edge u-x or v-y already exist no swap is performed so the actual count of swapped edges is always
<= nswap

Does not enforce any connectivity constraints.

6.5.9 networkx.generators.degree_seq.connected_double_edge_swap

connected_double_edge_swap (G, nswap=1)

Attempt nswap double-edge swaps on the graph G.

Returns the count of successful swaps. Enforces connectivity. The graph G is modified in place.

Notes

A double-edge swap removes two randomly choseen edges u-v and x-y and creates the new edges u-x and v-y:

u—-v u
becomes

v
|
X-=-y X Yy

If either the edge u-x or v-y already exist no swap is performed so the actual count of swapped edges is always
<= nswap

The initial graph G must be connected and the resulting graph is connected.

References

[R55]

6.5.10 networkx.generators.degree_seq.li_smax_graph

1i_smax_graph (degree_seq, create_using=None)

Generates a graph based with a given degree sequence and maximizing the s-metric. Experimental implemen-
tation.

Maximum s-metrix means that high degree nodes are connected to high degree nodes.

edegree_seq: degree sequence, a list of integers with each entry corresponding to the degree of a node.
A non-graphical degree sequence raises an Exception.

Reference:

@unpublished{1i-2005,
author = {Lun Li and David Alderson and Reiko Tanaka
and John C. Doyle and Walter Willinger},
title = {Towards a Theory of Scale-Free Graphs:
Definition, Properties, and Implications (Extended Version)},
url = {http://arxiv.org/abs/cond-mat/0501169},

242

Chapter 6. Graph generators

NetworkX Reference, Release 1.2

year = {2005}
}

The algorithm:

STEP 0 - Initialization

A = {0}

B = {1, 2, 3, ..., n}

o= {(i; 3), ..., (k, 1),...} where i < j, 1 <= k < 1 and
d i « d_j >= d_k *d_1

wA = d_1

dB = sum(degrees)

STEP 1 - Link selection

(a) If |O| = 0 TERMINATE. Return graph A.
(b) Select element(s) (i, j) in O having the largest d_i % d_3j , if for
any i or j either w_i = 0 or w_j = 0 delete (i, j) from O

(c) If there are no elements selected go to (a).
(d) Select the link (i, 3j) having the largest value w_i (where for each
(i, j) w_i is the smaller of w_i and w_3j), and proceed to STEP 2.

STEP 2 - Link addition
Type 1: i in A and j in B.
Add j to the graph A and remove it from the set B add a link
(i, j) to the graph A. Update variables:
wA = wA + d_Jj -2 and dB = dB - d_Jj
Decrement w_i and w_7j with one. Delete (i, j) from O
Type 2: i and j in A.
Check Tree Condition: If dB = 2 * |B| - wA.
Delete (i, Jj) from O, continue to STEP 3
Check Disconnected Cluster Condition: If wA = 2.
Delete (i, Jj) from O, continue to STEP 3
Add the link (i, j) to the graph A
Decrement w_i and w_7J with one, and wA = wA -2
STEP 3
Go to STEP 1

The article states that the algorithm will result in a maximal s-metric. This implementation can not guarantee
such maximality. I may have misunderstood the algorithm, but I can not see how it can be anything but a heuris-
tic. Please contact me at sundsdal @gmail.com if you can provide python code that can guarantee maximality.
Several optimizations are included in this code and it may be hard to read. Commented code to come.

A POSSIBLE ALTERNATIVE:

For an ‘unconstrained’ graph, that is one they describe as having the sum of the degree sequence be even(ie all
undirected graphs) they present a simpler algorithm. It is as follows

“For each vertex i: if di is even then attach di/2 self-loops; if di is odd, then attach (di-1)/2 self-loops,
leaving one available “stub”. Second for all remaining vertices with “stubs” connect them in pairs
according to decreasing values of di.”[1]

Since this only works for undirected graphs anyway, perhaps this is the better method? Note this also returns
a graph with a larger s_metric than the other method, and it seems to have the same degree sequence, though I
haven’t tested it extensively.

6.6 Directed

6.6. Directed 243

mailto:sundsdal@gmail.com

NetworkX Reference, Release 1.2

Generators for some directed graphs.

gn_graph: growing network gnc_graph: growing network with copying gnr_graph: growing network with redirection
scale_free_graph: scale free directed graph

gn_graph(n[, kernel, create_using, seed]) Return the GN digraph with n nodes.

gnr_graph(n, p[, create_using, seed]) Return the GNR digraph with n nodes and redirection
probability p.

gnc_graph(n[, create_using, seed]) Return the GNC digraph with n nodes.

scale_free_graph(n[, alpha, beta, gamma, Return a scale free directed graph.

)

6.6.1 networkx.generators.directed.gn_graph
gn_graph (n, kernel=None, create_using=None, seed=None)
Return the GN digraph with n nodes.

The GN (growing network) graph is built by adding nodes one at a time with a link to one previously added
node. The target node for the link is chosen with probability based on degree. The default attachment kernel is
a linear function of degree.

The graph is always a (directed) tree.
Parameters n : int

The number of nodes for the generated graph.

kernel : function
The attachment kernel.

create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.

seed : hashable object, optional

The seed for the random number generator.

References

[R60]

Examples

>>> D=nx.gn_graph (10) # the GN graph

>>> G=D.to_undirected() # the undirected version

To specify an attachment kernel use the kernel keyword

>>> D=nx.gn_graph (10, kernel=lambda x:x*%x1.5) # A k=k"1.5

244 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

6.6.2 networkx.generators.directed.gnr_graph
gnr_graph (n, p, create_using=None, seed=None)
Return the GNR digraph with n nodes and redirection probability p.

The GNR (growing network with redirection) graph is built by adding nodes one at a time with a link to one
previously added node. The previous target node is chosen uniformly at random. With probabiliy p the link is
instead “redirected” to the successor node of the target. The graph is always a (directed) tree.

Parameters n : int
The number of nodes for the generated graph.
p : float
The redirection probability.
create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional

The seed for the random number generator.

References

[R62]
Examples

>>> D=nx.gnr_graph(10,0.5) # the GNR graph
>>> G=D.to_undirected() # the undirected version

6.6.3 networkx.generators.directed.gnc_graph
gnc_graph (n, create_using=None, seed=None)
Return the GNC digraph with n nodes.

The GNC (growing network with copying) graph is built by adding nodes one at a time with a links to one
previously added node (chosen uniformly at random) and to all of that node’s successors.

Parameters n : int
The number of nodes for the generated graph.
create_using : graph, optional (default DiGraph)
Return graph of this type. The instance will be cleared.
seed : hashable object, optional

The seed for the random number generator.

References

[R61]

6.6. Directed 245

NetworkX Reference, Release 1.2

6.6.4 networkx.generators.directed.scale_free_graph

scale_free_graph (n, alpha=0.40999999999999998, beta=0.54000000000000004,
gamma=0.050000000000000003, delta_in=0.20000000000000001, delta_out=0, cre-
ate_using=None, seed=None)
Return a scale free directed graph.

Parameters n : integer
Number of nodes in graph
alpha : float

Probability for adding a new node connected to an existing node chosen randomly ac-
cording to the in-degree distribution.

beta : float

Probability for adding an edge between two existing nodes. One existing node is chosen
randomly according the in-degree distribution and the other chosen randomly according
to the out-degree distribution.

gamma : float

Probability for adding a new node conecgted to an existing node chosen randomly ac-
cording to the out-degree distribution.

delta_in : float

Bias for choosing ndoes from in-degree distribution.
delta_out : float

Bias for choosing ndoes from out-degree distribution.
create_using : graph, optional (default MultiDiGraph)

Use this graph instance to start the process (default=3-cycle).
seed : integer, optional

Seed for random number generator

Notes

The sum of alpha, beta, and gamma must be 1.

References

[R63]
Examples

>>> G=nx.scale_free_graph(100)

246 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

6.7 Geometric

Generators for geometric graphs.

random_geometric_graph(n, radius[, ...]) Random geometric graph in the unit cube

6.7.1 networkx.generators.geometric.random_geometric_graph

random_geometric_graph (n, radius, create_using=None, repel=0.0, verbose=False, dim=2)
Random geometric graph in the unit cube

Returned Graph has added attribute G.pos which is a dict keyed by node to the position tuple for the node.

6.8 Hybrid

Hybrid
k1l_connected_subgraph(G,Kk, I[, low_memory, Returns the maximum locally (k,I) connected subgraph
] of G.
is_k1l_connected(G,Kk, I[, low_memory]) Returns True if G is kl connected

6.8.1 networkx.generators.hybrid.kl_connected_subgraph
k1l_connected_subgraph (G, k, [, low_memory=False, same_as_graph=False)
Returns the maximum locally (k,l) connected subgraph of G.

(k,])-connected subgraphs are presented by Fan Chung and Li in “The Small World Phenomenon in hybrid
power law graphs” to appear in “Complex Networks” (Ed. E. Ben-Naim) Lecture Notes in Physics, Springer
(2004)

low_memory=True then use a slightly slower, but lower memory version same_as_graph=True then return a
tuple with subgraph and pflag for if G is kl-connected

6.8.2 networkx.generators.hybrid.is_kl_connected

is_kl_connected (G, k, [, low_memory=False)
Returns True if G is kl connected

6.9 Bipartite

Generators and functions for bipartite graphs.

6.7. Geometric 247

NetworkX Reference, Release 1.2

bipartite_configuration_model(aseqeturn a random bipartite graph from two given degree sequences.

bseq, ...])

bipartite_havel_hakimi_graph(aseq,Return a bipartite graph from two given degree sequences
bseq[, ...])

bipartite_reverse_havel_ hakimi_gRetintasdgpartite graph from two given degree sequences
bseq)

bipartite_alternating_havel_ hakiRetungrabipariite graph from two given degree sequences
bipartite_preferential_attachmenCreateobipsedte graph with a preferential attachment model from
19) a given single degree sequence.
bipartite_random_regular_graph(d, UNTESTED: Generate a random bipartite graph.

n[, ..])

6.9.1 networkx.generators.bipartite.bipartite_configuration_model
bipartite_configuration_model (aseq, bseq, create_using=None, seed=None)
Return a random bipartite graph from two given degree sequences.
Parameters aseq : list or iterator
Degree sequence for node set A.
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional
Return graph of this type.
seed : integer, optional
Seed for random number generator.
Nodes from the set A are connected to nodes in the set B by :
choosing randomly from the possible free stubs, one in A and :

one in B. :

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

6.9.2 networkx.generators.bipartite.bipartite_havel_hakimi_graph
bipartite_havel hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
Parameters aseq : list or iterator
Degree sequence for node set A.
bseq : list or iterator
Degree sequence for node set B.

create_using : NetworkX graph instance, optional

248 Chapter 6. Graph generators

NetworkX Reference, Release 1.2

Return graph of this type.
Nodes from the set A are connected to nodes in the set B by :
connecting the highest degree nodes in set A to :

the highest degree nodes in set B until all stubs are connected. :

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

6.9.3 networkx.generators.bipartite.bipartite_reverse_havel_hakimi_graph
bipartite_reverse_havel_ hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a Havel-Hakimi style construction.
Parameters aseq : list or iterator
Degree sequence for node set A.
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional
Return graph of this type.
Nodes from the set A are connected to nodes in the set B by :
connecting the highest degree nodes in set A to :

the lowest degree nodes in set B until all stubs are connected. :

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

6.9.4 networkx.generators.bipartite.bipartite_alternating_havel_hakimi_graph
bipartite_alternating havel hakimi_graph (aseq, bseq, create_using=None)
Return a bipartite graph from two given degree sequences using a alternating Havel-Hakimi style construction.
Parameters aseq : list or iterator
Degree sequence for node set A.
bseq : list or iterator
Degree sequence for node set B.
create_using : NetworkX graph instance, optional

Return graph of this type.

6.9. Bipartite 249

NetworkX Reference, Release 1.2

Nodes from the set A are connected to nodes in the set B by :
connecting the highest degree nodes in set A to :
alternatively the highest and the lowest degree nodes in set :

B until all stubs are connected. :

Notes

The sum of the two sequences must be equal: sum(aseq)=sum(bseq) If no graph type is specified use MultiGraph
with parallel edges. If you want a graph with no parallel edges use create_using=Graph() but then the resulting
degree sequences might not be exact.

6.9.5 networkx.generators.bipartite.bipartite_preferential_attachment_graph
bipartite_preferential_attachment_graph (aseq, p, create_using=None, seed=None)
Create a bipartite graph with a preferential attachment model from a given single degree sequence.
Parameters aseq : list or iterator
Degree sequence for node set A.
p : float
Probability that a new bottom node is added.
create_using : NetworkX graph instance, optional
Return graph of this type.
seed : integer, optional

Seed for random number generator.

Notes

@article{guillaume-2004-bipartite, author = {Jean-Loup Guillaume and Matthieu Latapy}, title = {Bipartite
structure of all complex networks}, journal = {Inf. Process. Lett.}, volume = {90}, number = {5}, year
= {2004}, issn = {0020-0190}, pages = {215-221}, doi = {http://dx.doi.org/10.1016/j.ipl.2004.03.007 },
publisher = {Elsevier North-Holland, Inc.}, address = { Amsterdam, The Netherlands, The Netherlands},

}

6.9.6 networkx.generators.bipartite.bipartite_random_regular_graph
bipartite_random_regular_graph (d, n, create_using=None, seed=None)
UNTESTED: Generate a random bipartite graph.
Parameters d : integer
Degree of graph.
n : integer
Number of nodes in graph.

create_using : NetworkX graph instance, optional

250 Chapter 6. Graph generators

http://dx.doi.org/10.1016/j.ipl.2004.03.007

NetworkX Reference, Release 1.2

Return graph of this type.
seed : integer, optional

Seed for random number generator.

Notes

Nodes are numbered O...n-1.
Restrictions on n and d:

* n must be even

e n>=2%d

Algorithm inspired by random_regular_graph()

6.10 Line Graph

Line graphs.

line_graph(G) Return the line graph of the graph or digraph G.

6.10.1 networkx.generators.line.line_graph

line_graph (G)
Return the line graph of the graph or digraph G.

The line graph of a graph G has a node for each edge in G and an edge between those nodes if the two edges in

G share a common node.

For DiGraphs an edge an edge represents a directed path of length 2.

The original node labels are kept as two-tuple node labels in the line graph.

Parameters G : graph

A NetworkX Graph or DiGraph

Notes

Not implemented for MultiGraph or MultiDiGraph classes.

Graph, node, and edge data are not propagated to the new graph.
Examples

>>> G=nx.star_graph(3)
>>> L=nx.line_graph (G)
>>> print sorted(L.edges()) # makes a clique, K3
[(¢o, 1), (0, 2)), (0, 1), (0, 3)), (0, 3), (0,

2))1

6.10. Line Graph

251

NetworkX Reference, Release 1.2

6.11 Ego Graph

Ego graph.

ego_graph(G, n[, radius, center, undirected]) Returns induced subgraph of neighbors centered at node n.

6.11.1 networkx.generators.ego.ego_graph
ego_graph (G, n, radius=1, center=True, undirected=False)
Returns induced subgraph of neighbors centered at node n.
Parameters G : graph
A NetworkX Graph or DiGraph
n : node
A single node
radius : integer, optional
Include all neighbors of distance<=radius from n
center : bool, optional
If False, do not include center node in graph
undirected: bool, optional :

If True use both in- and out-neighbors of directed graphs.

Notes

For directed graphs D this produces the “out” neighborhood or successors. If you want the neighborhood of
predecessors first reverse the graph with D.reverse(). If you want both directions use the keyword argument
undirected=True.

6.12 Stochastic

Stocastic graph.

stochastic_graph(G[, copy]) Return a right-stochastic representation of G.

6.12.1 networkx.generators.stochastic.stochastic_graph
stochastic_graph (G, copy=True)
Return a right-stochastic representation of G.
A right-stochastic graph is a weighted graph in which all of the node (out) neighbors edge weights sum to 1.
Parameters G : graph
A NetworkX graph, must have valid edge weights
copy : boolean, optional

If True make a copy of the graph, otherwise modify original graph

252 Chapter 6. Graph generators

CHAPTER
SEVEN

LINEAR ALGEBRA

7.1 Spectrum

Laplacian, adjacency matrix, and spectrum of graphs.

adj_mat rix(G[, nodelist]) Return adjacency matrix of G.

laplacian(G[, nodelist]) Return the Laplacian matrix of G.
normalized_laplacian(G[, nodelist]) Return the normalized Laplacian matrix of G.
laplacian_spectrum(G) Return eigenvalues of the Laplacian of G
adjacency_spectrum(G) Return eigenvalues of the adjacency matrix of G.

7.1.1 networkx.linalg.spectrum.adj_matrix
adj_matrix (G, nodelist=None)
Return adjacency matrix of G.
Parameters G : graph
A NetworkX graph
nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is
None, then the ordering is produced by G.nodes().

Returns A : numpy matrix
Adjacency matrix representation of G.
See Also:

to_numpy_matrix,to_dict_of_dicts

Notes

If you want a pure Python adjacency matrix representation try networkx.convert.to_dict_of_dicts which will
return a dictionary-of-dictionaries format that can be addressed as a sparse matrix.

253

NetworkX Reference, Release 1.2

7.1.2 networkx.linalg.spectrum.laplacian
laplacian (G, nodelist=None)
Return the Laplacian matrix of G.

The graph Laplacian is the matrix L = D - A, where A is the adjacency matrix and D is the diagonal matrix of
node degrees.

Parameters G : graph
A NetworkX graph
nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is
None, then the ordering is produced by G.nodes().

Returns L : NumPy matrix
Laplacian of G.
See Also:

normalized_laplacian

7.1.3 networkx.linalg.spectrum.normalized_laplacian
normalized_laplacian (G, nodelist=None)
Return the normalized Laplacian matrix of G.

The normalized graph Laplacian is the matrix NL=D”"(-1/2) L D”(-1/2) L is the graph Laplacian and D is the
diagonal matrix of node degrees.

Parameters G : graph
A NetworkX graph
nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is
None, then the ordering is produced by G.nodes().

Returns L : NumPy matrix
Normalized Laplacian of G.

See Also:
laplacian
References

[R86]

7.1.4 networkx.linalg.spectrum.laplacian_spectrum

laplacian_spectrum(G)
Return eigenvalues of the Laplacian of G

Parameters G : graph

254 Chapter 7. Linear algebra

NetworkX Reference, Release 1.2

A NetworkX graph
Returns evals : NumPy array
Eigenvalues
See Also:

laplacian

7.1.5 networkx.linalg.spectrum.adjacency_spectrum
adjacency_spectrum (G)
Return eigenvalues of the adjacency matrix of G.
Parameters G : graph
A NetworkX graph
Returns evals : NumPy array
Eigenvalues
See Also:

adj_matrix

7.2 Attribute Matrices

Functions for constructing matrix-like objects from graph attributes.

attr_matrix(G[, edge_attr, node_attr, ...]) Returns a NumPy matrix using attributes from G.
attr_sparse_matrix(G[, edge_attr, ...]) Returns a SciPy sparse matrix using attributes from G.

7.2.1 networkx.linalg.attrmatrix.attr_matrix

attr_matrix (G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None, or-

der=None)]
Returns a NumPy matrix using attributes from G.

If only G is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute node_attr. Then the elements of A represent the rows
and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of
the edge attribute edge_attr. If ua and va are the values of the node attribute node_attr for u and v, respectively,
then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters G : graph
The NetworkX graph used to construct the NumPy matrix.
edge_attr : str, optional

Each element of the matrix represents a running total of the specified edge attribute for
edges whose node attributes correspond to the rows/cols of the matirx. The attribute
must be present for all edges in the graph. If no attribute is specified, then we just count
the number of edges whose node attributes correspond to the matrix element.

node_attr : str, optional

7.2. Attribute Matrices 255

NetworkX Reference, Release 1.2

Each row and column in the matrix represents a particular value of the node attribute.
The attribute must be present for all nodes in the graph. Note, the values of this attribute
should be reliably hashable. So, float values are not recommended. If no attribute is

specified, then the rows and columns will be the nodes of the graph.
normalized : bool, optional
If True, then each row is normalized by the summation of its values.

rc_order : list, optional

A list of the node attribute values. This list specifies the ordering of rows and columns
of the array. If no ordering is provided, then the ordering will be random (and also, a

return value).
Returns M : NumPy matrix
The attribute matrix.

ordering : list

If rc_order was specified, then only the matrix is returned. However, if rc_order was

None, then the ordering used to construct the matrix is returned as well.

Examples

Construct an adjacency matrix:

G = nx.Graph()

>>> G.add_edge (0, 1,thickness=1,weight=3)
>>> G.add_edge (0, 2,thickness=2)

>>> G.add_edge (1l,2,thickness=3)

>>> nx.attr_matrix (G, rc_order=[0,1,2])
matrix ([[O., 1., 1.1,

[1., O., 1.1,

[1., 1., 0.11)

>>>

Alternatively, we can obtain the matrix describing edge thickness.

>>> nx.attr_matrix (G, edge_attr=’'thickness’, rc_order=[0,1,2])
matrix ([[O., 1., 2.1,

(1., 0., 3.1,

[2., 3., 0.11)

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0] ["color’"] = "red’
>>> G.node[l] [’'color’] = "red’
>>> G.node[2] ['color’] = "blue’
>>> rc = ['red’, "blue’]
>>> nx.attr_matrix (G, node_attr='color’, normalized=True, rc_order=rc)
matrix ([[0.33333333, 0.66666667],
[1. , O. 11)

For example, the above tells us that for all edges (u,v):

256

Chapter 7. Linear algebra

NetworkX Reference, Release 1.2

Pr(visredluisred)=1/3 Pr(vis blue | uis red) =2/3
Pr(visred | uis blue) =1 Pr(vis blue | uis blue) =0
Finally, we can obtain the total weights listed by the node colors.
>>> nx.attr_matrix (G, edge_attr='weight’, node_attr="color’, rc_order=rc)

matrix([[3., 2.],
[2., 0.11)

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges
(0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is O # there
are no edges with blue endpoints

7.2.2 networkx.linalg.attrmatrix.attr_sparse_matrix

attr_sparse_matrix (G, edge_attr=None, node_attr=None, normalized=False, rc_order=None, dtype=None)
Returns a SciPy sparse matrix using attributes from G.
If only G is passed in, then the adjacency matrix is constructed.

Let A be a discrete set of values for the node attribute node_attr. Then the elements of A represent the rows
and columns of the constructed matrix. Now, iterate through every edge e=(u,v) in G and consider the value of
the edge attribute edge_attr. If ua and va are the values of the node attribute node_attr for u and v, respectively,
then the value of the edge attribute is added to the matrix element at (ua, va).

Parameters G : graph
The NetworkX graph used to construct the NumPy matrix.
edge_attr : str, optional

Each element of the matrix represents a running total of the specified edge attribute for
edges whose node attributes correspond to the rows/cols of the matirx. The attribute
must be present for all edges in the graph. If no attribute is specified, then we just count
the number of edges whose node attributes correspond to the matrix element.

node_attr : str, optional

Each row and column in the matrix represents a particular value of the node attribute.
The attribute must be present for all nodes in the graph. Note, the values of this attribute
should be reliably hashable. So, float values are not recommended. If no attribute is
specified, then the rows and columns will be the nodes of the graph.

normalized : bool, optional
If True, then each row is normalized by the summation of its values.
rc_order : list, optional

A list of the node attribute values. This list specifies the ordering of rows and columns
of the array. If no ordering is provided, then the ordering will be random (and also, a
return value).

Returns M : SciPy sparse matrix
The attribute matrix.

ordering : list

7.2. Attribute Matrices 257

NetworkX Reference, Release 1.2

If rc_order was specified, then only the matrix is returned. However, if rc_order was
None, then the ordering used to construct the matrix is returned as well.

Examples

Construct an adjacency matrix:

>>> G = nx.Graph()
>>> G.add_edge (0, 1,thickness=1,weight=3)
>>> G.add_edge (0, 2, thickness=2)
>>> G.add_edge (1, 2,thickness=3)
M = nx.attr_sparse_matrix (G, rc_order=[0,1,2])
>>> M.todense ()

>>>

matrix ([[O., 1., 1.1,
(1., 0., 1.1,
[1., 1., 0.11)

Alternatively, we can obtain the matrix describing edge thickness.

>>> M = nx.attr_sparse_matrix (G, edge_attr=’thickness’, rc_order=[0,1,2])
>>> M.todense ()

matrix ([[O., 1., 2.1,
[1., 0., 3.1,
[2., 3., 0.10)

We can also color the nodes and ask for the probability distribution over all edges (u,v) describing:

Pr(v has color Y | u has color X)

>>> G.node[0] ["color’] = "red’
>>> G.node[l] ['color’] = "red’
>>> G.node[2] ['color’] = "blue’
>>> rc = ['red’, "blue’]
>>> M = nx.attr_sparse_matrix (G, node_attr=’color’,
>>> M.todense ()
matrix ([[0.33333333, 0.66666667],
[1. , 0. 11)

For example, the above tells us that for all edges (u,v):
Pr(visred | uisred) =1/3 Pr(vis blue | uis red) = 2/3
Pr(visred | uis blue) =1 Pr(vis blue | uis blue) =0
Finally, we can obtain the total weights listed by the node colors.
>>> M = nx.attr_sparse_matrix (G, edge_attr='weight’,
>>> M.todense ()

matrix ([[3., 2.1,
[2., 0.11)

Thus, the total weight over all edges (u,v) with u and v having colors:

(red, red) is 3 # the sole contribution is from edge (0,1) (red, blue) is 2 # contributions from edges
(0,2) and (1,2) (blue, red) is 2 # same as (red, blue) since graph is undirected (blue, blue) is O # there
are no edges with blue endpoints

258

Chapter 7. Linear algebra

normalizec

node_attr=

CHAPTER
EIGHT

CONVERTING TO AND FROM OTHER
DATA FORMATS

8.1 To NetworkX Graph

This module provides functions to convert NetworkX graphs to and from other formats.

The preferred way of converting data to a NetworkX graph is through the graph constuctor. The constructor calls the
to_networkx_graph() function which attempts to guess the input type and convert it automatically.

8.1.1 Examples
Create a 10 node random graph from a numpy matrix

>>> import numpy
>>> a=numpy.reshape (numpy.random.random_integers(0,1,size=100), (10,10))
>>> D=nx.DiGraph (a)

or equivalently

>>> D=nx.to_networkx_graph (a,create_using=nx.DiGraph())
Create a graph with a single edge from a dictionary of dictionaries

>>> d={0: {1: 1}} # dict-of-dicts single edge (0,1)

>>> G=nx.Graph (d)

8.1.2 See Also

nx_pygraphviz, nx_pydot

to_networkx_graph(data[, create_using, ...]) Make a NetworkX graph from a known data structure.

8.1.3 networkx.convert.to_networkx_graph

to_networkx_graph (data, create_using=None, multigraph_input=False)
Make a NetworkX graph from a known data structure.

The preferred way to call this is automatically from the class constructor

259

NetworkX Reference, Release 1.2

>>> d={0: {1: {’weight’:1}}} # dict-of-dicts single edge (0,1)
>>> G=nx.Graph (d)

instead of the equivalent

>>> G=nx.from dict_of dicts(d)

Parameters data : a object to be converted

Current known types are: any NetworkX graph dict-of-dicts dist-of-lists list of edges
numpy matrix numpy ndarray scipy sparse matrix pygraphviz agraph

create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.
multigraph_input : bool (default False)

If True and data is a dict_of dicts, try to create a multigraph assuming
dict_of_dict_of_lists. If data and create_using are both multigraphs then create a multi-
graph from a multigraph.

8.2 Relabeling

convert_node_labels_to_integers(Gl,..]) Returna copy of G node labels replaced with integers.
relabel_nodes(G, mapping) Return a copy of G with node labels transformed by mapping.

8.2.1 networkx.convert.convert_node_labels_to_integers
convert_node_labels_to_integers (G, first_label=0, ordering="default’, discard_old_labels=True)
Return a copy of G node labels replaced with integers.
Parameters G : graph
A NetworkX graph
first_label : int, optional (default=0)

An integer specifying the offset in numbering nodes. The n new integer labels are
numbered first_label, ..., n+first_label.

ordering : string

“default” : inherit node ordering from G.nodes() “sorted” : inherit node ordering from
sorted(G.nodes()) “increasing degree” : nodes are sorted by increasing degree “decreas-
ing degree” : nodes are sorted by decreasing degree

discard_old_labels : bool, optional (default=True)

if True (default) discard old labels if False, create a dict self.node_labels that maps new
labels to old labels

260 Chapter 8. Converting to and from other data formats

NetworkX Reference, Release 1.2

8.2.2 networkx.convert.relabel_nodes

relabel_nodes (G, mapping)
Return a copy of G with node labels transformed by mapping.

Parameters G : graph
A NetworkX graph
mapping : dictionary or function

Either a dictionary with the old labels as keys and new labels as values or a function
transforming an old label with a new label. In either case, the new labels must be
hashable Python objects.

See Also:

convert_node_labels_to_integers

Examples

mapping as dictionary

>>> G=nx.path_graph (3) # nodes 0-1-2
>>> mapping={0:’a’,1l:'b’",2:7c’}

>>> H=nx.relabel_nodes (G, mapping)

>>> print H.nodes ()

["a’, 'c’, "b’']

>>> G=nx.path_graph(26) # nodes 0..25

>>> mapping=dict (zip(G.nodes (), "abcdefghijklmnopgrstuvwxyz"))
>>> H=nx.relabel_nodes (G, mapping) # nodes a..z

>>> mapping=dict (zip (G.nodes (), xrange (1,27)))

>>> Gl=nx.relabel_nodes (G,mapping) # nodes 1..26

mapping as function

>>> G=nx.path_graph(3)
>>> def mapping (x):
return xx*x*2
>>> H=nx.relabel_ nodes (G, mapping)
>>> print H.nodes ()
[0, 1, 4]

8.3 Dictionaries

to_dict_of_dicts(G[, nodelist, Return adjacency representation of graph as a dictionary of
edge_data]) dictionaries
from_dict_of_ dicts(d[, create_using, Return a graph from a dictionary of dictionaries.

)]

8.3. Dictionaries 261

NetworkX Reference, Release 1.2

8.3.1 networkx.convert.to_dict_of dicts
to_dict_of dicts (G, nodelist=None, edge_data=None)
Return adjacency representation of graph as a dictionary of dictionaries
Parameters G : graph
A NetworkX graph
nodelist : list
Use only nodes specified in nodelist
edge_data : list, optional

If provided, the value of the dictionary will be set to edge_data for all edges. This
is useful to make an adjacency matrix type representation with 1 as the edge data. If
edgedata is None, the edgedata in G is used to fill the values. If G is a multigraph, the
edgedata is a dict for each pair (u,v).

8.3.2 networkx.convert.from_dict_of dicts
from_dict_of_dicts (d, create_using=None, multigraph_input=False)
Return a graph from a dictionary of dictionaries.
Parameters d : dictionary of dictionaries
A dictionary of dictionaries adjacency representation.
create_using : NetworkX graph
Use specified graph for result. Otherwise a new graph is created.
multigraph_input : bool (default False)

When True, the values of the inner dict are assumed to be containers of edge data for
multiple edges. Otherwise this routine assumes the edge data are singletons.

Examples
>>> dod= {0: {l:{’weight’:1}}} # single edge (0,1)

>>> G=nx.from dict_of dicts (dod)

or >>> G=nx.Graph(dod) # use Graph constructor

8.4 Lists

to_dict_of_1ists(G[, nodelist]) Return adjacency representation of graph as a dictionary of lists
from_dict_of_lists(dl, create_using]) Return a graph from a dictionary of lists.
to_edgelist(G[, nodelist]) Return a list of edges in the graph.

from_edgelist(edgelist], create_using]) Return a graph from a list of edges.

262 Chapter 8. Converting to and from other data formats

NetworkX Reference, Release 1.2

8.4.1 networkx.convert.to_dict_of lists
to_dict_of_lists (G, nodelist=None)
Return adjacency representation of graph as a dictionary of lists
Parameters G : graph
A NetworkX graph
nodelist : list

Use only nodes specified in nodelist

Notes

Completely ignores edge data for MultiGraph and MultiDiGraph.

8.4.2 networkx.convert.from_dict_of_lists
from_dict_of_lists (d, create_using=None)
Return a graph from a dictionary of lists.
Parameters d : dictionary of lists
A dictionary of lists adjacency representation.

create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.

Examples

>>> dol= {0:[1]} # single edge (0,1)
>>> G=nx.from_dict_of_lists(dol)

or >>> G=nx.Graph(dol) # use Graph constructor

8.4.3 networkx.convert.to_edgelist
to_edgelist (G, nodelist=None)
Return a list of edges in the graph.
Parameters G : graph
A NetworkX graph
nodelist : list

Use only nodes specified in nodelist

8.4. Lists

263

NetworkX Reference, Release 1.2

8.4.4 networkx.convert.from_edgelist

from edgelist (edgelist, create_using=None)
Return a graph from a list of edges.
Parameters edgelist : list or iterator
Edge tuples
create_using : NetworkX graph

Use specified graph for result. Otherwise a new graph is created.

Examples
>>> edgelist= [(0,1)] # single edge (0,1)
>>> G=nx.from_edgelist (edgelist)

or >>> G=nx.Graph(edgelist) # use Graph constructor

8.5 Numpy

to_numpy_matrix(G[, nodelist, dtype, order]) Return the graph adjacency matrix as a NumPy matrix.
from_numpy_matrix(Al, create_using]) Return a graph from numpy matrix adjacency list.

8.5.1 networkx.convert.to_numpy_matrix

to_numpy_ matrix (G, nodelist=None, dtype=None, order=None)
Return the graph adjacency matrix as a NumPy matrix.

Parameters G : graph
The NetworkX graph used to construct the NumPy matrix.
nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is
None, then the ordering is produced by G.nodes().

dtype : NumPy data-type, optional

A valid NumPy dtype used to initialize the array. If None, then the NumPy default is
used.

order : {‘C’, ‘F’}, optional

Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-
wise) order in memory. If None, then the NumPy default is used.

Returns M : NumPy matrix

Graph adjacency matrix.

264 Chapter 8. Converting to and from other data formats

NetworkX Reference, Release 1.2

Notes

The matrix entries are populated using the ‘weight’ edge attribute. When an edge does not have the ‘weight’
attribute, the value of the entry is 1. For multiple edges, the values of the entries are the sums of the edge
attributes for each edge.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by
the nodes in nodelist.

Examples

>>>
>>>
>>>
>>>
>>>
>>>

= nx.MultiDiGraph ()

G
G.add_edge (0, 1,weight=
G.
G
G

add_edge (1,0)

.add_edge (2, 2, weight=
.add_edge (2, 2)

nx.to_numpy_matrix (G,
matrix ([[O., 2., 0.1,

(1., 0., 0.1,
[0., 0., 4.11)

2)

3)

nodelist=[0,1,21)

8.5.2 networkx.convert.from_numpy_matrix

from_ numpy matrix (A, create_using=None)
Return a graph from numpy matrix adjacency list.

Parameters A : numpy matrix

An adjacency matrix representation of a graph

create_using : NetworkX graph

Use specified graph for result. The default is Graph()

Examples

>>> import numpy
>>> A=numpy.matrix ([[1,1],[2,111)
>>> G=nx.from_numpy_matrix (A)

8.6 Scipy

to_scipy_sparse_matrix(G[, nodelist, dtype]) Return the graph adjacency matrix as a SciPy sparse matrix.
from_scipy_sparse_matrix(Al, create_using]) Return a graph from scipy sparse matrix adjacency list.

8.6.1 networkx.convert.to_scipy_sparse_matrix

to_scipy_sparse_matrix (G, nodelist=None, dtype=None)
Return the graph adjacency matrix as a SciPy sparse matrix.

8.6. Scipy

265

NetworkX Reference, Release 1.2

Parameters G : graph
The NetworkX graph used to construct the NumPy matrix.
nodelist : list, optional

The rows and columns are ordered according to the nodes in nodelist. If nodelist is
None, then the ordering is produced by G.nodes().

dtype : NumPy data-type, optional

A valid NumPy dtype used to initialize the array. If None, then the NumPy default is
used.

Returns M : SciPy sparse matrix

Graph adjacency matrix.

Notes

The matrix entries are populated using the ‘weight’ edge attribute. When an edge does not have the ‘weight’
attribute, the value of the entry is 1. For multiple edges, the values of the entries are the sums of the edge
attributes for each edge.

When nodelist does not contain every node in G, the matrix is built from the subgraph of G that is induced by
the nodes in nodelist.

Uses lil_matrix format. To convert to other formats see the documentation for scipy.sparse.
Examples

>>> = nx.MultiDiGraph ()
>>> G.add_edge (0, 1,weight=2)

G
G
>>> G.add_edge (1,0)
G
G
S

>>> G.add_edge (2, 2,weight=3)
>>> G.add_edge (2,2)
>>> = nx.to_scipy_sparse_matrix (G, nodelist=[0,1,2])
>>> S.todense ()
matrix ([[O., 2., 0.1,
(1., 0., 0.1,
[0., 0., 4.11)

8.6.2 networkx.convert.from_scipy_sparse_matrix
from_scipy_ sparse_matrix (A, create_using=None)
Return a graph from scipy sparse matrix adjacency list.
Parameters A : scipy sparse matrix
An adjacency matrix representation of a graph
create_using : NetworkX graph

Use specified graph for result. The default is Graph()

266 Chapter 8. Converting to and from other data formats

NetworkX Reference, Release 1.2

Examples

>>> import scipy.sparse
>>> A=scipy.sparse.eye(2,2,1)
>>> G=nx.from_scipy_sparse_matrix (A)

8.6. Scipy 267

NetworkX Reference, Release 1.2

268 Chapter 8. Converting to and from other data formats

CHAPTER
NINE

READING AND WRITING GRAPHS

9.1 Adjacency List

Read and write NetworkX graphs as adjacency lists.

Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). So writing
a NetworkX graph as a text file may not always be what you want: see write_gpickle and gread_gpickle for that case.

This module provides the following :

Adjacency list with single line per node: Useful for connected or unconnected graphs without edge data.
write_adjlist(G, path) G=read_adjlist(path)

Adjacency list with multiple lines per node: Useful for connected or unconnected graphs with or without edge data.

write_multiline_adjlist(G, path) read_multiline_adjlist(path)

read_adjlist(path[, comments, delimiter, ...]) Read graph in single line adjacency list format from path.
write_adjlist(G, path[, comments, delimiter]) Write graph G in single-line adjacency-list format to path.
read_multiline_adjlist(path[, comments,...]) Read graph in multi-line adjacency list format from path.
write_multiline_adjlist(G, path[,...]) Write the graph G in multiline adjacency list format to the file

9.1.1 networkx.read_adjlist

read_adjlist (path, comments="#, delimiter="", create_using=None, nodetype=None)
Read graph in single line adjacency list format from path.

Examples

>>> G=nx.path_graph (4)
>>> nx.write_adjlist (G, "test.adjlist")
>>> G=nx.read_adjlist ("test.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("test.adjlist")
>>> G=nx.read_adjlist (fh)

Filenames ending in .gz or .bz2 will be compressed.

269

NetworkX Reference, Release 1.2

>>> nx.write_adjlist (G, "test.adjlist.gz")
>>> G=nx.read_adjlist ("test.adjlist.gz")

nodetype is an optional function to convert node strings to nodetype

For example
>>> G=nx.read_adjlist ("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

create_using is an optional networkx graph type, the default is Graph(), an undirected graph.

>>> G=nx.read_adjlist ("test.adjlist", create_using=nx.DiGraph())

Does not handle edge data: use ‘read_edgelist’ or ‘read_multiline_adjlist’
The comments character (default="#") at the beginning of a line indicates a comment line.

The entries are separated by delimiter (default=" *). If whitespace is significant in node or edge labels you should
use some other delimiter such as a tab or other symbol.

Sample format:

source target
abc
d e

9.1.2 networkx.write_adijlist

write_adjlist (G, path, comments="#’, delimiter="")
Write graph G in single-line adjacency-list format to path.

See read_adjlist for file format details.

Examples

>>> G=nx.path_graph (4)

>>> nx.write_adjlist (G, "test.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("test.adjlist",’w’)
>>> nx.write_adjlist (G, fh)

Filenames ending in .gz or .bz2 will be compressed.
>>> nx.write_adjlist (G, "test.adjlist.gz")

The file will use the default text encoding on your system. It is possible to write files in other encodings by
opening the file with the codecs module. See doc/examples/unicode.py for hints.

270 Chapter 9. Reading and writing graphs

NetworkX Reference, Release 1.2

>>> import codecs

th=codecs.open(“test.adjlist”,encoding="utf=8") # use utf-8 encoding nx.write_adjlist(G,fh)

Does not handle edge data. Use ‘write_edgelist’” or ‘write_multiline_adjlist’

9.1.3 networkx.read_multiline_adjlist

read_multiline_adjlist (path, comments="#’, delimiter=" ", create_using=None, nodetype=None, ed-

getype=None)
Read graph in multi-line adjacency list format from path.

Examples

>>> G=nx.path_graph (4)
>>> nx.write_multiline_adjlist (G, "test.adjlist")
>>> G=nx.read_multiline_adjlist ("test.adjlist")

path can be a filehandle or a string with the name of the file.

>>> fh=open("test.adjlist")
>>> G=nx.read_multiline_adjlist (fh)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_multiline_adjlist (G, "test.adjlist.gz")
>>> G=nx.read_multiline_adjlist ("test.adjlist.gz")

nodetype is an optional function to convert node strings to nodetype

For example
>>> G=nx.read_multiline_adjlist ("test.adjlist", nodetype=int)

will attempt to convert all nodes to integer type

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

edgetype is a function to convert edge data strings to edgetype

>>> G=nx.read_multiline_adjlist ("test.adjlist")

create_using is an optional networkx graph type, the default is Graph(), a simple undirected graph
>>> G=nx.read_multiline_adjlist ("test.adjlist", create_using=nx.DiGraph())

The comments character (default="#") at the beginning of a line indicates a comment line.

The entries are separated by delimiter (default=" ‘). If whitespace is significant in node or edge labels you should
use some other delimiter such as a tab or other symbol.

Example multiline adjlist file format

No edge data:

9.1. Adjacency List 271

NetworkX Reference, Release 1.2

source target for Graph or DiGraph
a 2

b
c
d
e

With edge data::

source target for XGraph or XDiGraph with edge data
2

edge—ab-data

edge—ac-data

1

edge—-de—-data

O Q Q O O =#

Reading the file will use the default text encoding on your system. It is possible to read files with other encodings
by opening the file with the codecs module. See doc/examples/unicode.py for hints.

>>> import codecs
>>> fh=codecs.open("test.adjlist",’r’,encoding="utf=8") # utf-8 encoding
>>> G=nx.read_multiline_adjlist (fh)

9.1.4 networkx.write_multiline_adjlist

write_multiline_ adjlist (G, path, delimiter="", comments="#")
Write the graph G in multiline adjacency list format to the file or file handle path.

See read_multiline_adjlist for file format details.

Examples

>>> G=nx.path_graph (4)

>>> nx.write_multiline_adjlist (G, "test.adjlist")
path can be a filehandle or a string with the name of the file.

>>> fh=open("test.adjlist",’w’)
>>> nx.write_multiline_adjlist (G, f£h)

Filenames ending in .gz or .bz2 will be compressed.
>>> nx.write_multiline_adjlist (G, "test.adjlist.gz")

The file will use the default text encoding on your system. It is possible to write files in other encodings by
opening the file with the codecs module. See doc/examples/unicode.py for hints.

>>> import codecs
>>> fh=codecs.open("test.adjlist",’w’,encoding="utf=8") # utf-8 encoding
>>> nx.write_multiline_adjlist (G, fh)

272 Chapter 9. Reading and writing graphs

NetworkX Reference, Release 1.2

9.2 Edge List

Read and write NetworkX graphs as edge lists.

You can read or write three formats of edge lists with these functions.

Node pairs:

1 2 # no data

Dictionary as data:
1 2 {'weight’:7, ’'color’:’green’}
Arbitrary data:

1 2 7 green

See the read_edgelist() function for details and examples.

read_edgelist(path[, comments, delimiter, ...])
write_edgelist(G, path[, comments, ...])
read_weighted_edgelist(path[, comments, ...])

write_weighted_edgelist(G, path[, comments, ...

D

Read a graph from a list of edges.

Write graph as a list of edges.

Read list of edges with numeric weights.

Write graph G as a list of edges with numeric weights.

9.2.1 networkx.read_edgelist

read_edgelist (path, comments="#’, delimiter="
getype=None)
Read a graph from a list of edges.

Parameters path : file or string

, create_using=None, nodetype=None, data=True, ed-

File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.

comments : string, optional

The character used to indicate the start of a comment.

delimiter : string, optional

The string used to separate values. The default is whitespace.

create_using : Graph container, optional,

Use specified container to build graph. The default is networkx.Graph, an undirected
graph.

nodetype : int, float, str, Python type, optional

Convert node data from strings to specified type
data : list of (label,type) tuples

Tuples specifying dictionary key names and types for edge data
edgetype : int, float, str, Python type, optional OBSOLETE

Convert edge data from strings to specified type and use as ‘weight’

Returns G : graph

9.2.

Edge List 273

NetworkX Reference, Release 1.2

A networkx Graph or other type specified with create_using

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

Example edgelist file formats.

Without edge data:

read with

>>> G=nx.read_edgelist (fh,data=False)
source target
ab
a c
d e

With edge data as dictionary:

read with

>>> G=nx.read_edgelist (fh,data=True)
source target data

a b {’weight’: 1}

a c {’weight’: 3.14159}

d e {’fruit’: ’"apple’}

With arbitrary edge data:

read with

>>> G=nx.read_edgelist (fh,data=[('weight’,float’)])
or

>>> G=nx.read_weighted_edgelist (fh)
source target data

abl

a c 3.14159

d e 42

Examples

>>> nx.write_edgelist (nx.path_graph(4), "test.edgelist")
>>> G=nx.read_edgelist ("test.edgelist")

>>> fh=open("test.edgelist")
>>> G=nx.read_edgelist (fh)

>>> G=nx.read_edgelist ("test.edgelist", nodetype=int)
>>> G=nx.read_edgelist ("test.edgelist",create_using=nx.DiGraph())

274 Chapter 9. Reading and writing graphs

NetworkX Reference, Release 1.2

9.2.2 networkx.write_edgelist

write_edgelist (G, path, comments="#’, delimiter="", data=True)
Write graph as a list of edges.

Parameters G : graph

A NetworkX graph
path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
comments : string, optional
The character used to indicate the start of a comment
delimiter : string, optional
The string used to separate values. The default is whitespace.
data : bool or list, optional

If False write no edge data. If True write a string representation of the edge data dictio-
nary.. If a list (or other iterable) is provided, write the keys specified in the list.

See Also:

write_edgelist,write_weighted_edgelist

Notes

The file will use the default text encoding on your system. It is possible to write files in other encodings by
opening the file with the codecs module. See doc/examples/unicode.py for hints.

Examples

>>> G=nx.path_graph (4)

>>> nx.write_edgelist (G, "test.edgelist")

>>> G=nx.path_graph (4)

>>> fh=open("test.edgelist",’w’)

>>> nx.write_edgelist (G, fh)

>>> nx.write_edgelist (G, "test.edgelist.gz")

>>> nx.write_edgelist (G, "test.edgelist.gz", data=False)
>>> import sys

>>> G=nx.Graph ()

>>> G.add_edge (1l,2,weight=7,color="red’)

>>> nx.write_edgelist (G, sys.stdout,data=False)

12

>>> nx.write_edgelist (G, sys.stdout,data=['color’])

1 2 red

>>> nx.write_edgelist (G, sys.stdout,data=["color’, weight’])
1 2 red 7

9.2.

Edge List 275

NetworkX Reference, Release 1.2

9.2.3 networkx.read_weighted_edgelist
read_weighted_edgelist (path, comments="#’, delimiter="", create_using=None, nodetype=None)
Read list of edges with numeric weights.
Parameters path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be uncompressed.
comments : string, optional
The character used to indicate the start of a comment.
delimiter : string, optional
The string used to separate values. The default is whitespace.
create_using : Graph container, optional,

Use specified container to build graph. The default is networkx.Graph, an undirected
graph.

nodetype : int, float, str, Python type, optional
Convert node data from strings to specified type
Returns G : graph

A networkx Graph or other type specified with create_using

Notes

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

Example edgelist file format.

With numeric edge data:

read with

>>> G=nx.read_weighted_edgelist (fh)
source target data

b1

c 3.14159

e 42

[oTIE TR T

9.2.4 networkx.write_weighted_edgelist
write_weighted_edgelist (G, path, comments="#, delimiter="")
Write graph G as a list of edges with numeric weights.
Parameters G : graph
A NetworkX graph
path : file or string
File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
comments : string, optional

The character used to indicate the start of a comment

276 Chapter 9. Reading and writing graphs

NetworkX Reference, Release 1.2

delimiter : string, optional
The string used to separate values. The default is whitespace.

See Also:

read_edgelist,write_edgelist,write_weighted_edgelist
Examples

>>> import sys

>>> G=nx.Graph ()

>>> G.add_edge (1l,2,weight=7)

>>> nx.write_weighted_edgelist (G, sys.stdout)
127

9.3 GML

Read graphs in GML format. See http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html for format speci-
fication.

Example graphs in GML format: http://www-personal.umich.edu/~mejn/netdata/

Requires pyparsing: http://pyparsing.wikispaces.com/

read_gml(path) Read graph in GML format from path.
write_gml(G, path) Write the graph G in GML format to the file or file handle path.
parse_gml(lines) Parse GML graph from a string or iterable.

9.3.1 networkx.read_gml
read_gml (path)
Read graph in GML format from path.
Parameters path : filename or filehandle
The filename or filehandle to read from.
Returns G : MultiGraph or MultiDiGraph
Raises ImportError :
If the pyparsing module is not available.
See Also:

write_gml, parse_gml

Notes

This doesn’t implement the complete GML specification for nested attributes for graphs, edges, and nodes.

Requires pyparsing: http://pyparsing.wikispaces.com/

9.3. GML 277

http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
http://www-personal.umich.edu/~mejn/netdata/
http://pyparsing.wikispaces.com/
http://pyparsing.wikispaces.com/

NetworkX Reference, Release 1.2

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

Examples

>>> G=nx.path_graph (4)
>>> nx.write_gml (G, test.gml’”)
>>> H=nx.read_gml ('test.gml’)

9.3.2 networkx.write_gml

write_gml (G, path)
Write the graph G in GML format to the file or file handle path.

Parameters path : filename or filehandle
The filename or filehandle to write. Filenames ending in .gz or .gz2 will be compressed.
See Also:

read_gml, parse_gml

Notes

The output file will use the default text encoding on your system. It is possible to write files in other encodings
by opening the file with the codecs module. See doc/examples/unicode.py for hints.

>>> G=nx.path_graph (4)

>>> import codecs

>>> fh=codecs.open(’'test.gml’,’w’,encoding="1s08859-1")# use 1s508859-1
>>> nx.write_gml (G, £h)

GML specifications indicate that the file should only use 7bit ASCII text encoding.iso8859-1 (latin-1).

For nested attributes for graphs, nodes, and edges you should use dicts for the value of the attribute.

Examples

>>> G=nx.path_graph (4)
>>> nx.write_gml (G, "test.gml")

path can be a filehandle or a string with the name of the file.

>>> fh=open("test.gml",’w’)
>>> nx.write_gml (G, £h)

Filenames ending in .gz or .bz2 will be compressed.

>>> nx.write_gml (G, "test.gml.gz")

278 Chapter 9. Reading and writing graphs

http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

NetworkX Reference, Release 1.2

9.3.3 networkx.parse_gml
parse_gml (lines)
Parse GML graph from a string or iterable.
Parameters lines : string or iterable
Data in GML format.
Returns G : MultiGraph or MultiDiGraph
Raises ImportError :
If the pyparsing module is not available.
See Also:

write_gml, read_gml

Notes

This stores nested GML attributes as dicts in the NetworkX Graph attribute structures.

Requires pyparsing: http://pyparsing.wikispaces.com/

References

GML specification: http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html
Examples

>>> G=nx.path_graph (4)

>>> nx.write_gml (G, test.gml’)
>>> fh=open(’'test.gml’)

>>> H=nx.read_gml (fh)

9.4 Pickle

Read and write NetworkX graphs as Python pickles.

Note that NetworkX graphs can contain any hashable Python object as node (not just integers and strings). So writing
a NetworkX graph as a text file may not always be what you want: see write_gpickle and gread_gpickle for that case.

This module provides the following :
Python pickled format: Useful for graphs with non text representable data.

write_gpickle(G, path) read_gpickle(path)

read_gpickle(path) Read graph object in Python pickle format
write_gpickle(G, path) Write graph object in Python pickle format.

9.4. Pickle 279

http://pyparsing.wikispaces.com/
http://www.infosun.fim.uni-passau.de/Graphlet/GML/gml-tr.html

NetworkX Reference, Release 1.2

9.4.1 networkx.read_gpickle

read_gpickle (path)
Read graph object in Python pickle format
G=nx.path_graph(4) nx.write_gpickle(G, test.gpickle”’) G=nx.read_gpickle(“test.gpickle”)
See cPickle.

9.4.2 networkx.write_gpickle

write_gpickle (G, path)
Write graph object in Python pickle format.
This will preserve Python objects used as nodes or edges.
G=nx.path_graph(4) nx.write_gpickle(G, test.gpickle”)
See cPickle.

9.5 GraphML

Read and write graphs in GraphML format. http://graphml.graphdrawing.org/

The module currently supports multi graphs with data but not nested graphs or hypergraphs.

read_graphml(path) Read graph in GraphML format from path.
parse_graphml(lines) Read graph in GraphML format from string.

9.5.1 networkx.read_graphml
read_graphml (path)
Read graph in GraphML format from path.
Returns a MultiGraph or MultiDiGraph.
Nested graphs and multiple graphs are ignored.

Node, edge and graph data are stored as attributes. The key element can specify the type for each attribute
(string, double, etc) and defaults. Data using a key value that matches a key element is given the attribute name
attr.name. Data whose key value doesn’t match a key element uses key value itself as the attribute name.

9.5.2 networkx.parse_graphml
parse_graphml (lines)
Read graph in GraphML format from string.
Returns a MultiGraph or MultiDiGraph.
Nested graphs and multiple graphs are ignored.

Node, edge and graph data are stored as attributes. The key element can specify the type for each attribute
(string, double, etc) and defaults. Data using a key value that matches a key element is given the attribute name
attr.name. Data whose key value doesn’t match a key element uses key value itself as the attribute name.

280 Chapter 9. Reading and writing graphs

http://graphml.graphdrawing.org/

NetworkX Reference, Release 1.2

9.6 LEDA

Read graphs in LEDA format. See http://www.algorithmic-solutions.info/leda_guide/graphs/leda_native_graph_fileformat.html

read_leda(path) Read graph in GraphML format from path.
parse_leda(lines) Parse LEDA.GRAPH format from string or iterable.

9.6.1 networkx.read leda

read_leda (path)
Read graph in GraphML format from path. Returns an XGraph or XDiGraph.

9.6.2 networkx.parse_leda

parse_leda (lines)
Parse LEDA.GRAPH format from string or iterable. Returns an Graph or DiGraph.

9.7 YAML

Read and write NetworkX graphs in YAML format. See http://www.yaml.org for documentation.

read_yaml(path) Read graph from YAML format from path.
write_yaml(G, path, **kwds[, default_flow_style]) Write graph G in YAML text format to path.

9.7.1 networkx.read_yaml

read_yaml (path)
Read graph from YAML format from path.

See http://www.yaml.org

9.7.2 networkx.write_yaml

write_yaml (G, path, default_flow_style=False, **kwds)
Write graph G in YAML text format to path.

See http://www.yaml.org

9.8 SparseGraph6

Read graphs in graph6 and sparse6 format. See http://cs.anu.edu.au/~bdm/data/formats.txt

read_graph6(path) Read simple undirected graphs in graph6 format from path.
parse_graphb6(str) Read undirected graph in graph6 format.
read_graph6_11st(path) Read simple undirected graphs in graph6 format from path.
read_sparse6(path) Read simple undirected graphs in sparse6 format from path.
parse_sparseb6(str) Read undirected graph in sparse6 format.

read_sparse6_list(path) Read simple undirected graphs in sparse6 format from path.

9.6. LEDA 281

http://www.algorithmic-solutions.info/ledaprotect T1	extunderscore guide/graphs/ledaprotect T1	extunderscore nativeprotect T1	extunderscore graphprotect T1	extunderscore fileformat.html
http://www.yaml.org
http://www.yaml.org
http://www.yaml.org
http://cs.anu.edu.au/~bdm/data/formats.txt

NetworkX Reference, Release 1.2

9.8.1 networkx.read_graph6

read_graph6 (path)
Read simple undirected graphs in graph6 format from path. Returns a single Graph.

9.8.2 networkx.parse_graph6

parse_graph6 (str)
Read undirected graph in graph6 format.

9.8.3 networkx.read_graph6_list

read_graph6_list (path)
Read simple undirected graphs in graph6 format from path. Returns a list of Graphs, one for each line in file.

9.8.4 networkx.read_sparse6

read_sparseé6 (path)
Read simple undirected graphs in sparse6 format from path. Returns a single Graph.

9.8.5 networkx.parse_sparse6

parse_sparseé6 (str)
Read undirected graph in sparse6 format.

9.8.6 networkx.read_sparse6_list

read_sparse6_list (path)
Read simple undirected graphs in sparse6 format from path. Returns a list of Graphs, one for each line in file.

9.9 Pajek

Read graphs in Pajek format.
See http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm for format information.

This implementation handles only directed and undirected graphs including those with self loops and parallel edges.

read_pa jek(path) Read graph in Pajek format from path.
write_pajek(G, path) Write in Pajek format to path.
parse_pajek(lines[, edge_attr]) Parse pajek format graph from string or iterable.

9.9.1 networkx.read_pajek

read_pajek (path)
Read graph in Pajek format from path.

Returns a MultiGraph or MultiDiGraph.

282 Chapter 9. Reading and writing graphs

http://vlado.fmf.uni-lj.si/pub/networks/pajek/doc/draweps.htm

NetworkX Reference, Release 1.2

Parameters path : file or string

File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
Examples

>>> G=nx.path_graph (4)
>>> nx.write_pajek (G, "test.net")
>>> G=nx.read_pajek ("test.net")

To create a Graph instead of a MultiGraph use

>>> Gl=nx.Graph (G)

9.9.2 networkx.write_pajek
write_pajek (G, path)
Write in Pajek format to path.
Parameters G : graph
A networkx graph
path : file or string

File or filename to write. Filenames ending in .gz or .bz2 will be compressed.
Examples

>>> G=nx.path_graph (4)
>>> nx.write_pajek (G, "test.net")

9.9.3 networkx.parse_pajek
parse_pajek (lines, edge_attr=True)
Parse pajek format graph from string or iterable.
Primarily used as a helper for read_pajek().
See Also:

read_pajek

9.9. Pajek 283

NetworkX Reference, Release 1.2

284 Chapter 9. Reading and writing graphs

CHAPTER
TEN

10.1 Matplotlib

Draw networks with matplotlib (pylab).

10.1.1 See Also

matplotlib: http://matplotlib.sourceforge.net/

pygraphviz: http://networkx.lanl.gov/pygraphviz/

DRAWING

draw(G, **kwds][, pos, ax, hold])
draw_networkx(G, **kwds|[, pos, with_labels])
draw_networkx_nodes(G, pos, **kwds], ...])
draw_networkx_edges(G, pos, **kwds], ...])
draw_networkx_labels(G, pos, **kwds], ...])

draw_networkx_edge_labels(G, pos, **kwds[, ...])

draw_circular(G, *¥*kwargs)
draw_random(G, **kwargs)
draw_spectral(G, **kwargs)
draw_spring(G, **kwargs)
draw_shel1(G, **kwargs)
draw_graphviz(G, **kwargs[, prog])

Draw the graph G with Matplotlib (pylab).
Draw the graph G using Matplotlib.

Draw the nodes of the graph G.

Draw the edges of the graph G

Draw node labels on the graph G

Draw edge labels.

Draw the graph G with a circular layout
Draw the graph G with a random layout.
Draw the graph G with a spectral layout.
Draw the graph G with a spring layout
Draw networkx graph with shell layout
Draw networkx graph with graphviz layout

10.1.2 networkx.draw

draw (G, pos=None, ax=None, hold=None, **kwds)

Draw the graph G with Matplotlib (pylab).

Draw the graph as a simple representation with no node labels or edge labels and using the full Matplotlib figure
area and no axis labels by default. See draw_networkx() for more full-featured drawing that allows title, axis

labels etc.
Parameters G : graph
A networkx graph

pos : dictionary, optional

A dictionary with nodes as keys and positions as values. If not specified a spring layout
positioning will be computed. See networkx.layout for functions that compute node

positions.

285

http://matplotlib.sourceforge.net/
http://networkx.lanl.gov/pygraphviz/

NetworkX Reference, Release 1.2

ax : Matplotlib Axes object, optional
Draw the graph in specified Matplotlib axes.
hold: bool, optional :

Set the Matplotlib hold state. If True subsequent draw commands will be added to the

current axes.

**kwds: optional keywords :

See networkx.draw_networkx() for a description of optional keywords.

See Also:

draw_networkx, draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels,
draw_networkx_edge_labels

Notes

This function has the same name as pylab.draw and pyplot.draw so beware when using

>>>

from networkx import =«

since you might overwrite the pylab.draw function.

Good alternatives are:

With pylab:

>>>
>>>
>>>
>>>
>>>

import pylab as P #

import networkx as nx
G=nx.dodecahedral_graph ()
nx.draw (G) # networkx draw()
P.draw () # pylab draw/()

With pyplot

>>>
>>>
>>>
>>>
>>>

import matplotlib.pyplot as plt
import networkx as nx
G=nx.dodecahedral_graph ()
nx.draw (G) # networkx draw()
plt.draw() # pyplot draw()

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

Examples

>>>
>>>
>>>

G=nx.dodecahedral_graph ()
nx.draw (G)
nx.draw (G, pos=nx.spring_layout (G)) # use spring layout

286

Chapter 10. Drawing

http://networkx.lanl.gov/gallery.html

NetworkX Reference, Release 1.2

10.1.3 networkx.draw_networkx
draw_networkx (G, pos=None, with_labels=True, **kwds)
Draw the graph G using Matplotlib.

Draw the graph with Matplotlib with options for node positions, labeling, titles, and many other drawing fea-
tures. See draw() for simple drawing without labels or axes.

Parameters G : graph
A networkx graph
pos : dictionary, optional

A dictionary with nodes as keys and positions as values. If not specified a spring layout
positioning will be computed. See networkx.layout for functions that compute node
positions.

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.
with_labels: bool, optional :

Set to True (default) to draw labels on the nodes.
nodelist: list, optional :

Draw only specified nodes (default G.nodes())
edgelist: list :

Draw only specified edges(default=G.edges())
node_size: scalar or array :

Size of nodes (default=300). If an array is specified it must be the same length as
nodelist.

node_color: color string, or array of floats :

Node color. Can be a single color format string (default="r"), or a sequence of colors
with the same length as nodelist. If numeric values are specified they will be mapped
to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more
details.

node_shape: string :

The shape of the node. Specification is as matplotlib.scatter marker, one of
‘so>v<dph8’ (default="0’).

alpha: float :

The node transparency (default=1.0)
cmap: Matplotlib colormap :

Colormap for mapping intensities of nodes (default=None)
vmin,vmax: floats :

Minimum and maximum for node colormap scaling (default=None)
width¢: float :

Line width of edges (default =1.0)

edge_color: color string, or array of floats :

10.1. Matplotlib 287

NetworkX Reference, Release 1.2

Edge color. Can be a single color format string (default="r"), or a sequence of colors
with the same length as edgelist. If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.

edge_ cmap: Matplotlib colormap :

Colormap for mapping intensities of edges (default=None)
edge_vmin,edge_vmax: floats :

Minimum and maximum for edge colormap scaling (default=None)
style: string :

Edge line style (default="solid’) (solidldashedldotted,dashdot)
labels: dictionary :

Node labels in a dictionary keyed by node of text labels (default=None)
font_size: int :

Font size for text labels (default=12)
font_color: string :

Font color string (default="k’ black)
font_weight: string :

Font weight (default="normal’)
font_family: string :

Font family (default="sans-serif”)

See Also:

draw, draw_networkx_nodes, draw_networkx_edges, draw_networkx_labels,
draw_networkx_edge_labels

Notes

Any keywords not listed above are passed through to draw_networkx_nodes(), draw_networkx_edges(), and
draw_networkx_labels(). For finer control of drawing you can call those functions directly.

Examples

>>> G=nx.dodecahedral_graph ()
>>> nx.draw (G)
>>> nx.draw (G, pos=nx.spring_layout (G)) # use spring layout

>>> import pylab
>>> limits=pylab.axis('off’) # turn of axis

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

288

Chapter 10. Drawing

http://networkx.lanl.gov/gallery.html

NetworkX Reference, Release 1.2

10.1.4 networkx.draw_networkx_nodes

draw_networkx_nodes (G, pos, nodelist=None, node_size=300, node_color="r’, node_shape="0’, alpha=1.0,
cmap=None, vmin=None, vmax=None, ax=None, linewidths=None, **kwds)
Draw the nodes of the graph G.

This draws only the nodes of the graph G.
Parameters G : graph
A networkx graph
pos : dictionary

A dictionary with nodes as keys and positions as values. If not specified a spring layout
positioning will be computed. See networkx.layout for functions that compute node
positions.

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.
nodelist: list, optional :

Draw only specified nodes (default G.nodes())
edgelist: list :

Draw only specified edges(default=G.edges())
node_size: scalar or array :

Size of nodes (default=300). If an array is specified it must be the same length as
nodelist.

node_color: color string, or array of floats :

Node color. Can be a single color format string (default="r"), or a sequence of colors
with the same length as nodelist. If numeric values are specified they will be mapped
to colors using the cmap and vmin,vmax parameters. See matplotlib.scatter for more
details.

node_shape: string :

The shape of the node. Specification is as matplotlib.scatter marker, one of
‘so”">v<dph8’ (default="0").

alpha: float :
The node transparency (default=1.0)
cmap: Matplotlib colormap :
Colormap for mapping intensities of nodes (default=None)
vmin,vmax: floats :
Minimum and maximum for node colormap scaling (default=None)
width¢: float :
Line width of edges (default =1.0)
See Also:

draw, draw_networkx, draw_networkx_edges, draw_networkx_labels,
draw_networkx_edge_labels

10.1. Matplotlib 289

NetworkX Reference, Release 1.2

Notes

Any keywords not listed above are passed through to Matplotlib’s scatter function.
Examples

>>> G=nx.dodecahedral_graph ()
>>> nodes=nx.draw_networkx_nodes (G, pos=nx.spring_layout (G))

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.5 networkx.draw_networkx_edges

draw_networkx_edges (G, pos, edgelist=None, width=1.0, edge_color="k’, style=’solid’, alpha=None,
edge_cmap=None, edge_vmin=None, edge_vmax=None, ax=None, arrows=True,

**kwds)
Draw the edges of the graph G

This draws only the edges of the graph G.
Parameters G : graph
A networkx graph
pos : dictionary

A dictionary with nodes as keys and positions as values. If not specified a spring layout
positioning will be computed. See networkx.layout for functions that compute node
positions.

ax : Matplotlib Axes object, optional
Draw the graph in the specified Matplotlib axes.
alpha: float :
The edge transparency (default=1.0)
width¢: float :
Line width of edges (default =1.0)
edge_color: color string, or array of floats :

Edge color. Can be a single color format string (default="r’), or a sequence of colors
with the same length as edgelist. If numeric values are specified they will be mapped to
colors using the edge_cmap and edge_vmin,edge_vmax parameters.

edge_ cmap: Matplotlib colormap :

Colormap for mapping intensities of edges (default=None)
edge_vmin,edge_vmax: floats :

Minimum and maximum for edge colormap scaling (default=None)
style: string :

Edge line style (default="solid’) (solidldashedldotted,dashdot)

290 Chapter 10. Drawing

http://networkx.lanl.gov/gallery.html

NetworkX Reference, Release 1.2

See Also:

draw, draw_networkx, draw_networkx_nodes, draw_networkx_labels,
draw_networkx_edge_labels

Notes

For directed graphs, “arrows” (actually just thicker stubs) are drawn at the head end. Arrows can be turned off
with keyword arrows=False. Yes, it is ugly but drawing proper arrows with Matplotlib this way is tricky.

Examples

>>> G=nx.dodecahedral_graph ()
>>> edges=nx.draw_networkx_edges (G, pos=nx.spring_layout (G))

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.6 networkx.draw_networkx_labels

draw_networkx_labels (G, pos, labels=None, font_size=12, font _color="k’, font_family="sans-serif’,
font_weight="normal’, alpha=1.0, ax=None, **kwds)
Draw node labels on the graph G

Parameters G : graph
A networkx graph
pos : dictionary, optional

A dictionary with nodes as keys and positions as values. If not specified a spring layout
positioning will be computed. See networkx.layout for functions that compute node
positions.

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.
alpha: float :

The text transparency (default=1.0)
labels: dictionary :

Node labels in a dictionary keyed by node of text labels (default=None)
font_size: int :

Font size for text labels (default=12)
font_color: string :

Font color string (default="k’ black)
font_weight: string :

Font weight (default="normal’)
font_family: string :

Font family (default="sans-serif”)

10.1. Matplotlib 291

http://networkx.lanl.gov/gallery.html

NetworkX Reference, Release 1.2

See Also:

draw, draw_networkx, draw_networkx_nodes, draw_networkx_edges,
draw_networkx_edge_labels

Examples

>>> G=nx.dodecahedral_graph ()
>>> labels=nx.draw_networkx_labels (G,pos=nx.spring_layout (G))

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.7 networkx.draw_networkx_edge labels

draw_networkx_edge_labels (G, pos, edge_labels=None, font_size=10, font_color="k’, font_family="sans-

serif’, font_weight="normal’, alpha=1.0, bbox=None, ax=None, **kwds)
Draw edge labels.

Parameters G : graph
A networkx graph
pos : dictionary, optional

A dictionary with nodes as keys and positions as values. If not specified a spring layout
positioning will be computed. See networkx.layout for functions that compute node
positions.

ax : Matplotlib Axes object, optional

Draw the graph in the specified Matplotlib axes.
alpha: float :

The text transparency (default=1.0)
labels: dictionary :

Node labels in a dictionary keyed by edge two-tuple of text labels (default=None), Only
labels for the keys in the dictionary are drawn.

font_size: int :

Font size for text labels (default=12)
font_color: string :

Font color string (default="k’ black)
font_weight: string :

Font weight (default="normal’)
font_family: string :

Font family (default="sans-serif”)
bbox: Matplotlib bbox :

Specify text box shape and colors.

clip_on: bool :

292

Chapter 10. Drawing

http://networkx.lanl.gov/gallery.html

NetworkX Reference, Release 1.2

Turn on clipping at axis boundaries (default=True)

See Also:

draw, draw_networkx,
draw_networkx_labels

Examples

>>> G=nx.dodecahedral_graph ()

draw_networkx_nodes,

draw_networkx_edges,

>>> edge_labels=nx.draw_networkx_edge_labels (G, pos=nx.spring_layout (G))

Also see the NetworkX drawing examples at http://networkx.lanl.gov/gallery.html

10.1.8 networkx.draw_circular

draw_circular (G, **kwargs)
Draw the graph G with a circular layout

10.1.9 networkx.draw random

draw_random (G, **kwargs)
Draw the graph G with a random layout.

10.1.10 networkx.draw_spectral

draw_spectral (G, **kwargs)
Draw the graph G with a spectral layout.

10.1.11 networkx.draw_spring

draw_spring (G, **kwargs)
Draw the graph G with a spring layout

10.1.12 networkx.draw_shell

draw_shell (G, **kwargs)
Draw networkx graph with shell layout

10.1.13 networkx.draw_graphviz

draw_graphviz (G, prog=’neato’, **kwargs)
Draw networkx graph with graphviz layout

10.2 Graphviz AGraph (dot)

Interface to pygraphviz AGraph class.

10.2. Graphviz AGraph (dot)

293

http://networkx.lanl.gov/gallery.html

NetworkX Reference, Release 1.2

10.2.1 Examples

>>> G=nx.complete_graph (5)
>>> A=nx.to_agraph (G)
>>> H=nx.from_agraph (4)

10.2.2 See Also

Pygraphviz: http://networkx.lanl.gov/pygraphviz

from_agraph(A[, create_using]) Return a NetworkX Graph or DiGraph from a PyGraphviz graph.
to_agraph(N) Return a pygraphviz graph from a NetworkX graph N.
write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path.
read_dot(path) Return a NetworkX graph from a dot file on path.
graphviz_layout(GI, prog, root, args]) Create node positions for G using Graphviz.

pygraphviz_layout(Gl, prog, root, args]) Create node positions for G using Graphviz.

10.2.3 networkx.from_agraph
from_agraph (A, create_using=None)
Return a NetworkX Graph or DiGraph from a PyGraphviz graph.
Parameters A : PyGraphviz AGraph
A graph created with PyGraphviz
create_using : NetworkX graph class instance

The output is created using the given graph class instance

Notes

The Graph G will have a dictionary G.graph_attr containing the default graphviz attributes for graphs, nodes
and edges.

Default node attributes will be in the dictionary G.node_attr which is keyed by node.

Edge attributes will be returned as edge data in G. With edge_attr=False the edge data will be the Graphviz edge
weight attribute or the value 1 if no edge weight attribute is found.

Examples

>>> K5=nx.complete_graph (5)
>>> A=nx.to_agraph (K5)

>>> G=nx.from_agraph (4)

>>> G=nx.from_agraph (A)

10.2.4 networkx.to_agraph

to_agraph (N)
Return a pygraphviz graph from a NetworkX graph N.

294 Chapter 10. Drawing

http://networkx.lanl.gov/pygraphviz

NetworkX Reference, Release 1.2

Parameters N : NetworkX graph
A graph created with NetworkX

Notes

If N has an dict N.graph_attr an attempt will be made first to copy properties attached to the graph (see
from_agraph) and then updated with the calling arguments if any.

Examples

>>> Kb5=nx.complete_graph (5)
>>> A=nx.to_agraph (K5)

10.2.5 networkx.write_dot
write_dot (G, path)
Write NetworkX graph G to Graphviz dot format on path.
Parameters G : graph
A networkx graph
path : filename

Filename or file handle to write.

10.2.6 networkx.read_dot
read_dot (path)
Return a NetworkX graph from a dot file on path.
Parameters path : file or string

File name or file handle to read.

10.2.7 networkx.graphviz_layout
graphviz_layout (G, prog=’neato’, root=None, args="")
Create node positions for G using Graphviz.
Parameters G : NetworkX graph
A graph created with NetworkX
prog : string
Name of Graphviz layout program
root : string, optional
Root node for twopi layout
args : string, optional

Extra arguments to Graphviz layout program

10.2. Graphviz AGraph (dot) 295

NetworkX Reference, Release 1.2

Returns : dictionary

Dictionary of x,y, positions keyed by node.

Notes

This is a wrapper for pygraphviz_layout.
Examples

>>> G=nx.petersen_graph ()
>>> pos=nx.graphviz_layout (G)
>>> pos=nx.graphviz_layout (G,prog=’dot’)

10.2.8 networkx.pygraphviz_layout
pygraphviz_layout (G, prog=’neato’, root=None, args="")
Create node positions for G using Graphviz.
Parameters G : NetworkX graph
A graph created with NetworkX
prog : string
Name of Graphviz layout program
root : string, optional
Root node for twopi layout
args : string, optional
Extra arguments to Graphviz layout program
Returns : dictionary

Dictionary of x,y, positions keyed by node.
Examples

>>> G=nx.petersen_graph ()
>>> pos=nx.graphviz_layout (G)
>>> pos=nx.graphviz_layout (G, prog=’"dot’)

10.3 Graphviz with pydot

Import and export NetworkX graphs in Graphviz dot format using pydot.

Either this module or nx_pygraphviz can be used to interface with graphviz.

296 Chapter 10.

Drawing

NetworkX Reference, Release 1.2

10.3.1 See Also

Pydot: http://www.dkbza.org/pydot.html Graphviz: http://www.research.att.com/sw/tools/graphviz/ DOT Language:
http://www.graphviz.org/doc/info/lang.html

from_pydot(P) Return a NetworkX graph from a Pydot graph.
to_pydot(N], strict]) Return a pydot graph from a NetworkX graph N.
write_dot(G, path) Write NetworkX graph G to Graphviz dot format on path.
read_dot(path) Return a NetworkX graph from a dot file on path.

graphviz_layout(G[, prog, root, args]) Create node positions for G using Graphviz.
pydot_layout(G, **kwds[, prog, root]) Create node positions using Pydot and Graphviz.

10.3.2 networkx.from_pydot
from_pydot (P)
Return a NetworkX graph from a Pydot graph.
Parameters P : Pydot graph
A graph created with Pydot

Examples

>>> K5=nx.complete_graph (5)
>>> A=nx.to_pydot (K5)
>>> G=nx.from_pydot (A)

10.3.3 networkx.to_pydot
to_pydot (N, strict=True)
Return a pydot graph from a NetworkX graph N.
Parameters N : NetworkX graph
A graph created with NetworkX

Examples

>>> Kb=nx.complete_graph (5)
>>> P=nx.to_pydot (K5)

10.3.4 networkx.write_dot
write_dot (G, path)
Write NetworkX graph G to Graphviz dot format on path.
Parameters G : graph
A networkx graph

path : filename

10.3. Graphviz with pydot 297

http://www.dkbza.org/pydot.html
http://www.research.att.com/sw/tools/graphviz/
http://www.graphviz.org/doc/info/lang.html

NetworkX Reference, Release 1.2

Filename or file handle to write.

10.3.5 networkx.read_dot
read_dot (path)
Return a NetworkX graph from a dot file on path.
Parameters path : file or string

File name or file handle to read.

10.3.6 networkx.graphviz_layout
graphviz_layout (G, prog=neato’, root=None, args="")
Create node positions for G using Graphviz.
Parameters G : NetworkX graph
A graph created with NetworkX
prog : string
Name of Graphviz layout program
root : string, optional
Root node for twopi layout
args : string, optional
Extra arguments to Graphviz layout program
Returns : dictionary

Dictionary of x,y, positions keyed by node.

Notes

This is a wrapper for pygraphviz_layout.
Examples

>>> G=nx.petersen_graph ()
>>> pos=nx.graphviz_layout (G)
>>> pos=nx.graphviz_layout (G,prog=’dot’)

10.3.7 networkx.pydot_layout

pydot_layout (G, prog="neato’, root=None, **kwds)
Create node positions using Pydot and Graphviz.

Returns a dictionary of positions keyed by node.

298

Chapter 10. Drawing

NetworkX Reference, Release 1.2

Examples

>>> G=nx.complete_graph (4)
>>> pos=nx.pydot_layout (G)
>>> pos=nx.pydot_layout (G, prog='"dot")

10.4 Graph Layout

Node positioning algorithms for graph drawing.

circular_layout(G[, dim, scale]) Position nodes on a circle.

random_layout(Gl[, dim])

shell_layout(GI, nlist, dim, scale]) Position nodes in concentric circles.

spring_layout(G[, dim, pos, fixed, ...]) Position nodes using Fruchterman-Reingold force-directed
algorithm.

spectral_ layout(G[, dim, weighted, Position nodes using the eigenvectors of the graph Laplacian.

scale])

10.4.1 networkx.circular_layout
circular layout (G, dim=2, scale=1)
Position nodes on a circle.
Parameters G : NetworkX graph
dim : int
Dimension of layout, currently only dim=2 is supported
scale : float
Scale factor for positions
Returns dict : :

A dictionary of positions keyed by node

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.

Examples

>>> G=nx.path_graph (4)
>>> pos=nx.circular_layout (G)

10.4.2 networkx.random_layout

random_layout (G, dim=2)

10.4. Graph Layout

299

NetworkX Reference, Release 1.2

10.4.3 networkx.shell_layout
shell_layout (G, nlist=None, dim=2, scale=1)
Position nodes in concentric circles.
Parameters G : NetworkX graph
nlist : list of lists
List of node lists for each shell.
dim : int
Dimension of layout, currently only dim=2 is supported
scale : float
Scale factor for positions
Returns dict : :

A dictionary of positions keyed by node

Notes

This algorithm currently only works in two dimensions and does not try to minimize edge crossings.
Examples

>>> G=nx.path_graph (4)
>>> shells=[[0],[1,2,31]
>>> pos=nx.shell_layout (G, shells)

10.4.4 networkx.spring_layout
spring_layout (G, dim=2, pos=None, fixed=None, iterations=50, weighted=True, scale=1)
Position nodes using Fruchterman-Reingold force-directed algorithm.
Parameters G : NetworkX graph
dim : int
Dimension of layout
pos : dict
Initial positions for nodes as a dictionary with node as keys and values as a list or tuple.
fixed : list
Nodes to keep fixed at initial position.
iterations : int
Number of iterations of spring-force relaxation
weighted : boolean

If True, use edge weights in layout

300 Chapter 10. Drawing

NetworkX Reference, Release 1.2

scale : float
Scale factor for positions
Returns dict : :

A dictionary of positions keyed by node
Examples

>>> G=nx.path_graph (4)
>>> pos=nx.spring_layout (G)

The same using longer function name >>> pos=nx.fruchterman_reingold_layout(G)

10.4.5 networkx.spectral_layout
spectral_layout (G, dim=2, weighted=True, scale=1)
Position nodes using the eigenvectors of the graph Laplacian.
Parameters G : NetworkX graph
dim : int
Dimension of layout
weighted : boolean
If True, use edge weights in layout
scale : float
Scale factor for positions
Returns dict : :

A dictionary of positions keyed by node

Notes

Directed graphs will be considered as unidrected graphs when positioning the nodes.

For larger graphs (>500 nodes) this will use the SciPy sparse eigenvalue solver (ARPACK).

Examples

>>> G=nx.path_graph (4)
>>> pos=nx.spectral_layout (G)

10.4. Graph Layout

301

NetworkX Reference, Release 1.2

302 Chapter 10. Drawing

CHAPTER
ELEVEN

Base exceptions and errors for NetworkX.

class NetworkXException ()
Base class for exceptions in NetworkX.

class NetworkXError ()
Exception for a serious error in NetworkX

EXCEPTIONS

303

NetworkX Reference, Release 1.2

304 Chapter 11. Exceptions

CHAPTER
TWELVE

UTILITIES

Helpers for NetworkX.

These are not imported into the base networkx namespace but can be accessed, for example, as

>>> import networkx
>>> networkx.utils.is_string_like (' spam’)
True

12.1 Helper functions

is_string_like(obj) Check if obj is string.

flatten(obj[, result]) Return flattened version of (possibly nested) iterable object.
iterable(obj) Return True if obj is iterable with a well-defined len()
is_list_of_ints(intlist) Return True if listis a list of ints.

get fh(path[, mode]) Return a file handle for given path.

12.1.1 networkx.utils.is_string_like

is_string_like (0bj)
Check if obj is string.

12.1.2 networkx.utils.flatten

flatten (obj, result=None)
Return flattened version of (possibly nested) iterable object.

12.1.3 networkx.utils.iterable

iterable (0bj)
Return True if obj is iterable with a well-defined len()

12.1.4 networkx.utils.is_list of ints

is_list_of ints (intlist)
Return True if list is a list of ints.

305

NetworkX Reference, Release 1.2

12.1.5 networkx.utils._get_fh

_get_f£h (path, mode="r")
Return a file handle for given path.

Path can be a string or a file handle.

Attempt to uncompress/compress files ending in ‘.gz’ and ‘.bz2’.

12.2 Data structures and Algorithms

UnionFind.union(*objects) Find the sets containing the objects and merge them all.

12.2.1 networkx.utils.UnionFind.union

union (*objects)
Find the sets containing the objects and merge them all.

12.3 Random sequence generators

pareto_sequence(nl, Return sample sequence of length n from a Pareto distribution.
exponent])

powerlaw_sequence(n|, Return sample sequence of length n from a power law distribution.
exponent])

uniform_sequence(n) Return sample sequence of length n from a uniform distribution.
cumulative_distribut ion(diddbmmomyrmalized cumulative distribution from discrete distribution.
discrete_sequence(n][, Return sample sequence of length n from a given discrete distribution or
distribution, ...]) discrete cumulative distribution.

12.3.1 networkx.utils.pareto_sequence

pareto_sequence (1, exponent=1.0)
Return sample sequence of length n from a Pareto distribution.

12.3.2 networkx.utils.powerlaw_sequence

powerlaw_sequence (1, exponent=2.0)
Return sample sequence of length n from a power law distribution.

12.3.3 networkx.utils.uniform_sequence

uniform_sequence (n)
Return sample sequence of length n from a uniform distribution.

306 Chapter 12. Utilities

NetworkX Reference, Release 1.2

12.3.4 networkx.utils.cumulative_distribution

cumulative_distribution (distribution)
Return normalized cumulative distribution from discrete distribution.

12.3.5 networkx.utils.discrete_sequence

discrete_sequence (n, distribution=None, cdistribution=None)
Return sample sequence of length n from a given discrete distribution or discrete cumulative distribution.
One of the following must be specified.
distribution = histogram of values, will be normalized

cdistribution = normalized discrete cumulative distribution

12.4 SciPy random sequence generators

scipy_pareto_sequence(n[, exponent]) Return sample sequence of length n from a Pareto distribution.

scipy_powerlaw_sequence(n], Return sample sequence of length n from a power law

exponent]) distribution.

scipy_poisson_sequence(n[, mu]) Return sample sequence of length n from a Poisson distribution.

scipy_uniform_sequence(n) Return sample sequence of length n from a uniform
distribution.

scipy_discrete_sequence(n], Return sample sequence of length n from a given discrete

distribution]) distribution

12.4.1 networkx.utils.scipy_pareto_sequence

scipy_pareto_sequence (n, exponent=1.0)
Return sample sequence of length n from a Pareto distribution.

12.4.2 networkx.utils.scipy_powerlaw_sequence

scipy_ powerlaw_sequence (1, exponent=2.0)
Return sample sequence of length n from a power law distribution.

12.4.3 networkx.utils.scipy_poisson_sequence

scipy_poisson_sequence (n, mu=1.0)
Return sample sequence of length n from a Poisson distribution.

12.4.4 networkx.utils.scipy_uniform_sequence

scipy_uniform sequence (n)
Return sample sequence of length n from a uniform distribution.

12.4. SciPy random sequence generators 307

NetworkX Reference, Release 1.2

12.4.5 networkx.utils.scipy_discrete_sequence

scipy_discrete_sequence (n, distribution=False)
Return sample sequence of length n from a given discrete distribution

distribution=histogram of values, will be normalized

308 Chapter 12. Utilities

CHAPTER
THIRTEEN

LICENSE

NetworkX is distributed with the BSD license.

Copyright (C) 2004-2010, NetworkX Developers
Aric Hagberg <hagberg@lanl.gov>

Dan Schult <dschult@colgate.edu>

Pieter Swart <swart@lanl.gov>

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

+ Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

*+ Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the NetworkX Developers nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

309

NetworkX Reference, Release 1.2

310 Chapter 13. License

CHAPTER
FOURTEEN

CITING

To cite NetworkX please use the following publication:

Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart, “Exploring network structure, dynamics, and function using
NetworkX”, in Proceedings of the 7th Python in Science Conference (SciPy2008), Géel Varoquaux, Travis Vaught,
and Jarrod Millman (Eds), (Pasadena, CA USA), pp. 11-15, Aug 2008

311

http://conference.scipy.org/proceedings/SciPy2008/paperprotect T1	extunderscore 2/
http://conference.scipy.org/proceedings/SciPy2008/paperprotect T1	extunderscore 2/
http://conference.scipy.org/proceedings/SciPy2008/index.html

NetworkX Reference, Release 1.2

312 Chapter 14. Citing

CHAPTER
FIFTEEN

CREDITS

NetworkX was originally written by Aric Hagberg, Dan Schult, and Pieter Swart with the help of many others.

Thanks to Guido van Rossum for the idea of using Python for implementing a graph data structure
http://www.python.org/doc/essays/graphs.html

Thanks to David Eppstein for the idea of representing a graph G so that “for n in G” loops over the nodes in G and
GI[n] are node n’s neighbors.

Thanks to all those who have improved NetworkX by contributing code, bug reports (and fixes), documentation, and
input on design, featues, and the future of NetworkX.

Thanks especially to the following contributors.

Katy Bold contributed the Karate Club graph

Hernan Rozenfeld added dorogovtsev_goltsev_mendes_graph and did stress testing
Brendt Wohlberg added examples from the Stanford GraphBase

Jim Bagrow reported bugs in the search methods

Holly Johnsen helped fix the path based centrality measures

Arnar Flatberg fixed the graph laplacian routines

Chris Myers suggested using None as a default datatype, suggested improvements for the IO routines, added
grid generator index tuple labeling and associated routines, and reported bugs

Joel Miller tested and improved the connected components methods fixed bugs and typos in the graph generators,
and contributed the random clustered graph generator.

Keith Briggs sorted out naming issues for random graphs and wrote dense_gnm_random_graph
Ignacio Rozada provided the Krapivsky-Redner graph generator
Phillipp Pagel helped fix eccentricity etc. for disconnected graphs

Sverre Sundsdal contributed bidirectional shortest path and Dijkstra routines, s-metric computation and graph
generation

Ross M. Richardson contributed the expected degree graph generator and helped test the pygraphviz interface

Christopher Ellison implemented the VF2 isomorphism algorithm and contributed the code for matching all the
graph types.

Eben Kenah contributed the strongly connected components and DFS functions.
Sasha Gutfriend contributed edge betweenness algorithms.

Udi Weinsberg helped develop intersection and difference operators.

313

http://www.python.org/doc/essays/graphs.html

NetworkX Reference, Release 1.2

* Matteo Dell’ Amico wrote the random regular graph generator.

* Andrew Conway contributed ego_graph, eigenvector centrality, line graph and much more.
* Raf Guns wrote the GraphML writer.

 Salim Fadhley and Matteo Dell’ Amico contributed the A* algorithm.

* Fabrice Desclaux contributed the Matplotlib edge labeling code.

» Arpad Horvath fixed the barabasi_albert_graph() generator.

e Minh Van Nguyen contributed the connected_watts_strogatz_graph() and documentation for the Graph and
MultiGraph classes.

* Willem Ligtenberg contributed the directed scale free graph generator.

* Loic Séguin-C. contributed the Ford-Fulkerson max flow and min cut algorithms

314 Chapter 15. Credits

CHAPTER
SIXTEEN

GLOSSARY

dictionary FIXME
ebunch An iteratable container of edge tuples like a list, iterator, or file.
edge Edges are either two-tuples of nodes (u,v) or three tuples of nodes with an edge attribute dictionary (u,v,dict).

edge attribute Edges can have arbitrary Python objects assigned as attributes by using keyword/value pairs when
adding an edge assigning to the G.edge[u][Vv] attribute dictionary for the specified edge u-v.

hashable An object is hashable if it has a hash value which never changes during its lifetime (it needs a __hash__()
method), and can be compared to other objects (it needs an __eq__() or __cmp__() method). Hashable objects
which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use the
hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dictionar-
ies) are. Objects which are instances of user-defined classes are hashable by default; they all compare unequal,
and their hash value is their id().

Definition from http://docs.python.org/glossary.html

nbunch An nbunch is any iterable container of nodes that is not itself a node in the graph. It can be an iterable or an
iterator, e.g. a list, set, graph, file, etc..

node A node can be any hashable Python object except None.

node attribute Nodes can have arbitrary Python objects assigned as attributes by using keyword/value pairs when
adding a node or assigning to the G.node[n] attribute dictionary for the specified node n.

315

http://docs.python.org/glossary.html

NetworkX Reference, Release 1.2

316 Chapter 16. Glossary

BIBLIOGRAPHY

[R46] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj “Generalized Blockmodeling”,Cambridge University
Press, 2004.

[R35] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-
177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

[R36] A Faster Algorithm for Betweenness Centrality. Ulrik Brandes, Journal of Mathematical Sociology 25(2):163-
177, 2001. http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

[R47] Ulrik Brandes and Daniel Fleischer, Centrality Measures Based on Current Flow. Proc. 22nd Symp. Theoretical
Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-
konstanz.de/algo/publications/bf-cmbcf-05.pdf

[R48] Stephenson, K. and Zelen, M. Rethinking centrality: Methods and examples. Social Networks. Volume 11,
Issue 1, March 1989, pp. 1-37 http://dx.doi.org/10.1016/0378-8733(89)90016-6

[R37] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical
Aspects of Computer Science (STACS “05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-
konstanz.de/algo/publications/bf-cmbcf-05.pdf

[R38] A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54
(2005).

[R39] Centrality Measures Based on Current Flow. Ulrik Brandes and Daniel Fleischer, Proc. 22nd Symp. Theoretical
Aspects of Computer Science (STACS ‘05). LNCS 3404, pp. 533-544. Springer-Verlag, 2005. http://www.inf.uni-
konstanz.de/algo/publications/bf-cmbcf-05.pdf

[R40] A measure of betweenness centrality based on random walks, M. E. J. Newman, Social Networks 27, 39-54
(2005).

[R41] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing 1(2):146-160, (1972).

[R42] On finding the strongly connected components in a directed graph. E. Nuutila and E. Soisalon-Soinen Informa-
tion Processing Letters 49(1): 9-14, (1994)..

[R43] Depth-first search and linear graph algorithms, R. Tarjan SIAM Journal of Computing 1(2):146-160, (1972).

[R44] On finding the strongly connected components in a directed graph. E. Nuutila and E. Soisalon-Soinen Informa-
tion Processing Letters 49(1): 9-14, (1994)..

[R53] An O(m) Algorithm for Cores Decomposition of Networks Vladimir Batagelj and Matjaz Zaversnik, 2003
http://arxiv.org/abs/cs.DS/0310049

[R95] Skiena, S. S. The Algorithm Design Manual (Springer-Verlag, 1998).
http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=ase_thealgorithmrepo/

317

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://dx.doi.org/10.1016/0378-8733(89)90016-6
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
http://arxiv.org/abs/cs.DS/0310049
http://www.amazon.com/exec/obidos/ASIN/0387948600/ref=aseprotect T1	extunderscore thealgorithmrepo/

NetworkX Reference, Release 1.2

[R51] Fleury, “Deux problemes de geometrie de situation”, Journal de mathematiques elementaires (1883), 257-261.
[R52] http://en.wikipedia.org/wiki/Eulerian_path

[R89] A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

[R90] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking:
Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-
66&format=pdf

[RO1] A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

[R92] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking:
Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-
66&format=pdf

[R93] A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

[R94] Page, Lawrence; Brin, Sergey; Motwani, Rajeev and Winograd, Terry, The PageRank citation ranking:
Bringing order to the Web. 1999 http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-
66&format=pdf

[R80] A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

[R81] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999.
doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.

[R82] A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

[R83] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-32, 1999.
doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.

[R84] A. Langville and C. Meyer, “A survey of eigenvector methods of web information retrieval.”
http://citeseer.ist.psu.edu/713792.html

[R85] Jon Kleinberg, Authoritative sources in a hyperlinked environment Journal of the ACM 46 (5): 604-632, 1999.
doi:10.1145/324133.324140. http://www.cs.cornell.edu/home/kleinber/auth.pdf.

[R87] “Efficient Algorithms for Finding Maximum Matching in Graphs” by Zvi Galil, ACM Computing Surveys,
1986.

R49] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
R45] M. E. J. Newman, Mixing patterns in networks, Physical Review E, 67 026126, 2003
R88] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003
R50] M. E. J. Newman, Mixing patterns in networks Physical Review E, 67 026126, 2003

[
[
[
[
[R72] Batagelj and Brandes, “Efficient generation of large random networks”, Phys. Rev. E, 71, 036113, 2005.
[R73] 1. Erdés and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

[R74] 1. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

[R68] 1. Erdds and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).

[R69] 1. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

[

R67] Donald E. Knuth, The Art of Computer Programming, Volume 2 / Seminumerical algorithms Third Edition,
Addison-Wesley, 1997.

318 Bibliography

http://en.wikipedia.org/wiki/Eulerianprotect T1	extunderscore path
http://citeseer.ist.psu.edu/713792.html
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
http://citeseer.ist.psu.edu/713792.html
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
http://citeseer.ist.psu.edu/713792.html
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf
http://citeseer.ist.psu.edu/713792.html
http://citeseer.ist.psu.edu/713792.html
http://citeseer.ist.psu.edu/713792.html

NetworkX Reference, Release 1.2

[R70] 1. Erdés and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
[R71] 1. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).
[R65] 1. Erdés and A. Rényi, On Random Graphs, Publ. Math. 6, 290 (1959).
[R66] 1. (a) Gilbert, Random Graphs, Ann. Math. Stat., 30, 1141 (1959).

[

R75] M. E. J. Newman and D. J. Watts, Renormalization group analysis of the small-world network model, Physics
Letters A, 263, 341, 1999. http://dx.doi.org/10.1016/S0375-9601(99)00757-4

[R79] Duncan J. Watts and Steven H. Strogatz, Collective dynamics of small-world networks, Nature, 393, pp. 440—
442, 1998.

[R77] A. Steger and N. Wormald, Generating random regular graphs quickly, Probability and Computing 8 (1999),
377-396, 1999. http://citeseer.ist.psu.edu/steger99generating.html

[R78] Jeong Han Kim and Van H. Vu, Generating random regular graphs, Proceedings of the thirty-
fifth ACM symposium on Theory of computing, San Diego, CA, USA, pp 213-222, 2003.
http://doi.acm.org/10.1145/780542.780576

[R64] A. L. Barabdsi and R. Albert “Emergence of scaling in random networks”, Science 286, pp 509-512, 1999.

[R76] P. Holme and B. J. Kim, “Growing scale-free networks with tunable clustering”, Phys. Rev. E, 65, 026107,
2002.

[R54] M.E.J. Newman, “The structure and function of complex networks”, SIAM REVIEW 45-2, pp 167-256, 2003.

[R56] Newman, M. E. J. and Strogatz, S. H. and Watts, D. J. Random graphs with arbitrary degree distributions and
their applications Phys. Rev. E, 64, 026118 (2001)

[R57] Fan Chung and L. Lu, Connected components in random graphs with given expected degree sequences, Ann.
Combinatorics, 6, pp. 125-145, 2002.

[R58] G. Chartrand and L. Lesniak, “Graphs and Digraphs”, Chapman and Hall/CRC, 1996.
[R59] G. Chartrand and L. Lesniak, “Graphs and Digraphs”, Chapman and Hall/CRC, 1996.

[R55] C. Gkantsidis and M. Mihail and E. Zegura, The Markov chain simulation method for generating connected
power law random graphs, 2003. http://citeseer.ist.psu.edu/gkantsidisO3markov.html

[R60] P. L. Krapivsky and S. Redner, Organization of Growing Random Networks, Phys. Rev. E, 63, 066123, 2001.
[R62] P. L. Krapivsky and S. Redner, Organization of Growing Random Networks, Phys. Rev. E, 63, 066123, 2001.
[R61] P. L. Krapivsky and S. Redner, Network Growth by Copying, Phys. Rev. E, 71, 036118, 2005k.},

[R63] B. Bollob{‘a}s, C. Borgs, J. Chayes, and O. Riordan, Directed scale-free graphs, Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, 132—-139, 2003.

[R86] Fan Chung-Graham, Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, Number 92,
1997.

Bibliography 319

http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://citeseer.ist.psu.edu/steger99generating.html
http://doi.acm.org/10.1145/780542.780576
http://citeseer.ist.psu.edu/gkantsidis03markov.html

NetworkX Reference, Release 1.2

320 Bibliography

N

networkx.algorithms
algorithms
algorithms
algorithms

algorithms

networkx.
networkx.
networkx.
networkx.
139
networkx.algorithms
138
networkx.algorithms
141
networkx.algorithms
141
networkx.algorithms
143
networkx.
networkx.

algorithms
algorithms
.algorithms
algorithms
algorithms

networkx
networkx.
networkx.
157
networkx.algorithms
150
networkx.algorithms
153
networkx.algorithms
156
networkx.algorithms
.algorithms
networkx.algorithms
networkx.algorithms
161
networkx.algorithms
networkx.algorithms
networkx.algorithms
networkx.algorithms
182
networkx.algorithms
179
networkx.algorithms
networkx.algorithms

networkx

.bipartite, 133

MODULE INDEX

networkx.algorithms
networkx.algorithms

.mst, 191
.operators, 191

.mixing, 186

.block, 135 networkx.algorithms.shortest_paths.astar,

.boundary, 136 208

.centrality, 137 networkx.algorithms.shortest_paths.generic,

.centrality.betweenness, 195
networkx.algorithms.shortest_paths.unweighted,

.centrality.closeness, 198
networkx.algorithms.shortest_paths.weighted,

.centrality.current_flow_beé%@enness
networkx.algorithms.traversal.depth_ first_search,

.centrality.current_flow_cléggness
networkx.algorithms.vitality, 210

.centrality.eigenvect8§pworkx.classes.function,213
networkx.convert, 259

.centrality.load, 144 networkx.drawing.layout, 299

.clique, 145 networkx.drawing.nx_agraph, 293

.cluster, 147 networkx.drawing.nx_pydot, 296

.components, 150 networkx.drawing.nx_pylab, 285

.components.attractin@?tworkx'exception’303
networkx.generators.atlas, 217

_Components_Connectedpetworkx.generators.bipartite,247
networkx.generators.classic, 217

.components.strongly_@@ﬁﬂ@é%%dgenerators'degree—seq’236
networkx.generators.directed, 243

.components.weakly_coﬁﬁ%@@éﬁ?'generators'ego’252
networkx.generators.geometric, 247

.core, 158 networkx.generators.hybrid, 247

.cycles, 158 networkx.generators.line, 251

.dag, 159 networkx.generators.random_graphs, 226

.distance_measures, networkx.generators.small, 221
networkx.generators.stochastic, 252

.euler, 162 networkx.linalg.attrmatrix, 255

.flow, 164 networkx.linalg.spectrum, 253

.isolates, 166 networkx.readwrite.adjlist, 269

.link_analysis.hits_a@%?workx'readwrite'edgeliSt’273
networkx.readwrite.gml, 277

.link_analysis.pageraﬁﬁig?ﬁkx'readwrite'gpiCkle’279
networkx.readwrite.graphml, 280

.matching, 185 networkx.readwrite.leda, 281
networkx.readwrite.nx_yaml, 281

321

NetworkX Reference, Release 1.2

networkx.readwrite.pajek, 282
networkx.readwrite.sparsegrapho, 281
networkx.utils, 305

322 Module Index

Symbols

__contains__() (DiGraph method), 58
__contains__() (Graph method), 28

__contains__() (MultiDiGraph method), 120
__contains__() (MultiGraph method), 89
__getitem__ () (DiGraph method), 54
__getitem__() (Graph method), 26

__getitem__ () (MultiDiGraph method), 117
__getitem__() (MultiGraph method), 86

__init__() (DiGraph method), 40

__init__() (DiGraphMatcher method), 171
__init__() (Graph method), 12

__init__() (GraphMatcher method), 169

__init__() (MultiDiGraph method), 100

__init__() (MultiGraph method), 71

__init__() (WeightedDiGraphMatcher method), 175
__init__() (WeightedGraphMatcher method), 173
__init__() (WeightedMultiDiGraphMatcher method), 178
__init__() (WeightedMultiGraphMatcher method), 176
__iter__() (DiGraph method), 49

__iter__() (Graph method), 22

__iter__() (MultiDiGraph method), 111

__iter__() (MultiGraph method), 82

__len__() (DiGraph method), 59

__len__() (Graph method), 30

__len__() (MultiDiGraph method), 122

__len__() (MultiGraph method), 90

_get_fh() (in module networkx.utils), 306

A

add_cycle() (DiGraph method), 47
add_cycle() (Graph method), 20
add_cycle() (MultiDiGraph method), 108
add_cycle() (MultiGraph method), 80
add_edge() (DiGraph method), 43
add_edge() (Graph method), 15
add_edge() (MultiDiGraph method), 103
add_edge() (MultiGraph method), 75
add_edges_from() (DiGraph method), 44
add_edges_from() (Graph method), 16
add_edges_from() (MultiDiGraph method), 104

INDEX

add_edges_from() (MultiGraph method), 76

add_node() (DiGraph method), 40

add_node() (Graph method), 13

add_node() MultiDiGraph method), 101

add_node() (MultiGraph method), 72

add_nodes_from() (DiGraph method), 41

add_nodes_from() (Graph method), 14

add_nodes_from() (MultiDiGraph method), 102

add_nodes_from() (MultiGraph method), 73

add_path() (DiGraph method), 47

add_path() (Graph method), 19

add_path() (MultiDiGraph method), 108

add_path() (MultiGraph method), 79

add_star() (DiGraph method), 46

add_star() (Graph method), 19

add_star() (MultiDiGraph method), 107

add_star() (MultiGraph method), 79

add_weighted_edges_from() (DiGraph method), 44

add_weighted_edges_from() (Graph method), 17

add_weighted_edges_from() (MultiDiGraph method),
105

add_weighted_edges_from() (MultiGraph method), 77

adj_matrix() (in module networkx.linalg.spectrum), 253

adjacency_iter() (DiGraph method), 56

adjacency_iter() (Graph method), 27

adjacency_iter() (MultiDiGraph method), 118

adjacency_iter() (MultiGraph method), 87

adjacency_list() (DiGraph method), 56

adjacency_list() (Graph method), 26

adjacency_list() (MultiDiGraph method), 118

adjacency_list() (MultiGraph method), 87

adjacency_spectrum() (in module
workx.linalg.spectrum), 255

all_pairs_dijkstra_path() (in module networkx), 204

all_pairs_dijkstra_path_length() (in module networkx),
205

all_pairs_shortest_path() (in module networkx), 199

all_pairs_shortest_path_length() (in module networkx),
200

astar_path() (in module networkx), 208

astar_path_length() (in module networkx), 209

attr_matrix() (in module networkx.linalg.attrmatrix), 255

net-

323

NetworkX Reference, Release 1.2

attr_sparse_matrix() (in module net-
workx.linalg.attrmatrix), 257

attracting_component_subgraphs() (in module net-
workx.algorithms.components.attracting),
158

attracting_components() (in module net-

workx.algorithms.components.attracting),

157
attribute_assortativity() (in module networkx), 187
attribute_mixing_dict() (in module networkx), 190
attribute_mixing_matrix() (in module networkx), 189
authority_matrix() (in module networkx), 185
average_clustering() (in module networkx), 149
average_shortest_path_length() (in module networkx),

197

B

balanced_tree() (in module networkx.generators.classic),
218

barabasi_albert_graph() (in module
workx.generators.random_graphs), 233

barbell_graph() (in module networkx.generators.classic),
218

betweenness_centrality() (in module
workx.algorithms.centrality.betweenness),
139

bidirectional_dijkstra() (in module networkx), 206

bidirectional_shortest_path() (in module networkx), 207

binomial_graph() (in module net-
workx.generators.random_graphs), 230

bipartite_alternating_havel_hakimi_graph() (in module
networkx.generators.bipartite), 249

bipartite_color() (in module networkx), 134

net-

net-

bipartite_configuration_model() (in module net-
workx.generators.bipartite), 248
bipartite_havel_hakimi_graph() (in module net-

workx.generators.bipartite), 248
bipartite_preferential_attachment_graph() (in module
networkx.generators.bipartite), 250
bipartite_random_regular_graph() (in module
workx.generators.bipartite), 250
bipartite_reverse_havel_hakimi_graph() (in module net-
workx.generators.bipartite), 249
bipartite_sets() (in module networkx), 133
blockmodel() (in module networkx), 135
bull_graph() (in module networkx.generators.small), 223

C

candidate_pairs_iter() (DiGraphMatcher method), 172

candidate_pairs_iter() (GraphMatcher method), 170

candidate_pairs_iter() (WeightedDiGraphMatcher
method), 176

candidate_pairs_iter() (WeightedGraphMatcher method),
174

net-

candidate_pairs_iter() (WeightedMultiDiGraphMatcher
method), 179

candidate_pairs_iter()
method), 177

cartesian_product() (in module networkx), 192

center() (in module networkx), 161

chvatal_graph() (in module networkx.generators.small),
223

circular_ladder_graph() (in module
workx.generators.classic), 219

circular_layout() (in module networkx), 299

clear() (DiGraph method), 47

clear() (Graph method), 20

clear() (MultiDiGraph method), 109

clear() (MultiGraph method), 80

cliques_containing_node() (in module networkx), 147

closeness_centrality() (in module networkx), 139

closeness_vitality() (in module networkx), 210

clustering() (in module networkx), 149

complement() (in module networkx), 193

(WeightedMultiGraphMatcher

net-

complete_bipartite_graph() (in module net-
workx.generators.classic), 219

complete_graph() (in module net-
workx.generators.classic), 219

compose() (in module networkx), 192

condensation() (in module net-
workx.algorithms.components.strongly_connected),
155

configuration_model() (in module net-
workx.generators.degree_seq), 237

connected_component_subgraphs() (in module net-
workx.algorithms.components.connected),
152

connected_components() (in module net-
workx.algorithms.components.connected),
151

connected_double_edge_swap() (in module net-
workx.generators.degree_seq), 242

connected_watts_strogatz_graph() (in module net-
workx.generators.random_graphs), 232

convert_node_labels_to_integers() (in module net-
workx.convert), 260

copy() (DiGraph method), 66

copy() (Graph method), 34

copy() (MultiDiGraph method), 129

copy() (MultiGraph method), 95

could_be_isomorphic() (in module networkx), 168

create_degree_sequence() (in module net-

workx.generators.degree_seq), 241
create_empty_copy() (in module networkx), 215
cubical_graph() (in module networkx.generators.small),

223
cumulative_distribution() (in module networkx.utils), 307
current_flow_betweenness_centrality() (in module net-

324

Index

NetworkX Reference, Release 1.2

workx.algorithms.centrality.current_flow_betweerdmwsgpvtsev_goltsev_mendes_graph() (in module net-

142

current_flow_closeness_centrality() (in module net-
workx), 141

cycle_basis() (in module networkx), 159

cycle_graph() (in module networkx.generators.classic),
219

D

degree() (DiGraph method), 60

degree() (Graph method), 30

degree() (MultiDiGraph method), 122

degree() (MultiGraph method), 91
degree_assortativity() (in module networkx), 186
degree_centrality() (in module networkx), 137
degree_histogram() (in module networkx), 214
degree_iter() (DiGraph method), 60
degree_iter() (Graph method), 31

degree_iter() (MultiDiGraph method), 123
degree_iter() (MultiGraph method), 91
degree_mixing_dict() (in module networkx), 190
degree_mixing_matrix() (in module networkx), 190
degree_pearsonr() (in module networkx), 188

degree_sequence_tree() (in module net-
workx.generators.degree_seq), 240

dense_gnm_random_graph() (in module net-
workx.generators.random_graphs), 228

density() (in module networkx), 213

desargues_graph() (in module net-

workx.generators.small), 223

dfs_postorder() (in module networkx), 210

dfs_predecessor() (in module networkx), 210

dfs_preorder() (in module networkx), 210

dfs_successor() (in module networkx), 210

dfs_tree() (in module networkx), 210

diameter() (in module networkx), 161

diamond_graph() (in module networkx.generators.small),
223

dictionary, 315

difference() (in module networkx), 194

DiGraph() (in module networkx), 37

dijkstra_path() (in module networkx), 202

dijkstra_path_length() (in module networkx), 202

dijkstra_predecessor_and_distance() (in module
workx), 208

directed_configuration_model() (in module
workx.generators.degree_seq), 238

directed_gnp_random_graph() (in module
workx.generators.random_graphs), 227

discrete_sequence() (in module networkx.utils), 307

disjoint_union() (in module networkx), 194

dodecahedral_graph() (in module
workx.generators.small), 224

net-

net-

net-

net-

workx.generators.classic), 219
double_edge_swap() (in module

workx.generators.degree_seq), 241
draw() (in module networkx), 285
draw_circular() (in module networkx), 293
draw_graphviz() (in module networkx), 293
draw_networkx() (in module networkx), 287
draw_networkx_edge_labels() (in module networkx), 292
draw_networkx_edges() (in module networkx), 290
draw_networkx_labels() (in module networkx), 291
draw_networkx_nodes() (in module networkx), 289
draw_random() (in module networkx), 293
draw_shell() (in module networkx), 293
draw_spectral() (in module networkx), 293
draw_spring() (in module networkx), 293

E

net-

ebunch, 315

eccentricity() (in module networkx), 161

edge, 315

edge attribute, 315

edge_betweenness_centrality() (in module net-
workx.algorithms.centrality.betweenness),
140

edge_boundary() (in module networkx), 136

edge_current_flow_betweenness_centrality()
(in module net-
workx.algorithms.centrality.current_flow_betweenness),
142

edge_load() (in module net-

workx.algorithms.centrality.load), 145
edges() (DiGraph method), 50
edges() (Graph method), 22
edges() (MultiDiGraph method), 112
edges() (MultiGraph method), 82
edges_iter() (DiGraph method), 51
edges_iter() (Graph method), 23
edges_iter() (MultiDiGraph method), 113
edges_iter() (MultiGraph method), 83
ego_graph() (in module networkx.generators.ego), 252
eigenvector_centrality() (in module networkx), 143
eigenvector_centrality_numpy() (in module networkx),

144
empty_graph() (in module networkx.generators.classic),
219
erdos_renyi_graph() (in module net-
workx.generators.random_graphs), 229
eulerian_circuit() (in module networkx), 163
expected_degree_graph() (in module net-

workx.generators.degree_seq), 239

F

fast_could_be_isomorphic() (in module networkx), 169

Index

325

NetworkX Reference, Release 1.2

fast_gnp_random_graph() (in module net-
workx.generators.random_graphs), 226

faster_could_be_isomorphic() (in module networkx), 169

find_cliques() (in module networkx), 146

find_cores() (in module networkx), 158

flatten() (in module networkx.utils), 305

floyd_warshall() (in module networkx), 201

ford_fulkerson() (in module networkx), 166

freeze() (in module networkx), 214

from_agraph() (in module networkx), 294

from_dict_of_dicts() (in module networkx.convert), 262

from_dict_of_lists() (in module networkx.convert), 263

from_edgelist() (in module networkx.convert), 264

from_numpy_matrix() (in module networkx.convert), 265

from_pydot() (in module networkx), 297

from_scipy_sparse_matrix() (in module
workx.convert), 266

frucht_graph() (in module networkx.generators.small),
224

net-

G

get_edge_data() (DiGraph method), 53

get_edge_data() (Graph method), 24

get_edge_data() (MultiDiGraph method), 116
get_edge_data() (MultiGraph method), 84

gn_graph() (in module networkx.generators.directed),

244

gnc_graph() (in module networkx.generators.directed),
245

gnm_random_graph() (in module net-
workx.generators.random_graphs), 229

gnp_random_graph() (in module net-

workx.generators.random_graphs), 227

gnr_graph() (in module networkx.generators.directed),
245

google_matrix() (in module networkx), 182

Graph() (in module networkx), 9

graph_atlas_g() (in module networkx.generators.atlas),
217

graph_clique_number() (in module networkx), 147

graph_number_of_cliques() (in module networkx), 147

graphviz_layout() (in module networkx), 295, 298

grid_2d_graph() (in module networkx.generators.classic),
220

grid_graph() (in module networkx.generators.classic),
220

H

has_edge() (DiGraph method), 58
has_edge() (Graph method), 29
has_edge() (MultiDiGraph method), 121
has_edge() (MultiGraph method), 89
has_node() (DiGraph method), 57
has_node() (Graph method), 28

has_node() (MultiDiGraph method), 120

has_node() (MultiGraph method), 88

hashable, 315

havel_hakimi_graph() (in module
workx.generators.degree_seq), 240

heawood_graph() (in module networkx.generators.small),
224

hits() (in module networkx), 182

hits_numpy() (in module networkx), 183

hits_scipy() (in module networkx), 184

house_graph() (in module networkx.generators.small),
224

house_x_graph() (in module networkx.generators.small),
224

hub_matrix() (in module networkx), 185

hypercube_graph() (in module
workx.generators.classic), 220

net-

net-

icosahedral_graph() (in module
workx.generators.small), 224

in_degree() (DiGraph method), 61

in_degree() (MultiDiGraph method), 124

in_degree_centrality() (in module networkx), 138

in_degree_iter() (DiGraph method), 61

in_degree_iter() (MultiDiGraph method), 124

in_edges() (DiGraph method), 53

in_edges() (MultiDiGraph method), 115

in_edges_iter() (DiGraph method), 53

in_edges_iter() (MultiDiGraph method), 115

info() (in module networkx), 213

initialize() (DiGraphMatcher method), 172

initialize() (GraphMatcher method), 170

initialize() (WeightedDiGraphMatcher method), 175

initialize() (WeightedGraphMatcher method), 174

initialize() (WeightedMultiDiGraphMatcher method),
178

initialize() (WeightedMultiGraphMatcher method), 177

intersection() (in module networkx), 194

is_attracting_component() (in module
workx.algorithms.components.attracting),
157

is_bipartite() (in module networkx), 133

is_connected() (in module
workx.algorithms.components.connected),
150

is_directed_acyclic_graph() (in module networkx), 160

is_eulerian() (in module networkx), 163

is_frozen() (in module networkx), 215

is_isolate() (in module networkx), 167

is_isomorphic() (DiGraphMatcher method), 172

is_isomorphic() (GraphMatcher method), 170

is_isomorphic() (in module networkx), 168

is_isomorphic() (WeightedDiGraphMatcher method), 175

net-

net-

net-

326

Index

NetworkX Reference, Release 1.2

is_isomorphic() (WeightedGraphMatcher method), 174

is_isomorphic() (WeightedMultiDiGraphMatcher
method), 178

is_isomorphic() (WeightedMultiGraphMatcher method),
177

is_kl_connected() (in module net-
workx.generators.hybrid), 247

is_list_of_ints() (in module networkx.utils), 305

is_string_like() (in module networkx.utils), 305

is_strongly_connected() (in module net-

M

make_clique_bipartite() (in module networkx), 146

make_max_clique_graph() (in module networkx), 146

make_small_graph() (in module net-
workx.generators.small), 222

match() (DiGraphMatcher method), 172

match() (GraphMatcher method), 170

match() (WeightedDiGraphMatcher method), 176

match() (WeightedGraphMatcher method), 174

match() (WeightedMultiDiGraphMatcher method), 179

workx.algorithms.components.strongly_connectec].)latch() (WeightedMultiGraphMatcher method), 177

153
is_valid_degree_sequence() (in module net-
workx.generators.degree_seq), 241
is_weakly_connected() (in module net-

workx.algorithms.components.weakly_connected)y,sebius kantor graph()

156
isolates() (in module networkx), 167
isomorphisms_iter() (DiGraphMatcher method), 172
isomorphisms_iter() (GraphMatcher method), 170
isomorphisms_iter() (WeightedDiGraphMatcher

method), 175
isomorphisms_iter() (WeightedGraphMatcher method),
174

isomorphisms_iter()
method), 179

isomorphisms_iter()
method), 177

iterable() (in module networkx.utils), 305

K

(WeightedMultiDiGraphMatcher

(WeightedMultiGraphMatcher

kl_connected_subgraph() (in module net-
workx.generators.hybrid), 247
kosaraju_strongly_connected_components()
(in module net-

max_flow() (in module networkx), 164

max_weight_matching() (in module networkx), 185

min_cut() (in module networkx), 165

minimum_spanning_tree() (in module networkx), 191

(in module net-
workx.generators.small), 224

MultiDiGraph() (in module networkx), 97

MultiGraph() (in module networkx), 68

N

nbunch, 315

nbunch_iter() (DiGraph method), 56
nbunch_iter() (Graph method), 27
nbunch_iter() (MultiDiGraph method), 119
nbunch_iter() (MultiGraph method), 87
neighbor_connectivity() (in module networkx), 188
neighbors() (DiGraph method), 54
neighbors() (Graph method), 25

neighbors() (MultiDiGraph method), 116
neighbors() (MultiGraph method), 85
neighbors_iter() (DiGraph method), 54
neighbors_iter() (Graph method), 25
neighbors_iter() (MultiDiGraph method), 117
neighbors_iter() (MultiGraph method), 86

workx.algorithms.components.strongly_connecteq)etworkx'algorithms'bipamte (module), 133

155
krackhardt_kite_graph() (in
workx.generators.small), 224

module net-

L

ladder_graph() (in module networkx.generators.classic),
220

laplacian() (in module networkx.linalg.spectrum), 254

laplacian_spectrum() (in module net-
workx.linalg.spectrum), 254

LCF_graph() (in module networkx.generators.small), 222

li_smax_graph() (in module net-
workx.generators.degree_seq), 242

line_graph() (in module networkx.generators.line), 251

load_centrality() (in module net-
workx.algorithms.centrality.load), 145

lollipop_graph() (in module networkx.generators.classic),
220

networkx.algorithms.block (module), 135
networkx.algorithms.boundary (module), 136
networkx.algorithms.centrality (module), 137
networkx.algorithms.centrality.betweenness
139
networkx.algorithms.centrality.closeness (module), 138
networkx.algorithms.centrality.current_flow_betweenness
(module), 141
networkx.algorithms.centrality.current_flow_closeness
(module), 141
networkx.algorithms.centrality.eigenvector (module), 143
networkx.algorithms.centrality.load (module), 144
networkx.algorithms.clique (module), 145
networkx.algorithms.cluster (module), 147
networkx.algorithms.components (module), 150
networkx.algorithms.components.attracting ~ (module),
157

(module),

Index

327

NetworkX Reference, Release 1.2

networkx.algorithms.components.connected (module),
150
networkx.algorithms.components.strongly_connected
(module), 153
networkx.algorithms.components.weakly_connected
(module), 156
networkx.algorithms.core (module), 158
networkx.algorithms.cycles (module), 158
networkx.algorithms.dag (module), 159
networkx.algorithms.distance_measures (module), 161
networkx.algorithms.euler (module), 162
networkx.algorithms.flow (module), 164
networkx.algorithms.isolates (module), 166

networkx.algorithms.link_analysis.hits_alg (module),
182

networkx.algorithms.link_analysis.pagerank_alg (mod-
ule), 179

networkx.algorithms.matching (module), 185
networkx.algorithms.mixing (module), 186
networkx.algorithms.mst (module), 191
networkx.algorithms.operators (module), 191
networkx.algorithms.shortest_paths.astar (module), 208

networkx.algorithms.shortest_paths.generic ~ (module),
195

networkx.algorithms.shortest_paths.unweighted (mod-
ule), 198

networkx.algorithms.shortest_paths.weighted (module),
201

networkx.algorithms.traversal.depth_first_search (mod-
ule), 209

networkx.algorithms.vitality (module), 210
networkx.classes.function (module), 213
networkx.convert (module), 259
networkx.drawing.layout (module), 299
networkx.drawing.nx_agraph (module), 293

networkx.readwrite.gml (module), 277

networkx.readwrite.gpickle (module), 279

networkx.readwrite.graphml (module), 280

networkx.readwrite.leda (module), 281

networkx.readwrite.nx_yaml (module), 281

networkx.readwrite.pajek (module), 282

networkx.readwrite.sparsegraph6 (module), 281

networkx.utils (module), 305

NetworkXError (class in networkx), 303

NetworkXException (class in networkx), 303

newman_watts_strogatz_graph() (in module
workx.generators.random_graphs), 230

node, 315

node attribute, 315

node_boundary() (in module networkx), 137

node_clique_number() (in module networkx), 147

node_connected_component() (in module
workx.algorithms.components.connected),
152

nodes() (DiGraph method), 48

nodes() (Graph method), 21

nodes() (MultiDiGraph method), 110

nodes() (MultiGraph method), 81

nodes_iter() (DiGraph method), 49

nodes_iter() (Graph method), 21

nodes_iter() (MultiDiGraph method), 111

nodes_iter() (MultiGraph method), 81

nodes_with_selfloops() (DiGraph method), 64

nodes_with_selfloops() (Graph method), 33

nodes_with_selfloops() (MultiDiGraph method), 127

nodes_with_selfloops() (MultiGraph method), 93

normalized_laplacian() (in module
workx.linalg.spectrum), 254

null_graph() (in module networkx.generators.classic),
221

net-

net-

net-

networkx.drawing.nx_pydot (module), 296 number_attracting_components() (in module net-
networkx.drawing.nx_pylab (module), 285 workx.algorithms.components.attracting),
networkx.exception (module), 303 157

networkx.generators.atlas (module), 217 number_connected_components() (in module net-
networkx.generators.bipartite (module), 247 workx.algorithms.components.connected),
networkx.generators.classic (module), 217 151

networkx.generators.degree_seq (module), 236 number_of_cliques() (in module networkx), 147
networkx.generators.directed (module), 243 number_of_edges() (DiGraph method), 64
networkx.generators.ego (module), 252 number_of_edges() (Graph method), 32
networkx.generators.geometric (module), 247 number_of_edges() (MultiDiGraph method), 126
networkx.generators.hybrid (module), 247 number_of_edges() (MultiGraph method), 92
networkx.generators.line (module), 251 number_of_nodes() (DiGraph method), 59
networkx.generators.random_graphs (module), 226 number_of_nodes() (Graph method), 30
networkx.generators.small (module), 221 number_of_nodes() (MultiDiGraph method), 122
networkx.generators.stochastic (module), 252 number_of_nodes() (MultiGraph method), 90
networkx.linalg.attrmatrix (module), 255 number_of_selfloops() (DiGraph method), 65
networkx.linalg.spectrum (module), 253 number_of_selfloops() (Graph method), 34
networkx.readwrite.adjlist (module), 269 number_of_selfloops() (MultiDiGraph method), 128
networkx.readwrite.edgelist (module), 273 number_of_selfloops() (MultiGraph method), 94

328 Index

NetworkX Reference, Release 1.2

number_strongly_connected_components()

pydot_layout() (in module networkx), 298
pygraphviz_layout() (in module networkx), 296

radius() (in module networkx), 162

(in module net-
Workx.algorithms.components.strongly_connectedﬁ
153

number_weakly_connected_components()
(in module net-

workx.algorithms.components.weakly_connected),

156
numeric_assortativity() (in module networkx), 187

O

octahedral_graph() (in module
workx.generators.small), 225

order() (DiGraph method), 59

order() (Graph method), 29

order() (MultiDiGraph method), 121

order() (MultiGraph method), 90

out_degree() (DiGraph method), 62

out_degree() (MultiDiGraph method), 125

out_degree_centrality() (in module networkx), 138

out_degree_iter() (DiGraph method), 63

out_degree_iter() (MultiDiGraph method), 125

out_edges() (DiGraph method), 51

out_edges() (MultiDiGraph method), 113

out_edges_iter() (DiGraph method), 52

out_edges_iter() (MultiDiGraph method), 114

P

pagerank() (in module networkx), 179

pagerank_numpy() (in module networkx), 180

pagerank_scipy() (in module networkx), 181

pappus_graph() (in module networkx.generators.small),
225

pareto_sequence() (in module networkx.utils), 306

parse_gml() (in module networkx), 279

parse_graph6() (in module networkx), 282

parse_graphml() (in module networkx), 280

parse_leda() (in module networkx), 281

parse_pajek() (in module networkx), 283

parse_sparse6() (in module networkx), 282

path_graph() (in module networkx.generators.classic),
221

periphery() (in module networkx), 162

petersen_graph() (in module networkx.generators.small),
225

powerlaw_cluster_graph() (in module
workx.generators.random_graphs), 234

powerlaw_sequence() (in module networkx.utils), 306

predecessor() (in module networkx), 200

predecessors() (DiGraph method), 55

predecessors() (MultiDiGraph method), 118

predecessors_iter() (DiGraph method), 55

predecessors_iter() (MultiDiGraph method), 118

project() (in module networkx), 134

net-

net-

random_geometric_graph() (in module net-
workx.generators.geometric), 247
random_layout() (in module networkx), 299
random_lobster() (in module net-
workx.generators.random_graphs), 234
random_powerlaw_tree() (in module net-
workx.generators.random_graphs), 235
random_powerlaw_tree_sequence() (in module net-
workx.generators.random_graphs), 236
random_regular_graph() (in module net-
workx.generators.random_graphs), 232
random_shell_graph() (in module net-

workx.generators.random_graphs), 235
read_adjlist() (in module networkx), 269
read_dot() (in module networkx), 295, 298
read_edgelist() (in module networkx), 273
read_gml() (in module networkx), 277
read_gpickle() (in module networkx), 280
read_graph6() (in module networkx), 282
read_graph6_list() (in module networkx), 282
read_graphml() (in module networkx), 280
read_leda() (in module networkx), 281
read_multiline_adjlist() (in module networkx), 271
read_pajek() (in module networkx), 282
read_sparse6() (in module networkx), 282
read_sparse6_list() (in module networkx), 282
read_weighted_edgelist() (in module networkx), 276
read_yaml() (in module networkx), 281
relabel_nodes() (in module networkx.convert), 261
remove_edge() (DiGraph method), 45
remove_edge() (Graph method), 18
remove_edge() (MultiDiGraph method), 106
remove_edge() (MultiGraph method), 77
remove_edges_from() (DiGraph method), 46
remove_edges_from() (Graph method), 18
remove_edges_from() (MultiDiGraph method), 107
remove_edges_from() (MultiGraph method), 78
remove_node() (DiGraph method), 42
remove_node() (Graph method), 14
remove_node() (MultiDiGraph method), 102
remove_node() (MultiGraph method), 74
remove_nodes_from() (DiGraph method), 42
remove_nodes_from() (Graph method), 15
remove_nodes_from() (MultiDiGraph method), 103
remove_nodes_from() (MultiGraph method), 74
reverse() (DiGraph method), 68
reverse() (MultiDiGraph method), 131

Index

329

NetworkX Reference, Release 1.2

S

scale_free_graph() (in module net-
workx.generators.directed), 246

scipy_discrete_sequence() (in module networkx.utils),
308

scipy_pareto_sequence() (in module networkx.utils), 307

scipy_poisson_sequence() (in module networkx.utils),

307

scipy_powerlaw_sequence() (in module networkx.utils),
307

scipy_uniform_sequence() (in module networkx.utils),
307

sedgewick_maze_graph() (in module net-

workx.generators.small), 225

selfloop_edges() (DiGraph method), 65

selfloop_edges() (Graph method), 33

selfloop_edges() (MultiDiGraph method), 127

selfloop_edges() (MultiGraph method), 93

semantic_feasibility() (DiGraphMatcher method), 172

semantic_feasibility() (GraphMatcher method), 171

semantic_feasibility() (WeightedDiGraphMatcher
method), 176

semantic_feasibility() (WeightedGraphMatcher method),
174

semantic_feasibility() (WeightedMultiDiGraphMatcher
method), 179

semantic_feasibility() (WeightedMultiGraphMatcher
method), 177

shell_layout() (in module networkx), 300

shortest_path() (in module networkx), 195

shortest_path_length() (in module networkx), 196

single_source_dijkstra() (in module networkx), 205

single_source_dijkstra_path() (in module networkx), 203

single_source_dijkstra_path_length() (in module net-
workx), 204

single_source_shortest_path() (in module networkx), 198

single_source_shortest_path_length() (in module net-
workx), 199

size() (DiGraph method), 63

size() (Graph method), 31

size() (MultiDiGraph method), 126

size() (MultiGraph method), 92

spectral_layout() (in module networkx), 301

spring_layout() (in module networkx), 300

star_graph() (in module networkx.generators.classic), 221

stochastic_graph() (in module net-
workx.generators.stochastic), 252

strongly_connected_component_subgraphs()

strongly_connected_components_recursive()

(in module net-
workx.algorithms.components.strongly_connected),
154

subgraph() (DiGraph method), 68

subgraph() (Graph method), 36

subgraph() (MultiDiGraph method), 130

subgraph() (MultiGraph method), 96

subgraph_is_isomorphic() (DiGraphMatcher method),
172

subgraph_is_isomorphic() (GraphMatcher method), 170

subgraph_is_isomorphic() (WeightedDiGraphMatcher
method), 175

subgraph_is_isomorphic() (WeightedGraphMatcher
method), 174

subgraph_is_isomorphic() (WeightedMultiDiGraph-
Matcher method), 178

subgraph_is_isomorphic() (WeightedMultiGraphMatcher
method), 177

subgraph_isomorphisms_iter() (DiGraphMatcher
method), 172

subgraph_isomorphisms_iter() (GraphMatcher method),
170

subgraph_isomorphisms_iter() (WeightedDiGraph-
Matcher method), 176

subgraph_isomorphisms_iter() (WeightedGraphMatcher
method), 174

subgraph_isomorphisms_iter() (WeightedMultiDiGraph-
Matcher method), 179

subgraph_isomorphisms_iter() (WeightedMultiGraph-
Matcher method), 177

successors() (DiGraph method), 55

successors() (MultiDiGraph method), 117

successors_iter() (DiGraph method), 55

successors_iter() (MultiDiGraph method), 117

symmetric_difference() (in module networkx), 195

syntactic_feasibility() (DiGraphMatcher method), 173

syntactic_feasibility() (GraphMatcher method), 171

syntactic_feasibility() (WeightedDiGraphMatcher
method), 176

syntactic_feasibility() (WeightedGraphMatcher method),
174

syntactic_feasibility() (WeightedMultiDiGraphMatcher
method), 179

syntactic_feasibility() (WeightedMultiGraphMatcher
method), 177

T

(in module net- tetrahedral_graph() (in module net-
workx.algorithms.components.strongly_connected), workx.generators.small), 225
154 to_agraph() (in module networkx), 294

strongly_connected_components() (in module net-

to_dict_of_dicts() (in module networkx.convert), 262

workx.algorithms.components.strongly_connected®_dict_of_lists() (in module networkx.convert), 263

154

to_directed() (DiGraph method), 67

330

Index

NetworkX Reference, Release 1.2

to_directed() (Graph method), 35

to_directed() (MultiDiGraph method), 130

to_directed() (MultiGraph method), 96

to_edgelist() (in module networkx.convert), 263

to_networkx_graph() (in module networkx.convert), 259

to_numpy_matrix() (in module networkx.convert), 264

to_pydot() (in module networkx), 297

to_scipy_sparse_matrix() (in module networkx.convert),
265

to_undirected() (DiGraph method), 66

to_undirected() (Graph method), 35

to_undirected() (MultiDiGraph method), 129

to_undirected() (MultiGraph method), 95

topological_sort() (in module networkx), 159

topological_sort_recursive() (in module networkx), 160

transitivity() (in module networkx), 148

triangles() (in module networkx), 148

trivial_graph() (in module networkx.generators.classic),
221

truncated_cube_graph() (in module net-
workx.generators.small), 225

truncated_tetrahedron_graph() (in module net-
workx.generators.small), 225

tutte_graph() (in module networkx.generators.small), 225

U

uniform_sequence() (in module networkx.utils), 306
union() (in module networkx), 193
union() (UnionFind method), 306

W

watts_strogatz_graph() (in module net-
workx.generators.random_graphs), 231
weakly_connected_component_subgraphs()

(in module net-
workx.algorithms.components.weakly_connected),
156

weakly_connected_components() (in module net-
workx.algorithms.components.weakly_connected),
156

wheel_graph() (in module networkx.generators.classic),
221

write_adjlist() (in module networkx), 270

write_dot() (in module networkx), 295, 297

write_edgelist() (in module networkx), 275

write_gml() (in module networkx), 278

write_gpickle() (in module networkx), 280

write_multiline_adjlist() (in module networkx), 272

write_pajek() (in module networkx), 283

write_weighted_edgelist() (in module networkx), 276

write_yaml() (in module networkx), 281

Index

331

	Introduction
	Who uses NetworkX?
	The Python programming language
	Free software
	Goals
	History

	Overview
	NetworkX Basics
	Nodes and Edges

	Graph types
	Which graph class should I use?
	Basic graph types

	Algorithms
	Bipartite
	Blockmodeling
	Boundary
	Centrality
	Clique
	Clustering
	Components
	Cores
	Cycles
	Directed Acyclic Graphs
	Distance Measures
	Eulerian
	Flows
	Isolates
	Isomorphism
	Link Analysis
	Matching
	Mixing Patterns
	Minimum Spanning Tree
	Operators
	Shortest Paths
	Traversal
	Vitality

	Functions
	Graph functions

	Graph generators
	Atlas
	Classic
	Small
	Random Graphs
	Degree Sequence
	Directed
	Geometric
	Hybrid
	Bipartite
	Line Graph
	Ego Graph
	Stochastic

	Linear algebra
	Spectrum
	Attribute Matrices

	Converting to and from other data formats
	To NetworkX Graph
	Relabeling
	Dictionaries
	Lists
	Numpy
	Scipy

	Reading and writing graphs
	Adjacency List
	Edge List
	GML
	Pickle
	GraphML
	LEDA
	YAML
	SparseGraph6
	Pajek

	Drawing
	Matplotlib
	Graphviz AGraph (dot)
	Graphviz with pydot
	Graph Layout

	Exceptions
	Utilities
	Helper functions
	Data structures and Algorithms
	Random sequence generators
	SciPy random sequence generators

	License
	Citing
	Credits
	Glossary
	Bibliography
	Module Index
	Index

