Warning

This documents an unmaintained version of NetworkX. Please upgrade to a maintained version and see the current NetworkX documentation.

# Source code for networkx.algorithms.centrality.current_flow_betweenness

"""
Current-flow betweenness centrality measures.
"""
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
import random
import networkx as nx
from networkx.algorithms.centrality.flow_matrix import *
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""

__all__ = ['current_flow_betweenness_centrality',
'approximate_current_flow_betweenness_centrality',
'edge_current_flow_betweenness_centrality']

[docs]def approximate_current_flow_betweenness_centrality(G, normalized=True,
weight='weight',
dtype=float, solver='full',
epsilon=0.5, kmax=10000):
r"""Compute the approximate current-flow betweenness centrality for nodes.

Approximates the current-flow betweenness centrality within absolute
error of epsilon with high probability [1]_.

Parameters
----------
G : graph
A NetworkX graph

normalized : bool, optional (default=True)
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

weight : string or None, optional (default='weight')
Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

dtype: data type (float)
Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

solver: string (default='lu')
Type of linear solver to use for computing the flow matrix.
Options are "full" (uses most memory), "lu" (recommended), and
"cg" (uses least memory).

epsilon: float
Absolute error tolerance.

kmax: int
Maximum number of sample node pairs to use for approximation.

Returns
-------
nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.

--------
current_flow_betweenness_centrality

Notes
-----
The running time is O((1/\epsilon^2)m{\sqrt k} \log n)
and the space required is O(m) for n nodes and m edges.

If the edges have a 'weight' attribute they will be used as
weights in this algorithm.  Unspecified weights are set to 1.

References
----------
.. [1] Ulrik Brandes and Daniel Fleischer:
Centrality Measures Based on Current Flow.
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf
"""
from networkx.utils import reverse_cuthill_mckee_ordering
try:
import numpy as np
except ImportError:
raise ImportError('current_flow_betweenness_centrality requires NumPy ',
'http://scipy.org/')
try:
from scipy import sparse
from scipy.sparse import linalg
except ImportError:
raise ImportError('current_flow_betweenness_centrality requires SciPy ',
'http://scipy.org/')
if G.is_directed():
raise nx.NetworkXError('current_flow_betweenness_centrality() ',
'not defined for digraphs.')
if not nx.is_connected(G):
raise nx.NetworkXError("Graph not connected.")
solvername={"full" :FullInverseLaplacian,
"lu": SuperLUInverseLaplacian,
"cg": CGInverseLaplacian}
n = G.number_of_nodes()
ordering = list(reverse_cuthill_mckee_ordering(G))
# make a copy with integer labels according to rcm ordering
# this could be done without a copy if we really wanted to
H = nx.relabel_nodes(G,dict(zip(ordering,range(n))))
L = laplacian_sparse_matrix(H, nodelist=range(n), weight=weight,
dtype=dtype, format='csc')
C = solvername[solver](L, dtype=dtype) # initialize solver
betweenness = dict.fromkeys(H,0.0)
nb = (n-1.0)*(n-2.0) # normalization factor
cstar = n*(n-1)/nb
l = 1 # parameter in approximation, adjustable
k = l*int(np.ceil((cstar/epsilon)**2*np.log(n)))
if k > kmax:
raise nx.NetworkXError('Number random pairs k>kmax (%d>%d) '%(k,kmax),
'Increase kmax or epsilon')
cstar2k = cstar/(2*k)
for i in range(k):
s,t = random.sample(range(n),2)
b = np.zeros(n, dtype=dtype)
b[s] = 1
b[t] = -1
p = C.solve(b)
for v in H:
if v==s or v==t:
continue
for nbr in H[v]:
w = H[v][nbr].get(weight,1.0)
betweenness[v] += w*np.abs(p[v]-p[nbr])*cstar2k
if normalized:
factor = 1.0
else:
factor = nb/2.0
# remap to original node names and "unnormalize" if required
return dict((ordering[k],float(v*factor)) for k,v in betweenness.items())

[docs]def current_flow_betweenness_centrality(G, normalized=True, weight='weight',
dtype=float, solver='full'):
r"""Compute current-flow betweenness centrality for nodes.

Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.

Current-flow betweenness centrality is also known as
random-walk betweenness centrality [2]_.

Parameters
----------
G : graph
A NetworkX graph

normalized : bool, optional (default=True)
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

weight : string or None, optional (default='weight')
Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

dtype: data type (float)
Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

solver: string (default='lu')
Type of linear solver to use for computing the flow matrix.
Options are "full" (uses most memory), "lu" (recommended), and
"cg" (uses least memory).

Returns
-------
nodes : dictionary
Dictionary of nodes with betweenness centrality as the value.

--------
approximate_current_flow_betweenness_centrality
betweenness_centrality
edge_betweenness_centrality
edge_current_flow_betweenness_centrality

Notes
-----
Current-flow betweenness can be computed in O(I(n-1)+mn \log n)
time [1]_, where I(n-1) is the time needed to compute the
inverse Laplacian.  For a full matrix this is O(n^3) but using
sparse methods you can achieve O(nm{\sqrt k}) where k is the
Laplacian matrix condition number.

The space required is O(nw) where w is the width of the sparse
Laplacian matrix.  Worse case is w=n for O(n^2).

If the edges have a 'weight' attribute they will be used as
weights in this algorithm.  Unspecified weights are set to 1.

References
----------
.. [1] Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

.. [2] A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).
"""
from networkx.utils import reverse_cuthill_mckee_ordering
try:
import numpy as np
except ImportError:
raise ImportError('current_flow_betweenness_centrality requires NumPy ',
'http://scipy.org/')
try:
import scipy
except ImportError:
raise ImportError('current_flow_betweenness_centrality requires SciPy ',
'http://scipy.org/')
if G.is_directed():
raise nx.NetworkXError('current_flow_betweenness_centrality() ',
'not defined for digraphs.')
if not nx.is_connected(G):
raise nx.NetworkXError("Graph not connected.")
n = G.number_of_nodes()
ordering = list(reverse_cuthill_mckee_ordering(G))
# make a copy with integer labels according to rcm ordering
# this could be done without a copy if we really wanted to
H = nx.relabel_nodes(G,dict(zip(ordering,range(n))))
betweenness = dict.fromkeys(H,0.0) # b[v]=0 for v in H
for row,(s,t) in flow_matrix_row(H, weight=weight, dtype=dtype,
solver=solver):
pos = dict(zip(row.argsort()[::-1],range(n)))
for i in range(n):
betweenness[s] += (i-pos[i])*row[i]
betweenness[t] += (n-i-1-pos[i])*row[i]
if normalized:
nb = (n-1.0)*(n-2.0) # normalization factor
else:
nb = 2.0
for i,v in enumerate(H): # map integers to nodes
betweenness[v] = float((betweenness[v]-i)*2.0/nb)
return dict((ordering[k],v) for k,v in betweenness.items())

[docs]def edge_current_flow_betweenness_centrality(G, normalized=True,
weight='weight',
dtype=float, solver='full'):
"""Compute current-flow betweenness centrality for edges.

Current-flow betweenness centrality uses an electrical current
model for information spreading in contrast to betweenness
centrality which uses shortest paths.

Current-flow betweenness centrality is also known as
random-walk betweenness centrality [2]_.

Parameters
----------
G : graph
A NetworkX graph

normalized : bool, optional (default=True)
If True the betweenness values are normalized by 2/[(n-1)(n-2)] where
n is the number of nodes in G.

weight : string or None, optional (default='weight')
Key for edge data used as the edge weight.
If None, then use 1 as each edge weight.

dtype: data type (float)
Default data type for internal matrices.
Set to np.float32 for lower memory consumption.

solver: string (default='lu')
Type of linear solver to use for computing the flow matrix.
Options are "full" (uses most memory), "lu" (recommended), and
"cg" (uses least memory).

Returns
-------
nodes : dictionary
Dictionary of edge tuples with betweenness centrality as the value.

--------
betweenness_centrality
edge_betweenness_centrality
current_flow_betweenness_centrality

Notes
-----
Current-flow betweenness can be computed in O(I(n-1)+mn \log n)
time [1]_, where I(n-1) is the time needed to compute the
inverse Laplacian.  For a full matrix this is O(n^3) but using
sparse methods you can achieve O(nm{\sqrt k}) where k is the
Laplacian matrix condition number.

The space required is O(nw) where w is the width of the sparse
Laplacian matrix.  Worse case is w=n for O(n^2).

If the edges have a 'weight' attribute they will be used as
weights in this algorithm.  Unspecified weights are set to 1.

References
----------
.. [1] Centrality Measures Based on Current Flow.
Ulrik Brandes and Daniel Fleischer,
Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
http://www.inf.uni-konstanz.de/algo/publications/bf-cmbcf-05.pdf

.. [2] A measure of betweenness centrality based on random walks,
M. E. J. Newman, Social Networks 27, 39-54 (2005).
"""
from networkx.utils import reverse_cuthill_mckee_ordering
try:
import numpy as np
except ImportError:
raise ImportError('current_flow_betweenness_centrality requires NumPy ',
'http://scipy.org/')
try:
import scipy
except ImportError:
raise ImportError('current_flow_betweenness_centrality requires SciPy ',
'http://scipy.org/')
if G.is_directed():
raise nx.NetworkXError('edge_current_flow_betweenness_centrality ',
'not defined for digraphs.')
if not nx.is_connected(G):
raise nx.NetworkXError("Graph not connected.")
n = G.number_of_nodes()
ordering = list(reverse_cuthill_mckee_ordering(G))
# make a copy with integer labels according to rcm ordering
# this could be done without a copy if we really wanted to
H = nx.relabel_nodes(G,dict(zip(ordering,range(n))))
betweenness=(dict.fromkeys(H.edges(),0.0))
if normalized:
nb=(n-1.0)*(n-2.0) # normalization factor
else:
nb=2.0
for row,(e) in flow_matrix_row(H, weight=weight, dtype=dtype,
solver=solver):
pos=dict(zip(row.argsort()[::-1],range(1,n+1)))
for i in range(n):
betweenness[e]+=(i+1-pos[i])*row[i]
betweenness[e]+=(n-i-pos[i])*row[i]
betweenness[e]/=nb
return dict(((ordering[s],ordering[t]),float(v))
for (s,t),v in betweenness.items())

# fixture for nose tests
def setup_module(module):
from nose import SkipTest
try:
import numpy
import scipy
except:
raise SkipTest("NumPy not available")
`