graph_atlas_g() | Return the list [G0,G1,...,G1252] of graphs as named in the Graph Atlas. |
balanced_tree(r, h[, create_using]) | Return the perfectly balanced r-tree of height h. |
barbell_graph(m1, m2[, create_using]) | Return the Barbell Graph: two complete graphs connected by a path. |
complete_graph(n[, create_using]) | Return the Complete graph K_n with n nodes. |
complete_bipartite_graph(n1, n2[, create_using]) | Return the complete bipartite graph K_{n1_n2}. |
circular_ladder_graph(n[, create_using]) | Return the circular ladder graph CL_n of length n. |
cycle_graph(n[, create_using]) | Return the cycle graph C_n over n nodes. |
dorogovtsev_goltsev_mendes_graph(n[, ...]) | Return the hierarchically constructed Dorogovtsev-Goltsev-Mendes graph. |
empty_graph([n, create_using]) | Return the empty graph with n nodes and zero edges. |
grid_2d_graph(m, n[, periodic, create_using]) | Return the 2d grid graph of mxn nodes, each connected to its nearest neighbors. |
grid_graph(dim[, periodic, create_using]) | Return the n-dimensional grid graph. |
hypercube_graph(n[, create_using]) | Return the n-dimensional hypercube. |
ladder_graph(n[, create_using]) | Return the Ladder graph of length n. |
lollipop_graph(m, n[, create_using]) | Return the Lollipop Graph; K_m connected to P_n. |
null_graph([create_using]) | Return the Null graph with no nodes or edges. |
path_graph(n[, create_using]) | Return the Path graph P_n of n nodes linearly connected |
star_graph(n[, create_using]) | Return the Star graph with n+1 nodes: |
trivial_graph([create_using]) | Return the Trivial graph with one node (with integer label 0) |
wheel_graph(n[, create_using]) | Return the wheel graph: a single hub node connected to each node of the (n-1)-node cycle graph. |
make_small_graph(graph_description[, ...]) | Return the small graph described by graph_description. |
LCF_graph(n, shift_list, repeats[, create_using]) | Return the cubic graph specified in LCF notation. |
bull_graph([create_using]) | Return the Bull graph. |
chvatal_graph([create_using]) | Return the Chvatal graph. |
cubical_graph([create_using]) | Return the 3-regular Platonic Cubical graph. |
desargues_graph([create_using]) | Return the Desargues graph. |
diamond_graph([create_using]) | Return the Diamond graph. |
dodecahedral_graph([create_using]) | Return the Platonic Dodecahedral graph. |
frucht_graph([create_using]) | Return the Frucht Graph. |
heawood_graph([create_using]) | Return the Heawood graph, a (3,6) cage. |
house_graph([create_using]) | Return the House graph (square with triangle on top). |
house_x_graph([create_using]) | Return the House graph with a cross inside the house square. |
icosahedral_graph([create_using]) | Return the Platonic Icosahedral graph. |
krackhardt_kite_graph([create_using]) | Return the Krackhardt Kite Social Network. |
moebius_kantor_graph([create_using]) | Return the Moebius-Kantor graph. |
octahedral_graph([create_using]) | Return the Platonic Octahedral graph. |
pappus_graph() | Return the Pappus graph. |
petersen_graph([create_using]) | Return the Petersen graph. |
sedgewick_maze_graph([create_using]) | Return a small maze with a cycle. |
tetrahedral_graph([create_using]) | Return the 3-regular Platonic Tetrahedral graph. |
truncated_cube_graph([create_using]) | Return the skeleton of the truncated cube. |
truncated_tetrahedron_graph([create_using]) | Return the skeleton of the truncated Platonic tetrahedron. |
tutte_graph([create_using]) | Return the Tutte graph. |
fast_gnp_random_graph(n, p[, create_using, seed]) | Return a random graph G_{n,p}. |
gnp_random_graph(n, p[, create_using, seed]) | Return a random graph G_{n,p}. |
dense_gnm_random_graph(n, m[, create_using, ...]) | Return the random graph G_{n,m}. |
gnm_random_graph(n, m[, create_using, seed]) | Return the random graph G_{n,m}. |
erdos_renyi_graph(n, p[, create_using, seed]) | Return a random graph G_{n,p}. |
binomial_graph(n, p[, create_using, seed]) | Return a random graph G_{n,p}. |
newman_watts_strogatz_graph(n, k, p[, ...]) | Return a Newman-Watts-Strogatz small world graph. |
watts_strogatz_graph(n, k, p[, ...]) | Return a Watts-Strogatz small-world graph. |
connected_watts_strogatz_graph(n, k, p[, ...]) | Return a connected Watts-Strogatz small-world graph. |
random_regular_graph(d, n[, create_using, seed]) | Return a random regular graph of n nodes each with degree d. |
barabasi_albert_graph(n, m[, create_using, seed]) | Return random graph using Barabási-Albert preferential attachment model. |
powerlaw_cluster_graph(n, m, p[, ...]) | Holme and Kim algorithm for growing graphs with powerlaw |
random_lobster(n, p1, p2[, create_using, seed]) | Return a random lobster. |
random_shell_graph(constructor[, ...]) | Return a random shell graph for the constructor given. |
random_powerlaw_tree(n[, gamma, ...]) | Return a tree with a powerlaw degree distribution. |
random_powerlaw_tree_sequence(n[, gamma, ...]) | Return a degree sequence for a tree with a powerlaw distribution. |
configuration_model(deg_sequence[, ...]) | Return a random graph with the given degree sequence. |
expected_degree_graph(w[, create_using, seed]) | Return a random graph G(w) with expected degrees given by w. |
havel_hakimi_graph(deg_sequence[, create_using]) | Return a simple graph with given degree sequence, constructed using the |
degree_sequence_tree(deg_sequence[, ...]) | Make a tree for the given degree sequence. |
is_valid_degree_sequence(deg_sequence) | Return True if deg_sequence is a valid sequence of integer degrees |
create_degree_sequence(n, **kwds[, ...]) | Attempt to create a valid degree sequence of length n using specified function sfunction(n,**kwds). |
double_edge_swap(G[, nswap]) | Attempt nswap double-edge swaps on the graph G. |
connected_double_edge_swap(G[, nswap]) | Attempt nswap double-edge swaps on the graph G. |
li_smax_graph(degree_seq[, create_using]) | Generates a graph based with a given degree sequence and maximizing the s-metric. |
s_metric(G) | Return the s-metric of graph. |
gn_graph(n[, kernel, create_using, seed]) | Return the GN digraph with n nodes. |
gnr_graph(n, p[, create_using, seed]) | Return the GNR digraph with n nodes and redirection probability p. |
gnc_graph(n[, create_using, seed]) | Return the GNC digraph with n nodes. |
scale_free_graph(n[, alpha, beta, gamma, ...]) | Return a scale free directed graph. |
random_geometric_graph(n, radius[, ...]) | Random geometric graph in the unit cube |
kl_connected_subgraph(G, k, l[, low_memory, ...]) | Returns the maximum locally (k,l) connected subgraph of G. |
is_kl_connected(G, k, l[, low_memory]) | Returns True if G is kl connected |
bipartite_configuration_model(aseq, bseq[, ...]) | Return a random bipartite graph from two given degree sequences. |
bipartite_havel_hakimi_graph(aseq, bseq[, ...]) | Return a bipartite graph from two given degree sequences |
bipartite_reverse_havel_hakimi_graph(aseq, bseq) | Return a bipartite graph from two given degree sequences |
bipartite_alternating_havel_hakimi_graph(...) | Return a bipartite graph from two given degree sequences |
bipartite_preferential_attachment_graph(aseq, p) | Create a bipartite graph with a preferential attachment model from a given single degree sequence. |
bipartite_random_regular_graph(d, n[, ...]) | UNTESTED: Generate a random bipartite graph. |