NetworkX

Table Of Contents

Previous topic

networkx.authority_matrix

Next topic

networkx.is_connected

Traversal

Components

Connected components and strongly connected components.

Undirected Graphs

is_connected(G) Return True if G is connected.
number_connected_components(G) Return the number of connected components in G.
connected_components(G) Return a list of lists of nodes in each connected component of G.
connected_component_subgraphs(G) Return a list of graphs of each connected component of G.
node_connected_component(G, n) Return a list of nodes of the connected component containing node n.

Directed Graphs

is_strongly_connected(G) Return True if G is strongly connected.
number_strongly_connected_components(G) Return the number of strongly connected components in G.
strongly_connected_components(G) Returns a list of strongly connected components in G.
strongly_connected_component_subgraphs(G) Return a list of graphs of each strongly connected component of G.
strongly_connected_components_recursive(G) Returns list of strongly connected components in G.
kosaraju_strongly_connected_components(G[, ...]) Returns list of strongly connected components in G.

DAGs

Algorithms for directed acyclic graphs (DAGs).

topological_sort(G[, nbunch]) Return a list of nodes in topological sort order.
topological_sort_recursive(G[, nbunch]) Return a list of nodes in topological sort order.
is_directed_acyclic_graph(G) Return True if the graph G is a directed acyclic graph (DAG)

Distance

Shortest paths, diameter, radius, eccentricity, and related methods.

eccentricity(G[, v, sp, with_labels]) Return the eccentricity of node v in G (or all nodes if v is None).
diameter(G[, e]) Return the diameter of the graph G.
radius(G[, e]) Return the radius of the graph G.
periphery(G[, e]) Return the periphery of the graph G.
center(G[, e]) Return the center of graph G.

Shortest Paths

Shortest path algorithms.

average_shortest_path_length(G[, weighted]) Return the average shortest path length.
shortest_path(G, source, target) Return a list of nodes in a shortest path between source and target.
shortest_path_length(G, source, target) Return the shortest path length between the source and target.
single_source_shortest_path(G, source[, cutoff]) Return list of nodes in a shortest path between source and all other nodes reachable from source.
single_source_shortest_path_length(G, source) Return the shortest path length from source to all reachable nodes.
all_pairs_shortest_path(G[, cutoff]) Return shortest paths between all nodes.
all_pairs_shortest_path_length(G[, cutoff]) Return dictionary of shortest path lengths between all nodes in G.
dijkstra_path(G, source, target) Returns the shortest path from source to target in a weighted
dijkstra_path_length(G, source, target) Returns the shortest path length from source to target in a weighted
single_source_dijkstra_path(G, source) Return list of nodes in a shortest path between source and all other nodes reachable from source for a weighted graph.
single_source_dijkstra_path_length(G, source) Returns the shortest path lengths from source to all other
single_source_dijkstra(G, source[, target, ...]) Returns shortest paths and lengths in a weighted graph G.
bidirectional_dijkstra(G, source, target) Dijkstra’s algorithm for shortest paths using bidirectional search.
bidirectional_shortest_path(G, source, target) Return a list of nodes in a shortest path between source and target.
dijkstra_predecessor_and_distance(G, source) Returns two dictionaries representing a list of predecessors of a node and the distance to each node respectively.
predecessor(G, source[, target, cutoff, ...]) Returns dictionary of predecessors for the path from source to all
floyd_warshall(G[, huge]) The Floyd-Warshall algorithm for all pairs shortest paths.

Shortest paths using A* (“A star”) algorithm.

astar_path(G, source, target[, heuristic]) Return a list of nodes in a shortest path between source and target
astar_path_length(G, source, target[, heuristic]) Return a list of nodes in a shortest path between source and target

Search

Search algorithms.

See also networkx.path.

dfs_preorder(G[, source, reverse_graph]) Return list of nodes connected to source in depth-first-search preorder.
dfs_postorder(G[, source, reverse_graph]) Return list of nodes connected to source in depth-first-search postorder.
dfs_predecessor(G[, source, reverse_graph]) Return predecessors of depth-first-search with root at source.
dfs_successor(G[, source, reverse_graph]) Return succesors of depth-first-search with root at source.
dfs_tree(G[, source, reverse_graph]) Return directed graph (tree) of depth-first-search with root at source.