Compute the squares clustering coefficient for nodes.
For each node return the fraction of possible squares that exist at the node [R159]
where are the number of common neighbors of and other than (ie squares), and , where if and are connected and 0 otherwise.
Parameters : | G : graph nodes : container of nodes, optional (default=all nodes in G)
|
---|---|
Returns : | c4 : dictionary
|
Notes
While (triangle clustering) gives the probability that two neighbors of node v are connected with each other, is the probability that two neighbors of node v share a common neighbor different from v. This algorithm can be applied to both bipartite and unipartite networks.
References
[R159] | (1, 2) Pedro G. Lind, Marta C. González, and Hans J. Herrmann. 2005 Cycles and clustering in bipartite networks. Physical Review E (72) 056127. |
Examples
>>> G=nx.complete_graph(5)
>>> print(nx.square_clustering(G,0))
1.0
>>> print(nx.square_clustering(G))
{0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, 4: 1.0}