NetworkX

Source code for networkx.classes.function

"""Functional interface to graph methods and assorted utilities.
"""
#    Copyright (C) 2004-2012 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
#
import networkx as nx
__author__ = """\n""".join(['Aric Hagberg (hagberg@lanl.gov)',
                           'Pieter Swart (swart@lanl.gov)',
                           'Dan Schult(dschult@colgate.edu)'])
__all__ = ['nodes', 'edges', 'degree', 'degree_histogram', 'neighbors',
           'number_of_nodes', 'number_of_edges', 'density',
           'nodes_iter', 'edges_iter', 'is_directed','info',
           'freeze','is_frozen','subgraph','create_empty_copy',
           'set_node_attributes','get_node_attributes',
           'set_edge_attributes','get_edge_attributes',
           'all_neighbors','non_neighbors']

[docs]def nodes(G): """Return a copy of the graph nodes in a list.""" return G.nodes()
[docs]def nodes_iter(G): """Return an iterator over the graph nodes.""" return G.nodes_iter()
[docs]def edges(G,nbunch=None): """Return list of edges adjacent to nodes in nbunch. Return all edges if nbunch is unspecified or nbunch=None. For digraphs, edges=out_edges """ return G.edges(nbunch)
[docs]def edges_iter(G,nbunch=None): """Return iterator over edges adjacent to nodes in nbunch. Return all edges if nbunch is unspecified or nbunch=None. For digraphs, edges=out_edges """ return G.edges_iter(nbunch)
[docs]def degree(G,nbunch=None,weight=None): """Return degree of single node or of nbunch of nodes. If nbunch is ommitted, then return degrees of *all* nodes. """ return G.degree(nbunch,weight)
def neighbors(G,n): """Return a list of nodes connected to node n. """ return G.neighbors(n)
[docs]def number_of_nodes(G): """Return the number of nodes in the graph.""" return G.number_of_nodes()
[docs]def number_of_edges(G): """Return the number of edges in the graph. """ return G.number_of_edges()
[docs]def density(G): r"""Return the density of a graph. The density for undirected graphs is .. math:: d = \frac{2m}{n(n-1)}, and for directed graphs is .. math:: d = \frac{m}{n(n-1)}, where `n` is the number of nodes and `m` is the number of edges in `G`. Notes ----- The density is 0 for an graph without edges and 1.0 for a complete graph. The density of multigraphs can be higher than 1. """ n=number_of_nodes(G) m=number_of_edges(G) if m==0: # includes cases n==0 and n==1 d=0.0 else: if G.is_directed(): d=m/float(n*(n-1)) else: d= m*2.0/float(n*(n-1)) return d
[docs]def degree_histogram(G): """Return a list of the frequency of each degree value. Parameters ---------- G : Networkx graph A graph Returns ------- hist : list A list of frequencies of degrees. The degree values are the index in the list. Notes ----- Note: the bins are width one, hence len(list) can be large (Order(number_of_edges)) """ degseq=list(G.degree().values()) dmax=max(degseq)+1 freq= [ 0 for d in range(dmax) ] for d in degseq: freq[d] += 1 return freq
[docs]def is_directed(G): """ Return True if graph is directed.""" return G.is_directed()
[docs]def freeze(G): """Modify graph to prevent further change by adding or removing nodes or edges. Node and edge data can still be modified. Parameters ----------- G : graph A NetworkX graph Examples -------- >>> G=nx.Graph() >>> G.add_path([0,1,2,3]) >>> G=nx.freeze(G) >>> try: ... G.add_edge(4,5) ... except nx.NetworkXError as e: ... print(str(e)) Frozen graph can't be modified Notes ----- To "unfreeze" a graph you must make a copy by creating a new graph object: >>> graph = nx.path_graph(4) >>> frozen_graph = nx.freeze(graph) >>> unfrozen_graph = nx.Graph(frozen_graph) >>> nx.is_frozen(unfrozen_graph) False See Also -------- is_frozen """ def frozen(*args): raise nx.NetworkXError("Frozen graph can't be modified") G.add_node=frozen G.add_nodes_from=frozen G.remove_node=frozen G.remove_nodes_from=frozen G.add_edge=frozen G.add_edges_from=frozen G.remove_edge=frozen G.remove_edges_from=frozen G.clear=frozen G.frozen=True return G
[docs]def is_frozen(G): """Return True if graph is frozen. Parameters ----------- G : graph A NetworkX graph See Also -------- freeze """ try: return G.frozen except AttributeError: return False
def subgraph(G, nbunch): """Return the subgraph induced on nodes in nbunch. Parameters ---------- G : graph A NetworkX graph nbunch : list, iterable A container of nodes that will be iterated through once (thus it should be an iterator or be iterable). Each element of the container should be a valid node type: any hashable type except None. If nbunch is None, return all edges data in the graph. Nodes in nbunch that are not in the graph will be (quietly) ignored. Notes ----- subgraph(G) calls G.subgraph() """ return G.subgraph(nbunch)
[docs]def create_empty_copy(G,with_nodes=True): """Return a copy of the graph G with all of the edges removed. Parameters ---------- G : graph A NetworkX graph with_nodes : bool (default=True) Include nodes. Notes ----- Graph, node, and edge data is not propagated to the new graph. """ H=G.__class__() if with_nodes: H.add_nodes_from(G) return H
[docs]def info(G, n=None): """Print short summary of information for the graph G or the node n. Parameters ---------- G : Networkx graph A graph n : node (any hashable) A node in the graph G """ info='' # append this all to a string if n is None: info+="Name: %s\n"%G.name type_name = [type(G).__name__] info+="Type: %s\n"%",".join(type_name) info+="Number of nodes: %d\n"%G.number_of_nodes() info+="Number of edges: %d\n"%G.number_of_edges() nnodes=G.number_of_nodes() if len(G) > 0: if G.is_directed(): info+="Average in degree: %8.4f\n"%\ (sum(G.in_degree().values())/float(nnodes)) info+="Average out degree: %8.4f"%\ (sum(G.out_degree().values())/float(nnodes)) else: s=sum(G.degree().values()) info+="Average degree: %8.4f"%\ (float(s)/float(nnodes)) else: if n not in G: raise nx.NetworkXError("node %s not in graph"%(n,)) info+="Node % s has the following properties:\n"%n info+="Degree: %d\n"%G.degree(n) info+="Neighbors: " info+=' '.join(str(nbr) for nbr in G.neighbors(n)) return info
[docs]def set_node_attributes(G,name,attributes): """Set node attributes from dictionary of nodes and values Parameters ---------- G : NetworkX Graph name : string Attribute name attributes: dict Dictionary of attributes keyed by node. Examples -------- >>> G=nx.path_graph(3) >>> bb=nx.betweenness_centrality(G) >>> nx.set_node_attributes(G,'betweenness',bb) >>> G.node[1]['betweenness'] 1.0 """ for node,value in attributes.items(): G.node[node][name]=value
[docs]def get_node_attributes(G,name): """Get node attributes from graph Parameters ---------- G : NetworkX Graph name : string Attribute name Returns ------- Dictionary of attributes keyed by node. Examples -------- >>> G=nx.Graph() >>> G.add_nodes_from([1,2,3],color='red') >>> color=nx.get_node_attributes(G,'color') >>> color[1] 'red' """ return dict( (n,d[name]) for n,d in G.node.items() if name in d)
[docs]def set_edge_attributes(G,name,attributes): """Set edge attributes from dictionary of edge tuples and values Parameters ---------- G : NetworkX Graph name : string Attribute name attributes: dict Dictionary of attributes keyed by edge (tuple). Examples -------- >>> G=nx.path_graph(3) >>> bb=nx.edge_betweenness_centrality(G, normalized=False) >>> nx.set_edge_attributes(G,'betweenness',bb) >>> G[1][2]['betweenness'] 2.0 """ for (u,v),value in attributes.items(): G[u][v][name]=value
[docs]def get_edge_attributes(G,name): """Get edge attributes from graph Parameters ---------- G : NetworkX Graph name : string Attribute name Returns ------- Dictionary of attributes keyed by node. Examples -------- >>> G=nx.Graph() >>> G.add_path([1,2,3],color='red') >>> color=nx.get_edge_attributes(G,'color') >>> color[(1,2)] 'red' """ return dict( ((u,v),d[name]) for u,v,d in G.edges(data=True) if name in d)
[docs]def all_neighbors(graph, node): """ Returns all of the neighbors of a node in the graph. If the graph is directed returns predecessors as well as successors. Parameters ---------- graph : NetworkX graph Graph to find neighbors. node : node The node whose neighbors will be returned. Returns ------- neighbors : iterator Iterator of neighbors """ if graph.is_directed(): values = itertools.chain.from_iterable([graph.predecessors_iter(node), graph.successors_iter(node)]) else: values = graph.neighbors_iter(node) return values
[docs]def non_neighbors(graph, node): """Returns the non-neighbors of the node in the graph. Parameters ---------- graph : NetworkX graph Graph to find neighbors. node : node The node whose neighbors will be returned. Returns ------- non_neighbors : iterator Iterator of nodes in the graph that are not neighbors of the node. """ nbors = set(neighbors(graph, node)) | set([node]) return (nnode for nnode in graph if nnode not in nbors)